ebook img

Environmental Data Analysis with MatLab or Python: Principles, Applications, and Prospects PDF

466 Pages·2022·22.102 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Environmental Data Analysis with MatLab or Python: Principles, Applications, and Prospects

ENVIRONMENTAL DATA ANALYSIS WITH ® MATLAB OR PYTHON This page intentionally left blank ENVIRONMENTAL DATA ANALYSIS WITH ® MATLAB OR PYTHON Principles, Applications, and Prospects Third Edition WILLIAM MENKE Professor of Earth and Environmental Sciences,Lamont-Doherty Earth Observatory of ColumbiaUniversity, Palisades, NY, USA AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2022ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfrom anyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. MATLAB®isatrademarkofTheMathWorksInc.andisusedwithpermission.TheMathWorksdoesnotwarrant theaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionofMATLAB®softwareorrelated productsdoesnotconstituteendorsementorsponsorshipbyTheMathworksofaparticularpedagogicalapproach orparticularuseoftheMATLAB®software. ISBN:978-0-323-95576-8 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:CandiceJanco AcquisitionsEditor:JessicaMack EditorialProjectManager:RupinderHeron ProductionProjectManager:KumarAnbazhagan CoverDesigner:MarkRogers TypesetbySTRAIVE,India Contents Preface xi Acknowledgment xvii Adviceonscriptingforbeginners xix 1. Data analysis with MATLAB® or Python 1 PartA:MATLAB® 2 1A.1 Gettingstarted 2 1A.2 Navigatingfolders 4 1A.3 Simplearithmeticandalgebra 5 1A.4 Vectorsandmatrices 6 1A.5 Addition,subtractionandmultiplicationofcolumn-vectorsandmatrices 7 1A.6 Elementaccess 9 1A.7 Representingfunctions 10 1A.8 Toloopornottoloop 12 1A.9 Thematrixinverse 14 1A.10 Loadingdatafromafile 15 1A.11 Plottingdata 16 1A.12 Savingdatatoafile 19 1A.13 Someadviceonwritingscripts 20 PartB:Python 22 1B.1 Installation 22 1B.2 Thefirstcellintheedapy_01JupyterNotebook 22 1B.3 AverysimplePythonscript 25 1B.4 Navigatingfolders 25 1B.5 Simplearithmeticandalgebra 26 1B.6 List-likedata 27 1B.7 Creatingcolumn-vectorsandmatrices 28 1B.8 Addition,subtractionandmultiplicationofcolumn-vectorsandmatrices 30 1B.9 Elementaccess 32 1B.10 Representingfunctions 33 1B.11 Toloopornottoloop 36 1B.12 Thematrixinverse 38 1B.13 Loadingdatafromafile 38 1B.14 Plottingdata 39 1B.15 Savingdatatoafile 42 1B.16 Someadviceonwritingscripts 42 Problems 45 v vi Contents 2. Systematic explorations ofa new dataset 47 2.1 Casestudy:Blackrockforesttemperaturedata 47 2.2 Moreongraphics 59 2.3 Casestudy:NeuseRiverhydrographusedtoexploreratedata 66 2.4 Casestudy,AtlanticRockdatasetusedtoexplorescatterplots 69 2.5 Moreoncharacterstrings 73 Problems 76 3. Modeling observational noise with random variables 77 3.1 Randomvariables 77 3.2 Mean,median,andmode 79 3.3 Variance 85 3.4 Twoimportantprobabilitydensityfunctions 87 3.5 Functionsofarandomvariable 89 3.6 Jointprobabilities 90 3.7 Bayesianinference 93 3.8 Jointprobabilitydensityfunctions 94 3.9 Covariance 100 3.10 Themultivariatenormalp.d.f. 102 3.11 Linearfunctionsofmultivariatedata 105 Problems 109 Reference 110 4. Linear models as the foundation ofdata analysis 111 4.1 Quantitativemodels,data,andmodelparameters 111 4.2 Thesimplestofquantitativemodels 113 4.3 Curvefitting 114 4.4 Mixtures 119 4.5 Weightedaverages 121 4.6 Examiningerror 124 4.7 Leastsquares 129 4.8 Examples 131 4.9 Covarianceandthebehavioroferror 136 Problems 140 5. Leastsquares with prior information 141 5.1 Whenleastsquarefails 141 5.2 Priorinformation 143 5.3 Bayesianinference 144 5.4 TheproductofNormalprobabilitydensityfunctions 146 Contents vii 5.5 Generalizedleastsquares 148 5.6 Theroleofthecovarianceofthedata 150 5.7 Smoothnessaspriorinformation 152 5.8 Sparsematrices 156 5.9 Reorganizinggridsofmodelparameters 160 Problems 169 References 170 6. Detecting periodicities with Fourier analysis 171 6.1 Describingsinusoidaloscillations 171 6.2 Modelscomposedonlyofsinusoidalfunctions 173 6.3 Goingcomplex 182 6.4 Lessonslearnedfromtheintegraltransform 187 6.5 Normalcurve 188 6.6 Spikes 188 6.7 Areaunderafunction 190 6.8 Time-delayedfunction 192 6.9 Derivativeofafunction 193 6.10 Integralofafunction 195 6.11 Convolution 196 6.12 Nontransientsignals 197 Problems 203 Furtherreading 203 7. Modeling time-dependentbehavior with filters 205 7.1 Behaviorsensitivetopastconditions 205 7.2 Filteringasconvolution 209 7.3 Solvingproblemswithfilters 211 7.4 Casestudy:Empirically-derivedfilterforHudsonRiverdischarge 221 7.5 Predictingthefuture 223 7.6 Aparallelbetweenfiltersandpolynomials 225 7.7 Filtercascadesandinversefilters 227 7.8 Makinguseofwhatyouknow 231 Problems 237 Reference 237 8. Undirecteddataanalysis using factors,empirical orthogonal functions, andclusters 239 8.1 Samplesasmixtures 239 8.2 Determiningtheminimumnumberoffactors 242 viii Contents 8.3 ApplicationtotheAtlanticRocksdataset 246 8.4 Spikyfactors 249 8.5 Weightingofelements 254 8.6 Q-modefactoranalysis 255 8.7 Factorsandfactorloadingswithnaturalorderings 256 8.8 Casestudy:EOF’softheequatorialPacificOceanSeasurfacetemperaturedataset 258 8.9 Clustersofdata 262 8.10 K-meanclusteranalysis 267 8.11 ClusteringtheAtlanticRocksdataset 270 Problems 274 References 275 9. Detecting and understanding correlations among data 277 9.1 Correlationiscovariance 277 9.2 Computingautocorrelationbyhand 283 9.3 Relationshiptoconvolutionandpowerspectraldensity 284 9.4 Cross-correlation 285 9.5 Usingthecross-correlationtoaligntimeseries 287 9.6 Leastsquaresestimationoffilters 291 9.7 Theeffectofsmoothingontimeseries 296 9.8 Band-passfilters 300 9.9 Casestudy:CoherenceoftheReynoldsChannelwaterqualitydata 305 9.10 WindowingbeforecomputingFouriertransforms 310 9.11 Optimalwindowfunctions 313 Problems 317 References 317 10. Interpolation, Gaussian process regression, andkriging 319 10.1 Interpolationrequirespriorinformation 319 10.2 Linearinterpolation 320 10.3 Cubicinterpolation 323 10.4 Gaussianprocessregressionandkriging 325 10.5 ExampleofGaussianprocessregression 329 10.6 TuningofparametersinGaussianprocessregression 333 10.7 Exampleoftuning 335 10.8 Interpolationintwo-dimensions 335 10.9 Fouriertransformsintwodimensions 340 10.10 UsingFouriertransformstofillinmissingdata 342 Problems 347 References 348 Contents ix 11. Approximate methods,including linearization and artificial neural networks 349 11.1 Thevalueofsimplicity 349 11.2 PolynomialapproximationsandTaylorseries 350 11.3 Smallnumberapproximations 351 11.4 Smallnumberapproximationappliedtodistanceonasphere 352 11.5 Smallnumberapproximationappliedtovariance 353 11.6 Taylorseriesinmultipledimensions 354 11.7 Smallnumberapproximationappliedtocovariance 355 11.8 Solvingnonlinearproblemswithiterativeleastsquares 356 11.9 Fittingasinusoidofunknownfrequency 357 11.10 Thegradientdescentmethod 359 11.11 Precomputationofafunctionandtablelookups 361 11.12 Artificialneuralnetworks 363 11.13 Informationflowinaneuralnet 365 11.14 Traininganeuralnet 372 11.15 Neuralnetforanonlinearfilter 375 Problems 382 References 383 12. Assessing the significance of results 385 12.1 RejectingtheNullHypothesis 385 12.2 Thedistributionofthetotalerror 386 12.3 Fourimportantprobabilitydensityfunctions 389 12.4 Casestudywithcommonhypothesistestingscenarios 391 12.5 Chi-squaredtestforgeneralizedleastsquares 398 12.6 Testingimprovementinfit 400 12.7 Testingthesignificanceofaspectralpeak 402 12.8 Significanceofaspectralpeakforacorrelatedtimeseries 407 12.9 Bootstrapconfidenceintervals 410 Problems 418 13. Notes 419 13.1 Note1.1Onthepersistenceofvariables 419 13.2 Note2.1Ontime 420 13.3 Note2.2Onreadingcomplicatedtextfiles 421 13.4 Note3.1Ontheruleforerrorpropagation 423 13.5 Note3.2Ontheeda_draw()function 424 13.6 Note4.1Oncomplexleastsquares 424 13.7 Note5.1Onthederivationofgeneralizedleastsquares 427

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.