ebook img

Entropy Theory and its Application in Environmental and Water Engineering PDF

658 Pages·2013·4.075 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entropy Theory and its Application in Environmental and Water Engineering

Entropy Theory and its Application in Environmental and Water Engineering Entropy Theory and its Application in Environmental and Water Engineering Vijay P. Singh DepartmentofBiologicalandAgriculturalEngineering& DepartmentofCivilandEnvironmentalEngineering TexasA&MUniversity Texas,USA A John Wiley & Sons, Ltd., Publication Thiseditionfirstpublished20132013byJohnWileyandSons,Ltd Wiley-BlackwellisanimprintofJohnWiley&Sons,formedbythemergerofWiley’sglobalScientific, TechnicalandMedicalbusinesswithBlackwellPublishing. Registeredoffice:JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Editorialoffices:9600GarsingtonRoad,Oxford,OX42DQ,UK TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK 111RiverStreet,Hoboken,NJ07030-5774,USA Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteat www.wiley.com/wiley-blackwell. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeUK Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksof theirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmatter covered.Itissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.If professionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbe sought. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswiththerespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisherisnotengagedinrendering professionalservicesandneitherthepublishernortheauthorshallbeliablefordamagesarisingherefrom.If professionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbe sought. LibraryofCongressCataloging-in-PublicationData Singh,V.P.(VijayP.) Entropytheoryanditsapplicationinenvironmentalandwaterengineering/VijayP.Singh. pagescm Includesbibliographicalreferencesandindexes. ISBN978-1-119-97656-1(cloth) 1.Hydraulicengineering–Mathematics.2.Water–Thermalproperties–Mathematicalmodels. 3.Hydraulics–Mathematics.4.Maximumentropymethod–Congresses.5.Entropy.I.Title. TC157.8.S462013 (cid:1) 627.0153673–dc23 2012028077 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Typesetin10/12ptTimes-RomanbyLaserwordsPrivateLimited,Chennai,India FirstImpression2013 Dedicatedto MywifeAnita, sonVinay, daughter-in-lawSonali daughterArti,and grandsonRonin Contents Preface,xv Acknowledgments,xix 1 Introduction,1 1.1 Systemsandtheircharacteristics,1 1.1.1 Classesofsystems,1 1.1.2 Systemstates,1 1.1.3 Changeofstate,2 1.1.4 Thermodynamicentropy,3 1.1.5 Evolutiveconnotationofentropy,5 1.1.6 Statisticalmechanicalentropy,5 1.2 Informationalentropies,7 1.2.1 Typesofentropies,8 1.2.2 Shannonentropy,9 1.2.3 Informationgainfunction,12 1.2.4 Boltzmann,GibbsandShannonentropies,14 1.2.5 Negentropy,15 1.2.6 Exponentialentropy,16 1.2.7 Tsallisentropy,18 1.2.8 Renyientropy,19 1.3 Entropy,information,anduncertainty,21 1.3.1 Information,22 1.3.2 Uncertaintyandsurprise,24 1.4 Typesofuncertainty,25 1.5 Entropyandrelatedconcepts,27 1.5.1 Informationcontentofdata,27 1.5.2 Criteriaformodelselection,28 1.5.3 Hypothesistesting,29 1.5.4 Riskassessment,29 Questions,29 References,31 AdditionalReferences,32 viii Contents 2 EntropyTheory,33 2.1 Formulationofentropy,33 2.2 Shannonentropy,39 2.3 Connotationsofinformationandentropy,42 2.3.1 Amountofinformation,42 2.3.2 Measureofinformation,43 2.3.3 Sourceofinformation,43 2.3.4 Removalofuncertainty,44 2.3.5 Equivocation,45 2.3.6 Averageamountofinformation,45 2.3.7 Measurementsystem,46 2.3.8 Informationandorganization,46 2.4 Discreteentropy:univariatecaseandmarginalentropy,46 2.5 Discreteentropy:bivariatecase,52 2.5.1 Jointentropy,53 2.5.2 Conditionalentropy,53 2.5.3 Transinformation,57 2.6 Dimensionlessentropies,79 2.7 Bayestheorem,80 2.8 Informationalcorrelationcoefficient,88 2.9 Coefficientofnontransferredinformation,90 2.10 Discreteentropy:multidimensionalcase,92 2.11 Continuousentropy,93 2.11.1 Univariatecase,94 2.11.2 Differentialentropyofcontinuousvariables,97 2.11.3 Variabletransformationandentropy,99 2.11.4 Bivariatecase,100 2.11.5 Multivariatecase,105 2.12 Stochasticprocessesandentropy,105 2.13 Effectofproportionalclassinterval,107 2.14 Effectoftheformofprobabilitydistribution,110 2.15 Datawithzerovalues,111 2.16 Effectofmeasurementunits,113 2.17 Effectofaveragingdata,115 2.18 Effectofmeasurementerror,116 2.19 Entropyinfrequencydomain,118 2.20 Principleofmaximumentropy,118 2.21 Concentrationtheorem,119 2.22 Principleofminimumcrossentropy,122 2.23 Relationbetweenentropyanderrorprobability,123 2.24 Variousinterpretationsofentropy,125 2.24.1 Measureofrandomnessordisorder,125 2.24.2 Measureofunbiasednessorobjectivity,125 2.24.3 Measureofequality,125 2.24.4 Measureofdiversity,126 2.24.5 Measureoflackofconcentration,126 2.24.6 Measureofflexibility,126 Contents ix 2.24.7 Measureofcomplexity,126 2.24.8 Measureofdeparturefromuniformdistribution,127 2.24.9 Measureofinterdependence,127 2.24.10 Measureofdependence,128 2.24.11 Measureofinteractivity,128 2.24.12 Measureofsimilarity,129 2.24.13 Measureofredundancy,129 2.24.14 Measureoforganization,130 2.25 Relationbetweenentropyandvariance,133 2.26 Entropypower,135 2.27 Relativefrequency,135 2.28 Applicationofentropytheory,136 Questions,136 References,137 AdditionalReading,139 3 PrincipleofMaximumEntropy,142 3.1 Formulation,142 3.2 POMEformalismfordiscretevariables,145 3.3 POMEformalismforcontinuousvariables,152 3.3.1 EntropymaximizationusingthemethodofLagrangemultipliers,152 3.3.2 Directmethodforentropymaximization,157 3.4 POMEformalismfortwovariables,158 3.5 Effectofconstraintsonentropy,165 3.6 Invarianceoftotalentropy,167 Questions,168 References,170 AdditionalReading,170 4 DerivationofPome-BasedDistributions,172 4.1 Discretevariableanddiscretedistributions,172 4.1.1 ConstraintE[x]andtheMaxwell-Boltzmanndistribution,172 4.1.2 TwoconstraintsandBose-Einsteindistribution,174 4.1.3 TwoconstraintsandFermi-Diracdistribution,177 4.1.4 Intermediatestatisticsdistribution,178 4.1.5 Constraint:E[N]:Bernoullidistributionforasingletrial,179 4.1.6 Binomialdistributionforrepeatedtrials,180 4.1.7 Geometricdistribution:repeatedtrials,181 4.1.8 Negativebinomialdistribution:repeatedtrials,183 4.1.9 Constraint:E[N]=n:Poissondistribution,183 4.2 Continuousvariableandcontinuousdistributions,185 4.2.1 Finiteinterval[a,b],noconstraint,andrectangulardistribution,185 4.2.2 Finiteinterval[a,b],oneconstraintandtruncatedexponentialdistribution,186 4.2.3 Finiteinterval[0,1],twoconstraintsE[lnx]andE[ln(1−x)]andbeta distributionoffirstkind,188 4.2.4 Semi-infiniteinterval(0,∞),oneconstraintE[x]andexponentialdistribution,191 4.2.5 Semi-infiniteinterval,twoconstraintsE[x]andE[lnx] andgammadistribution,192 x Contents 4.2.6 Semi-infiniteinterval,twoconstraintsE[lnx]andE[ln(1+x)]andbeta distributionofsecondkind,194 4.2.7 Infiniteinterval,twoconstraintsE[x]andE[x2]andnormaldistribution,195 4.2.8 Semi-infiniteinterval,log-transformationY =lnX,twoconstraintsE[y]andE[y2] andlog-normaldistribution,197 4.2.9 Infiniteandsemi-infiniteintervals:constraintsanddistributions,199 Questions,203 References,208 AdditionalReading,208 5 MultivariateProbabilityDistributions,213 5.1 Multivariatenormaldistributions,213 5.1.1 Onetimelagserialdependence,213 5.1.2 Two-lagserialdependence,221 5.1.3 Multi-lagserialdependence,229 5.1.4 Noserialdependence:bivariatecase,234 5.1.5 Cross-correlationandserialdependence:bivariatecase,238 5.1.6 Multivariatecase:noserialdependence,244 5.1.7 Multi-lagserialdependence,245 5.2 Multivariateexponentialdistributions,245 5.2.1 Bivariateexponentialdistribution,245 5.2.2 Trivariateexponentialdistribution,254 5.2.3 ExtensiontoWeibulldistribution,257 5.3 Multivariatedistributionsusingtheentropy-copulamethod,258 5.3.1 Familiesofcopula,259 5.3.2 Application,260 5.4 Copulaentropy,265 Questions,266 References,267 AdditionalReading,268 6 PrincipleofMinimumCross-Entropy,270 6.1 ConceptandformulationofPOMCE,270 6.2 PropertiesofPOMCE,271 6.3 POMCEformalismfordiscretevariables,275 6.4 POMCEformulationforcontinuousvariables,279 6.5 RelationtoPOME,280 6.6 Relationtomutualinformation,281 6.7 Relationtovariationaldistance,281 6.8 Lin’sdirecteddivergencemeasure,282 6.9 Upperboundsforcross-entropy,286 Questions,287 References,288 AdditionalReading,289 7 DerivationofPOME-BasedDistributions,290 7.1 DiscretevariableandmeanE[x]asaconstraint,290 7.1.1 Uniformpriordistribution,291 7.1.2 Arithmeticpriordistribution,293 Contents xi 7.1.3 Geometricpriordistribution,294 7.1.4 Binomialpriordistribution,295 7.1.5 Generalpriordistribution,297 7.2 Discretevariabletakingonaninfinitesetofvalues,298 7.2.1 Improperpriorprobabilitydistribution,298 7.2.2 AprioriPoissonprobabilitydistribution,301 7.2.3 Apriorinegativebinomialdistribution,304 7.3 Continuousvariable:generalformulation,305 7.3.1 Uniformpriorandmeanconstraint,307 7.3.2 Exponentialpriorandmeanandmeanlogconstraints,308 Questions,308 References,309 8 ParameterEstimation,310 8.1 Ordinaryentropy-basedparameterestimationmethod,310 8.1.1 Specificationofconstraints,311 8.1.2 Derivationofentropy-baseddistribution,311 8.1.3 ConstructionofzerothLagrangemultiplier,311 8.1.4 DeterminationofLagrangemultipliers,312 8.1.5 Determinationofdistributionparameters,313 8.2 Parameter-spaceexpansionmethod,325 8.3 Contrastwithmethodofmaximumlikelihoodestimation(MLE),329 8.4 Parameterestimationbynumericalmethods,331 Questions,332 References,333 AdditionalReading,334 9 SpatialEntropy,335 9.1 Organizationofspatialdata,336 9.1.1 Distribution,density,andaggregation,337 9.2 Spatialentropystatistics,339 9.2.1 Redundancy,343 9.2.2 Informationgain,345 9.2.3 Disutilityentropy,352 9.3 Onedimensionalaggregation,353 9.4 Anotherapproachtospatialrepresentation,360 9.5 Two-dimensionalaggregation,363 9.5.1 Probabilitydensityfunctionanditsresolution,372 9.5.2 Relationbetweenspatialentropyandspatialdisutility,375 9.6 Entropymaximizationformodelingspatialphenomena,376 9.7 Clusteranalysisbyentropymaximization,380 9.8 Spatialvisualizationandmapping,384 9.9 Scaleandentropy,386 9.10 Spatialprobabilitydistributions,388 9.11 Scaling:ranksizeruleandZipf’slaw,391 9.11.1 Exponentiallaw,391 9.11.2 Log-normallaw,391 9.11.3 Powerlaw,392 xii Contents 9.11.4 Lawofproportionateeffect,392 Questions,393 References,394 FurtherReading,395 10 InverseSpatialEntropy,398 10.1 Definition,398 10.2 Principleofentropydecomposition,402 10.3 Measuresofinformationgain,405 10.3.1 Bivariatemeasures,405 10.3.2 Maprepresentation,410 10.3.3 Constructionofspatialmeasures,412 10.4 Aggregationproperties,417 10.5 Spatialinterpretations,420 10.6 Hierarchicaldecomposition,426 10.7 Comparativemeasuresofspatialdecomposition,428 Questions,433 References,435 11 EntropySpectralAnalyses,436 11.1 Characteristicsoftimeseries,436 11.1.1 Mean,437 11.1.2 Variance,438 11.1.3 Covariance,440 11.1.4 Correlation,441 11.1.5 Stationarity,443 11.2 Spectralanalysis,446 11.2.1 Fourierrepresentation,448 11.2.2 Fouriertransform,453 11.2.3 Periodogram,454 11.2.4 Power,457 11.2.5 Powerspectrum,461 11.3 Spectralanalysisusingmaximumentropy,464 11.3.1 Burgmethod,465 11.3.2 Kapur-Kesavanmethod,473 11.3.3 Maximizationofentropy,473 11.3.4 DeterminationofLagrangemultipliersλ ,476 k 11.3.5 Spectraldensity,479 11.3.6 Extrapolationofautocovariancefunctions,482 11.3.7 Entropyofpowerspectrum,482 11.4 Spectralestimationusingconfigurationalentropy,483 11.5 Spectralestimationbymutualinformationprinciple,486 References,490 AdditionalReading,490 12 MinimumCrossEntropySpectralAnalysis,492 12.1 Cross-entropy,492 12.2 Minimumcross-entropyspectralanalysis(MCESA),493 12.2.1 Powerspectrumprobabilitydensityfunction,493

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.