ebook img

Entropy in Dynamical Systems PDF

404 Pages·2011·2.019 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entropy in Dynamical Systems

EntropyinDynamicalSystems Thiscomprehensivetextonentropycoversthreemajortypesofdynamics: measure-preservingtransformations;continuousmapsoncompactspaces;and operatorsonfunctionspaces. PartIcontainsproofsoftheShannon–McMillan–BreimanTheorem,the Ornstein–WeissReturnTimeTheorem,theKriegerGeneratorTheorem,theSinaiand OrnsteinTheorems,andamongthenewestdevelopments,theErgodicLawofSeries. InPartII,afteranexpandedexpositionofclassicaltopologicalentropy,thebook addressesSymbolicExtensionEntropy.Itoffersdeepinsightintothetheoryofentropy structureandexplainstheroleofzero-dimensionaldynamicsasabridgebetween measurableandtopologicaldynamics.PartIIIexplainshowbothmeasure-theoretic andtopologicalentropycanbeextendedtooperatorsonrelevantfunctionspaces. Intuitiveexplanations,examples,exercisesandopenproblemsmakethisanideal textforagraduatecourseonentropytheory.Moreexperiencedresearcherscanalso findinspirationforfurtherresearch. TOMASZDOWNAROWICZisFullProfessorinMathematicsatWroclawUniversityof Technology,Poland. NEWMATHEMATICALMONOGRAPHS EditorialBoard Be´la Bolloba´s, William Fulton, Anatole Katok, Frances Kirwan, Peter Sarnak, Barry Simon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1 M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2 J.B.GarnettandD.E.MarshallHarmonicMeasure 3 P.CohnFreeIdealRingsandLocalizationinGeneralRings 4 E.BombieriandW.GublerHeightsinDiophantineGeometry 5 Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6 S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7 A.ShlapentokhHilbert’sTenthProblem 8 G.MichlerTheoryofFiniteSimpleGroupsI 9 A.BakerandG.Wu¨stholzLogarithmicFormsandDiophantineGeometry 10 P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11 B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12 J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13 M.GrandisDirectedAlgebraicTopology 14 G.MichlerTheoryofFiniteSimpleGroupsII 15 R.SchertzComplexMultiplication 16 S.BlochLecturesonAlgebraicCycles(2ndEdition) 17 B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups Entropy in Dynamical Systems TOMASZ DOWNAROWICZ WroclawUniversityofTechnology,Poland CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521888851 © T.Downarowicz2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Downarowicz,Tomasz,1956– EntropyinDynamicalSystems/TomaszDownarowicz. p. cm.–(NewMathematicalMonographs;18) Includesbibliographicalreferencesandindex. ISBN978-0-521-88885-1(Hardback) 1. Topologicalentropy–Textbooks. 2. Topologicaldynamics–Textbooks. I. Title. QA611.5.D6852011 515(cid:2).39–dc22 2010050336 ISBN978-0-521-88885-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. To my Parents Contents Preface pagexi Introduction 1 0.1 Theleitmotiv 1 0.2 Afewwordsaboutthehistoryofentropy 3 0.3 Multiplemeaningsofentropy 4 0.4 Conventions 18 PARTI Entropyinergodictheory 21 1 Shannoninformationandentropy 23 1.1 Informationandentropyofprobabilityvectors 23 1.2 Partitionsandsigma-algebras 30 1.3 Informationandstaticentropyofapartition 32 1.4 Conditionalstaticentropy 33 1.5 Conditionalentropyviaprobabilistictools* 35 1.6 Basicpropertiesofstaticentropy 36 1.7 Metricsonthespaceofpartitions 42 1.8 Mutualinformation* 46 1.9 Non-Shannoninequalities* 48 Exercises 51 2 Dynamicalentropyofaprocess 53 2.1 Subadditivity 53 2.2 Preliminariesondynamicalsystems 57 2.3 Dynamicalentropyofaprocess 60 2.4 Propertiesofdynamicalentropy 65 2.5 Affinityofdynamicalentropy 68 2.6 Conditionaldynamicalentropyviadisintegration* 69 viii Contents 2.7 Summaryofthepropertiesofentropy 72 2.8 Combinatorialentropy 73 Exercises 78 3 Entropytheoremsinprocesses 80 3.1 Independenceandε-independence 80 3.2 ThePinskersigma-algebrainaprocess 85 3.3 TheShannon–McMillan–BreimanTheorem 89 3.4 TheOrnstein–WeissReturnTimesTheorem 94 3.5 Horizontaldatacompression 97 Exercises 100 4 Kolmogorov–SinaiEntropy 102 4.1 Entropyofadynamicalsystem 102 4.2 Generators 105 4.3 Thenaturalextension 111 4.4 Joinings 116 4.5 OrnsteinTheory* 120 Exercises 130 5 TheErgodicLawofSeries* 132 5.1 HistoryoftheLawofSeries 132 5.2 Attractingandrepellinginsignalprocesses 135 5.3 Decayofrepellinginpositiveentropy 139 5.4 Typicalityofattractingforlongcylinders 152 PARTII Entropyintopologicaldynamics 157 6 Topologicalentropy 159 6.1 Threedefinitionsoftopologicalentropy 159 6.2 Propertiesoftopologicalentropy 165 6.3 Topologicalconditionalandtailentropies 167 6.4 Propertiesoftopologicalconditionalentropy 171 6.5 Topologicaljoinings 172 6.6 Thesimplexofinvariantmeasures 175 6.7 Topologicalfiberentropy 179 6.8 ThemajorVariationalPrinciples 181 6.9 Determinismintopologicalsystems 190 6.10 Topologicalpreimageentropy* 197 Exercises 199 Contents ix 7 Dynamicsindimensionzero 201 7.1 Zero-dimensionaldynamicalsystems 201 7.2 Topologicalentropyindimensionzero 202 7.3 Theinvariantmeasuresindimensionzero 203 7.4 TheVariationalPrincipleindimensionzero 205 7.5 Tail entropy and asymptotic h-expansiveness in dimensionzero 206 7.6 Principalzero-dimensionalextensions 212 Exercises 225 8 Theentropystructure 227 8.1 Thetypeofconvergence 227 8.2 U.s.d.a.-sequencesonsimplices 244 8.3 Entropy of a measure with respect to a topological resolution 254 8.4 Entropystructure 263 Exercises 270 9 Symbolicextensions 272 9.1 Whataresymbolicextensions? 272 9.2 TheSymbolicExtensionEntropyTheorem 274 9.3 Propertiesofsymbolicextensionentropy 287 9.4 Symbolicextensionsofintervalmaps 293 Exercises 301 10 Atouchofsmoothdynamics* 303 10.1 Margulis–RuelleInequalityandPesinEntropyFormula 303 10.2 Tailentropyestimate 307 10.3 Symbolicextensionsofsmoothsystems 308 PARTIII Entropytheoryforoperators 311 11 Measure-theoreticentropyofstochasticoperators 313 11.1 Afewwordsonoperatordynamics 313 11.2 Theaxiomaticmeasure-theoreticdefinition 316 11.3 Anexplicitmeasure-theoreticdefinition 329 11.4 Notsobadpropertiesoftheoperatorentropy 332 Exercises 335 12 TopologicalentropyofaMarkovoperator 336 12.1 Threedefinitions 336 12.2 Propertiesofthetopologicaloperatorentropy 339

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.