ebook img

Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical ... PDF

24 Pages·2015·7.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical ...

RESEARCHARTICLE Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical Forest in Chiapas, Mexico MónicaM.SolórzanoKraemer1,3*,AtahualpaS.Kraemer2,FraukeStebner1,Daniel J.Bickel4,JesRust1 1 Steinmann-InstitutfürGeologie,MineralogieundPaläontologie,RheinischeFriedrich–Wilhelms- UniversitätBonn,Bonn,Germany,2 DepartamentodeFísica,FacultaddeCiencias,UniversidadNacional AutónomadeMéxico(UNAM),CiudadUniversitaria,DistritoFederalMexico,Mexico,3 Senckenberg ForschungsinstitutundNaturmuseum,FrankfurtamMain,Germany,4 AustralianMuseum,SydneyNSW 2010,Australia * [email protected] Abstract Allentomologicaltrapshaveacapturingbias,andamber,viewedasatrap,isnoexception. OPENACCESS Thusthefaunatrappedinamberdoesnotrepresentthetotalexistingfaunaoftheformer Citation:SolórzanoKraemerMM,KraemerAS, amberforest,ratherthefaunalivinginandaroundtheresinproducingtree.Inthispaperwe StebnerF,BickelDJ,RustJ(2015)EntrapmentBias comparearthropodsfromaforestverysimilartothereconstructionoftheMioceneMexican ofArthropodsinMioceneAmberRevealedby amberforest,anddeterminethebiasofdifferenttrappingmethods,includingamber.We TrappingExperimentsinaTropicalForestin Chiapas,Mexico.PLoSONE10(3):e0118820. alsoshow,usingclusteranalyses,measurementsofthetrappedarthropods,andguilddis- doi:10.1371/journal.pone.0118820 tribution,thattheambertrapisacomplexentomologicaltrapnotcomparablewithasingle AcademicEditor:ClaudioR.Lazzari,Universityof artificialtrap.Attheorderlevel,themostsimilartraptoamberisthestickytrap.However,in Tours,FRANCE thecaseofDiptera,atthefamilylevel,theMalaisetrapisalsoverysimilartoamber.Amber Received:September5,2014 capturedahigherdiversityofarthropodsthaneachoftheartificialtraps,basedonourstudy ofMexicanamberfromtheMiddleMiocene,atimeofclimateoptimum,wheretemperature Accepted:January22,2015 andhumiditywereprobablyhigherthaninmodernCentralAmerica.Weconcludethatthe Published:March18,2015 sizebiasisqualitativelyindependentofthekindoftrapfornon–extremevalues.Wesuggest Copyright:©2015Kraemeretal.Thisisanopen thatfrequentspecimensinamberwerenotnecessarilythemostfrequentarthropodsinthe accessarticledistributedunderthetermsofthe formeramberforest.Selectedtaxawithhighernumbersofspecimensappearinamberbe- CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany causeoftheirecologyandbehavior,usuallycloselyrelatedwithatree–inhabitinglife.Final- medium,providedtheoriginalauthorandsourceare ly,changesofdiversityfromtheMiddleMiocenetoRecenttimeinCentralandSouth credited. AmericacanbeanalyzedbycomparingtherichamberfaunasfromMexicoandtheDomini- DataAvailabilityStatement:Allrelevantdataare canRepublicwiththefaunatrappedusingstickyandMalaisetrapsinCentralAmerica. withinthepaperanditsSupportingInformationfiles. Funding:Thisresearchwaspossiblethankstoa postdoctoralfellowshipawardedtoM.M.S.K.,No. SO894/3-1fromtheGermanResearchFoundation (DFG)andtheSpanishMinistryofEconomyand CompetitivenessGL2011-23948AMBARES2012- Introduction 2014.Thefundershadnoroleinstudydesign,data Thestudyoftheevolutionofecosystemsovergeologicaltimeisoneofthemostintricatetopics collectionandanalysis,decisiontopublish,or preparationofthemanuscript. inpaleontologicalresearch,especiallyinterrestrialtropicalareaswithaveryhighorganismal PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 1/24 TaphonomyofArthropodsinAmber CompetingInterests:Theauthorshavedeclared diversityandusuallyaverypoorfossilrecord.Amongthemostimportantandmostchalleng- thatnocompetinginterestsexist. ingaspectsofinvestigationsintotheevolutionofpaleodiversityintropicalrealmsistheimpact oftaphonomicprocessesonthefossilisationinformerecosystems.Theknowledgeofwhatis beingconservedorlostunderspecificconditionsoffossilizationisessentialforinterpretingthe formerecosystem(e.g.[1]).Arthropodsplayadominantroleinextanttropicalforests,butthe historyoftheirpresentdiversityasdocumentedinthefossilrecordislimitedduetospecialized fossilisationconditionsfoundinspecificdepositslikelacustrineormarinesedimentsandespe- ciallyamberdeposits(e.g.[2]).Fossilsinamberarewellknownfortheirexceptionallydetailed preservationandspeciesrichness.Theyareamongthemostimportantresourcesfortherecon- structionofformerterrestrialenvironments,especiallyintropicalandsubtropicalregionslike thoserepresentedbytheDominicanandMexicanambers(e.g.[2–9];amongothers).Twoof themostcomprehensiveanalysesandcompletereconstructionsofaformeramberforestwere carriedoutbyLarsson[10]onEoceneBalticamber,andbyPoinar&Poinar[7]onMiddle MioceneDominicanamber.However,eventhewellinvestigatedBalticamberrepresentsonly afractionofthebiotathatlivedintheformeramberforest. Ambercontainsorganismsfromdifferenthabitatssuchastreebark,soilandlitter,freshwa- ter,andevenmarinelittoralrealms,duetodifferencesintheprocessofmaturationoftheresin [11]andduetorareentrapmenteventsovertime. Theentrapmentofarthropodsfromsuchdifferentlocalenvironmentsinresinisahighly selectiveprocess,dependingonfactorsliketheresinproducingtree,thesizeandbehaviorof arthropods,seasonalityandregionalclimaticgradients,localandregionalenvironment,resin composition,andinsectdehydration[1].However,fewtaphonomicanalysesofamberfaunas havebeendonesofar(e.g.[12]).ThefirstmajorstudywasthatofBrues[13],whocompared thefaunaofBalticamberwitharthropodstrappedfromaforestnearPetersham,Massachu- settswithflypaper,apapercoatedwithastickymixtureofcastoroil,resins,andwax.Brues [13]believedthattheflypaperhadthesamesamplingpropertiesasresinandfurthermorehe assumedthattheecologicalconditionsoftheformerBalticamberforestwouldbesimilarto thePetershamforest.Consequently,heconcludedthattheinsectfaunahadchangedconsider- ablyovertime.However,hisbasicassumptionswererejectedlaterbyHenwood[14].Shecom- paredextantfaunasfromdifferentNeotropicalrainforestscollectedwithdifferentkindsof trapsinBrazilandMexicowiththeamberfaunafromMioceneDominicanamber.Henwood [14]concludedthatthefaunatrappedwithemergencetrapswasmostsimilartotheDomini- canamberfaunaandthatamberreflectsground–subterraneanlevelresinproduction.These conclusionswererejectedbyPenney[15],whodemonstratedthatatleastinrecentNeotropical rainforeststhespiderfaunafromDominicanamberismostcloselyrelatedtoextanttree–in- habitingspeciesawayfromthegroundlayer.Inoneofthemostrecentworksaboutinsectsin contemporaryresins,Zherikhinetal.[16]comparedthefaunaofRecentresinscollectedfrom differentPinaceaeinmanylocalitiesacrossnorthernEurasiawithEoceneBaltic,Rovno,Bitter- feldandMioceneDominicanambers.Theyfoundageneraltrendtowardsadecreaseintherel- ativeabundanceoflivingarborealspringtailsandnematoceranfliesandanincreaseinthatof truebugs,beetles,lepidopterans,andhymenopteransincomparisonwiththeamber.Penney andLangan[17]comparedforthefirsttimethesizeofspidersfromDominicanandBalticam- bersshowingthatoverall,thebodysizeofweb–spinningspidersinBalticamberwasgreater thaninDominicanamber,whileforactivehuntingspidersthesizewassimilar.Theyconclud- edthatthebehaviorofthespidersandmorphologyoftheresinproducingtreearemoreimpor- tantfactorsfortheentrapmentthanthesizeoftheorganism.Generallyitisconsideredthat small–sizedarthropodsaremorelikelytogettrappedinresin;howeverthishasneverbeen studiedindetailforallarthropodsinamber. PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 2/24 TaphonomyofArthropodsinAmber ArthropodsfoundinTertiaryambersaregenerallycloselyrelatedtolivingrepresentatives, buttoday,resinousforestssimilartotheTertiaryamberforests(e.g.,Balticamber,Sicilian amber)arenon–existent,ortheyhavebeenalteredbystronganthropogenicimpact(Domini- canamber).OneexceptionisMexicanamber.TheextantforestofthePacificcoastofSouthern Mexico,inthestateofChiapas,inthebiospherereserve“LaEncrucijada”(Fig.1),showsgreat similarityoffloralcompositionwiththeformeramberforest,characterizedasatropicallow- landareaclosetomangroves[8,18].Inthisarea,almostallofthelivingplantswerealsorecog- nizedbyGraham[19],Martínez–Hernández[20]andLangenheim[18]fromthepalynological recordoftheamberbearingsediments[8].ThisincludesthegenusHymenaea,whichisthe originalresinproducingtreefortheMexicanandDominicanambersandcopalfrommanyre- gionsinSouthAmerica,MadagascarandEastAfrica.ThediversityoftheextantfloraofChia- pashasbeencompiledbyBreedlove[21];additionally,thefloraandfaunafromthebiosphere reserveweresummarizedbyCarabiasLilloetal.[22].Theconspicuoussimilarityofthefloral compositionoftheseextantforeststotheformerforestsofMexicanamberprovidedtheoppor- tunitytocomparethelivingfaunawiththefossilamberfauna,toaddressanalysesofthetapho- nomicalbiasesandfiltersduringthefossilizationprocess. MexicanandDominicanambersbelongtotheMiddleMiocene[8,23–25],aperiodof warmandoptimalclimateconditionsformanyorganisms.Mexicanamberisoneofthemost importantamberdepositsoftheworld,andtogetherwithDominicanamber,itprovidesde- tailedinformationabouttheevolutionofbiodiversityandthedevelopmentofterrestrialeco- systemsintheCentralAmericanandCaribbeanarea.However,foracomprehensive reconstructionoftheancientamberforestitisnecessarytoobtainnotonlysystematic, palaeoecologicalandbiogeographicalinformationfromtheamberanditsinclusions,butalsoa betterunderstandingofthetaphonomicprocessesthattransferadiverselivingcommunity intoafragmentaryfossiltaphocoenosis. Tostudythoseprocessesmorethan50,000recentarthropodshavebeencollectedfrom sevendifferenttypesoftrapsplacedintwocollectionsitesinChiapas,Mexicoandcompared toalmost3,000Mexicanamberfossilarthropodspecimensfromvariousinstitutions.Besides taphonomicstudies,thepresentworkisalsoananalysisofthearthropoddiversityofthebio- spherereserveforestasanintrinsicresultofthecollectingwork.Thedistributionofthecollect- edfaunawasstudiedintwodifferentcollectionareasinordertocharacterizespecialhabitats andcomparethemwiththefaunafromtheformerMexicanamberforest.Sincethehabitat characterizationdependsalsoontheseason,thefieldworkwascarriedoutduringthetwo principalseasons,therainyseasonandthedryseason;theconditionsdifferedmainlyintem- perature,humidity,durationofsunlight,numberofpredators,andlifecyclesofsome arthropods. Thepresentworkhighlightsthedifficultyoffindingatrapresemblingamber–formingresin anditsfunctionasanentomologicaltrap,andthedegreetowhichtheamberfaunaisrepresen- tativeofthetotalpotentialfaunaldiversityfromaformeramberforest.Basedonthesimilarity oftheformerMioceneMexicanamberforestwiththelowlandforestinthesouthofMexicowe testdifferenthypothesesonthebiasofamberfaunasmorerigorouslycomparingthefollowing variables:1)collectingsites,howdifferentorsimilararebothcollectingplacesincomparison withtheamberfauna;2)dryorrainyseason,howimportantisseasonalitywithrespecttobi- asesofdifferenttraps;3)peculiaritiesofdifferenttypesoftraps,4)sizedistributionandguilds oftrappedarthropodscomparedwithamber.Although,thepresentstudyhadtheintentionto compareinclusionsinamberwithinclusioninfreshresintoo.Although,thiswasnotpossible becauseofthesmallamountofresinproductioninthetestedtrees. PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 3/24 TaphonomyofArthropodsinAmber MaterialandMethods Amber The2,824Mexicanamberinclusionsusedinthisresearchforcomparisonwiththeentrapped arthropodsbelongtofourcollections:(1)StaatlichesMuseumfürNaturkunde,(SMNS),Stutt- gart,Germany;(2)UniversityofCalifornia,MuseumofPaleontology(UCMP),Berkeley,Cali- fornia,USA;(3)MuseodePaleontología(IHNE),Chiapas,Mexico;and(4)Naturmuseum Senckenberg(SMF),Frankfurt,Germany.Thelargestpartoftheworldwideavailablefossilma- terialfromMexicanamberhasalreadybeenintensivelystudiedbySolórzanoKraemer[8]. However,twokilogramsofnewmaterialofTotolapaamber(containing107specimens),and 37piecesofPalenqueamber(containing226specimens)fromChiapas,Mexicohavebeen addedfromanewsmallcollectionacquiredbytheNaturmuseumSenckenberg,Germany. Forthepresentwork,wetakeallavailabledataonMexicanamberfromdifferentmuseums, wherethecollectionsweretakenwithoutemphasisonspecialtaxaoranyotherpreviousselec- tion(SMNScollectionandTotolapaandPalenqueamber).DataonDominicanamberspiders havebeentakenfromPenney[15],becausethedatafromtheMexicanamberspiderswerenot sufficienttogainastatisticallysignificantresult.DolichopodidaefromDominicanamberwere surveyedbyDJBfromtheAmericanMuseumofNationalHistory(AMNH),NewYork.Data onDominicanamberPsychodidaearefromGrund[26]andEDNA. Fortheanalysisoftheambercollectionthepossiblebiasfactorofanthropogenicselection ofspecialpiecesofamber(e.g.,withrespecttosizeandqualityofinclusions)mustbeconsid- ered.Pike[28]hasdiscussedtheimpactofcollectingbiasindetail.Forthepresentstudythe methodofambersamplingcouldnotbechosen,sinceitisnotpossibletocollectanadequate amountofamberwithinclusionsinthefield.However,theanthropogenicbiasinthecollection ofambercanbecontrolledtosomedegreebyusingunbiasedcollectionsforcomparison, whichavoidsbothintentionalandunintentionalselectionofmaterial(e.g.[27,29]). Recentarthropods Theentrapmentexperimentsonrecentarthropodswerecarriedoutintwoareas.Thefirstone islocalizedwithintheBiosphereReserve“LaEncrucijada”(Fig.1)atthesoutherncoastofChi- apas,Mexico,referredtobytheresidentsas“Coquitos”.Thisregionislocatedveryclosetothe coast,betweenmangrovesinazoneofconservation(ZC).Thispartofthereserveischaracter- izedbyevergreenseasonalforest.Inthisarea,arthropodswerecollectedonandaroundBur- seratrees,chosenforthepresentstudybecauseoftheabsenceofHymenaeainthisareaand becauseitisalsoaresinproducingtree.Thesecondcollectionareaislocatedontheedgesof thereserveandiscalled“LaCadena”.Inthisarea,arthropodswerecollectedonandaround HymenaeatreesclosetoAcacoyahua15°21’N,92°41’W.Acacoyahuaislocated70mabove sealevel;LaCadenaisnotaprotectedareaandischaracterizedbyevergreenforestbutalsoby plantationsofcocoaandsomeotheragriculturalactivities.However,notmanyhumancom- munitiesexistinthiszoneandalargeareaofforestremainsintact.Thedistancebetweenboth collectionzonesisapproximately25km.MeanannualtemperatureinCoquitosis28°Candin LaCadena27°C.TheannualprecipitationinCoquitosis2150mm,inLaCadena3600mm. TherainyseasoniswelldelimitedbetweenMayandOctober. Collectionmethods Thefollowingsevencollectionmethods,representedintheFig.2,havebeenusedinbothcol- lectionsites: PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 4/24 TaphonomyofArthropodsinAmber Fig1.Locationofcollectingsites“Coquitos”and“LaCadena”inChiapas,Mexicoandinredlocation ofthemostimportantambermines,Simojovel,Chiapas. doi:10.1371/journal.pone.0118820.g001 1. Arborealphoto–eclectorproducedbyEcoTech(hereafternamed“eclector”):Theeclector trapswerechosensincetheyaresuitableforcatchingawiderangeofarthropodsontree trunks(e.g.,wood–inhabitingspeciesandspeciesmovingaroundonbark,branches,etc.). Theeclectoroperateswithahigh–gradesquareframeworkofsteelthatisfastenedoverthe holdingdevicetothetrunk.Animalsthatfallwithintheeclectorsofthetrunkortheside panelsofthetrapsystemcanlikewisebeseized.Theeclectortrapsusedforstandingand fallentrunkshaveadiameterrangingfrom0.2to0.8m. 2. Stickytrap:The7.5x20cmyellowandtransparentstickytraps,odourlessandwithanin- secticide–freestickymixtureareespeciallysuitableforcatchingthefaunaaroundthetrees. Theycanbeacquiredfromagronomicproductstores.Stickytrapswereplacedhomo- geneouslyfromthebasetothreemetershighineachtree.Arthropodsfromthestickytraps werefirstdissolvedingasolineandthentransferredtoethanol.Becauseyellowandtrans- parentwerenotstatisticallydifferent,botharehereafternamed“stickytrap”. 3. Pitfalltrap:Forpitfalltrapsweusedsmallplasticcups,whichareeasytofindeverywhere. Theywereburiedinthesoilaroundthetestedtrees.Theyareespeciallysuitableforcatching PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 5/24 TaphonomyofArthropodsinAmber Fig2.Graphicrepresentationoftheusedtraps.STStickytrap,EOEclectortrapopen,EEclectortrap,MMalaisetrap,PTPitfalltrap,LTLighttrap,SN Sweepnetting. doi:10.1371/journal.pone.0118820.g002 ground–dwellingarthropods,particularlyspringtailsandgroundbeetlesbutalsomites andants. 4. OpeneclectorsproducedbyEcoTech:Theopeneclectorisakindofeclectormadefortrees thatarefallenontheground.Likethephoto–eclector,anopeneclectorcatchesawiderange ofarthropods,suchasthoselivingindeadtreetrunks. 5. Malaisetrap:MalaisetrapswereacquiredfromBioform.AMalaisetrapisalarge,tent–like structuretrapthatwaschosenbecauseitisespeciallysuitableforcatchingawiderangeof principallyflyinginsectslikeHymenopteraandDiptera.Malaisetrapswerelocatedvery closetothetreesandabout20mfromwaterbodies. 6. Lighttrap:ThelighttrapswereconstructedwithahangingbuckettrapacquiredfromBio- formandLSDlampswithbatteriesfortwodays.Theywerecleanedandthelampwas changedeverytwodays.Lighttrapswerechosenbecausetheyattractnocturnalactiveflying andterrestrialarthropods.Incombinationwithhangingbucketsitwaspossibletohave smalllighttrapsinalltheinvestigatedtrees. 7. Sweepnetting:Traditionalsweepnettingsampleswereusedforcollectingarthropods aroundthetreesuptoadistanceofabout5mormore,inordertoconsiderthefaunaofthe associatedvegetation.Collectionbythismethodwaspossibleonlyduringthedayanddur- ingthetimewevisitedthecollectionplaces. OneeclectorandoneMalaisetrapwereinstalled,alongwithfourlighttraps,tenstickytraps collocatedonthetrunkandbranches,andfourpitfalltrapsforeachtree.Thekillingagentfor eclectors,Malaise,Lighttrap,andpitfalltrapwasalcohol.Theeclectorswereplacedonthe principaltrunkatabout4mheight.Thetrapswereinstalledoneachtreefortwoweeksand specimenswerecollectedeverytwodays.Stickytrapswereinstalledforoneweek.Three HymenaeacourbariltreesinLaCadenaandthreeBurserasimarubatreesinCoquitoshave beenchosenforperformingthetrappingexperiments.TheBurseratreesweregrowingvery closetothemangroveswampsandtheHymenaeatreesgrowabout25kmaway,nearthebor- deroftheBiosphereReserveandclosetoariver.Finally,arthropodswerealsocollectedwith “openeclectors”fromafallentrunkfoundineachcollectedarea.Thetreeswerebetween20 PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 6/24 TaphonomyofArthropodsinAmber and30mapartfromeachother.Threecollectiontripsweremade:oneduringthedryseason (April2011)andtwoduringtherainyseason(June–July2010,May–June2012),coveringthe twomostimportantseasonsoftheregion.Fortherecentcollectionsthesameconditionswere maintainedforalltrapsasfarasitwaspossible.Thearthropodswerestoredinglass–screw– topvialsin70%alcohol.Allthespecimensweresortedattheorderlevel;forDipteraandAra- chnidaalsofamilies,forthefamilyFormicidae(Hymenoptera)subfamiliesandforthefamilies Dolichopodidae(Diptera)andPsychodidae(Diptera)evengenerahavebeenidentified(see TablesA–FinS1File).Thebody,fromtheheadtotheendofabdomen,ofRecentandfossil specimenswasmeasured.Formeasurementaprogressiveclassificationwasused:0–1mm, 1–2mm,2–3mm,3–4....to30mm,whichisthelargestsizeofanarthropodfoundintheana- lyzedcollection.ForguildclassificationweusedthemethodestablishedbyMoranandSouth- wood[30].TheNationalInstituteofEcology(SEMARNAT)inMexico,gavepermissionfor thecollectionoflivingarthropodsfortheworkpresentedhere.Allarthropodswillfinallybe housedintheBiologyDepartmentattheNationalUniversityofMexico(UNAM),Mexico City,curatedbyProf.JuanJ.Morrone. Comparisons Clusteranalysis.Amberdataandlivinginsectdatawereincludedinaclusteranalysistocom- pareallentomologicaltrapswiththeambertrap.FollowingHenwood[14],theclusteranalysis distancesbetweensampleswerecalculatedusingtheManhattandistanceandthemethodused wastheUPGMC,whichisthemostsuitablemethodtocomparetwopopulations[14].Howev- er,tocompareourresultswithPenny[15]weusedalsotheBray–Curtisindex,whichisamod- ifiedManhattanmeasurement.Bray–Curtisindexdiffersonlybyaconstant,incaseof comparingpercentagestheconstantistwoandtheEuclideandistance,whichisusuallynot takenintoaccountbecauseofthelackofdata;thismethodismoresensitivetothedissimilarity. Inaddition,Euclidianmeasureisadirectmeasureofthedissimilarity,suchthatthisanalysis canbeusedtoqualifythedatabycomparingthethreemethods.Fig.3showstheclustering analysisforthethreedifferentmethodsforthetwochosenecologicalregionsinChiapas. Toestimatethedegreesfordiversityofthedifferenttraps,weusedrarefactionanalysis(see [31]).Thismethodconsistsofgeneratingatheoreticalcurvethatestimatesthenumberoftaxa found.Forthisestimation,thenumberofspecimenswithinthecollectionistakenintoaccount. Withthistheoreticalcurveitispossibletocomparethequantityoftaxaforallcollectionmeth- ods,evenifthenumberofcollectedspecimensisdifferent. ResultsandDiscussion DespitethedifferenceofsizeofthecollectionsbetweenCoquitosandLaCadena,withLa CadenaprovidingalmosttwicethenumberofspecimensincomparisonwithCoquitos,the percentageofmostofthetrappedordersandfamiliesissimilarinbothareas(Tables1and2). Bothcollectionplacesaretosomedegreedissimilar.Climaticconditionslikehumidityand temperatureandfloralcompositionaredifferent(seeMaterialandMethods–recentarthro- pods).Theseparametersplayanimportantroleforchangesinthediversityofarthropods. HymenaeaforexamplewasonlyfoundintheevergreenforestinLaCadenaandaquaticEphe- meropteraandTrichopteraareclearlybetterrepresentedinLaCadena(Table1),wherethehu- midityishigherthaninCoquitosandafreshwaterstreamisrunningclosetotheHymenaea trees.SomeDipterafamilieslikeMycetophilidaeorChironomidae,whichpreferhumidhabi- tats,arealsobetterrepresentedinLaCadenathaninCoquitos(Table2).Ourambercollections showthatwithinallinsectsattheorderlevel,Dipteraatfamilylevel,andArachnidaatfamily level,goodagreementexistswithbothCoquitosandLaCadena(Figs.4,5,6). PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 7/24 TaphonomyofArthropodsinAmber Fig3.Clusteranalysistocompareallentomologicaltrapswiththeamber.a)Manhattandistanceforall orderscollectedinCoquitos,b)Bray–CurtisforallorderscollectedinCoquitos,c)Euclideandistanceforall orderscollectedinCoquitosd)ManhattandistanceforallorderscollectedinLaCadena,e)Bray–Curtisforall orderscollectedinLaCadena,f)EuclidiandistanceforallorderscollectedinLaCadena.STStickytrap,EO Eclectortrapopen,EEclectortrap,MMalaisetrap,PTPitfalltrap,LTLighttrap,SNSweepnetting. doi:10.1371/journal.pone.0118820.g003 Wecollectedinthedryandrainyseasonforthreeyearsindifferentmonths,sothatthedata canbeinterpretedasbeingrepresentativeofregionalseasonality.Acomparisonattheorder levelbetweenbothseasonswiththefaunaincludedinamberwasnotinformative,evenifwe analysedgroupssuchastermites,whichareindicativeforaspecificseasonandabundantin Mexicanamber.AccordingtoGomesdaSilvaMedeirosetal.[32]termites,synchronizedflight occursindifferenttimesoftheyearinBrazil,butthepeakcoincideswiththeonsetoftherainy season.Inourcollectiontermiteswereclearlymoreabundantduringtherainyperiod,princi- pallyatthebeginningofthewetseasonduringMay.However,thetotalMexicanamberfauna appearstoresembleamixtureofbothrainyanddryseasonfaunas.Seasonalitywasalreadyevi- dentduringtheMiocene[33]intheAmazonianforestandaccordingtoJaramilloetal.[34] theclimateinthelowlandforestoftheNeotropicswasalsosimilartotoday.Resinproduction ofHymenaeatreesdependsofseveralgeneticandenvironmentalfactors.Themassiveamount PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 8/24 TaphonomyofArthropodsinAmber Table1.TotalarthropodscollectedinChiapas,Mexicowith7differententomologicaltrapsintherainyseasonaswellasinthedryseason. Order SumofCountCoquitos %ofTotalCoquitos SumofCountLaCadena %ofTotalLaCadena Diptera 7378 45.715 16852 48.812 Hymenoptera 2622 16.246 3748 10.856 Coleoptera 1554 9.628 3201 9.271 Collembola 1032 6.394 2991 8.663 Acari 849 5.260 2630 7.617 Lepidoptera 716 4.436 1092 3.163 Hemiptera:Auchenorrhyncha 576 3.568 1051 3.044 Aranea 488 3.023 730 2.114 Psocoptera 252 1.561 447 1.294 Heteroptera 180 1.115 400 1.158 Thysanoptera 136 0.842 373 1.080 Isoptera 127 0.786 333 0.964 Orthoptera 95 0.588 282 0.816 Blattodea 67 0.415 147 0.425 Hemiptera:Sternorrhyncha 31 0.192 115 0.333 Embidiina 12 0.074 49 0.141 Isopoda 9 0.055 21 0.060 Neuroptera 6 0.037 19 0.055 Pseudoscorpionida 5 0.030 18 0.052 Scorpionida 3 0.018 15 0.061 Ephemeroptera 1 0.006 4 0.011 Trichoptera 0 0.000 3 0.008 Mecoptera 0 0.000 2 0.005 Diplopoda 0 0.000 1 0.002 Chilopoda 0 0.000 0 0.000 TOTAL 16139 100 34524 100 doi:10.1371/journal.pone.0118820.t001 ofBraziliancopalfromAmazoniaisoftenattributedtoH.courbaril[35]butprobablyalsode- rivesfromH.oblongifoliavar.palustris(Ducke)LeeandLangenheiminperiodicallyinundated areas.Hymenaeaspp.thatgrowinmoistforestsorclosetostreamsapparentlysynthesizes greatestquantitiesofresin,whereasspeciesthatliveindryforestsproducelessquantityof resin,buttheyproducerelativelymoreduringthewetseasonthaninthedryseason[36]. Thus,theamberfromH.mexicana,theoriginplantofMexicanamber[37],generallycould haveproducedresincontinuously,inwetanddryseasons. TheformerMexicanamberforesthasalreadybeencharacterizedasalowlandforestnearby mangroves[8,18],andtheDominicanamberforestasalowlandmoreinteriorneotropical rainforest[3].However,thechironomidsStenochironomusandXestochironomus,freshwater organismlivinginmountainstreamshavebeendescribedinDominicanamber[38].Boththe extentoftheoriginalamberformingforestandthedistributionofHymenaeaduringtheMexi- canMiddleMioceneisunknown.Hymenaeawasmostprobablydisseminatedbythesea, reachingthecoastofSouthAmericaandthesouthofMexicoduringtheearlyCenozoic[39]. Today,somespeciesofHymenaeaarefoundalongthecoastgrowinginsandysoilsanddrier ecosystems,whileotherspeciesofHymenaeagrowmainlyinevergreenforestecosystems[39]. MostofthecurrentlyknownMexicanamberhasbeenderivedfromtheareaofSimojovelde AllendeinthestateofChiapas,southernMexico.However,moreminesareappearinginother municipalitiesofChiapas[9].TheamberfromtheTotolapaandPalenqueregionsisgenerally PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 9/24 TaphonomyofArthropodsinAmber Table2.TotalofFamiliesofDipteracollectedin“LaCadena”inChiapas,Mexicowith7differententomologicaltrapsintherainyseasonaswell asinthedryseason. Family SumofCountCoquitos %ofTotalCoquitos SumofCountLaCadena %ofTotalLaCadena Culicidae 276 3.740 107 0.634 Ceratopogonidae 577 7.820 404 2.397 Chironomidae 307 4.161 1290 7.654 Psychodidae 464 6.288 631 3.744 Anisopodidae 0 0.000 1 0.005 Chaoboridae 0 0.000 2 0.011 Limoniidae 34 0.460 219 1.299 Tipulidae 0 0.000 6 0.035 Cecidomyiidae 952 12.903 5464 32.423 Sciaridae 414 5.611 3716 22.050 Keroplatidae 0 0.000 51 0.302 Mycetophilidae 29 0.393 422 2.504 Drosophilidae 2403 32.569 942 5.589 Muscidae 30 0.406 22 0.130 Asilidae 10 0.135 5 0.029 Phoridae 599 8.118 1899 11.268 Dolichopodidae 815 11.046 312 1.851 Tabanidae 46 0.623 2 0.011 Stratiomyidae 6 0.081 13 0.077 Scatopsidae 10 0.135 7 0.041 Tephritidae 0 0.000 11 0.065 Micropezidae 66 0.894 11 0.065 Empididae 50 0.677 46 0.272 Corethrellidae 0 0.000 3 0.017 OtherBrachycera 285 3.862 494 2.931 OtherNematocera 5 0.067 424 2.516 Total 7378 100 16852 100 doi:10.1371/journal.pone.0118820.t002 similarinfaunalcompositiontothatoftheSimojovelareaandtheyareprobablyofthesame age[40,41].Thereare,however,somesignificantdifferences.Firstly,thelevelofpreservation isparticularlygood,andsecondlymorethan7%ofthetotalsareaquaticinsects,likeEphemer- opteraandTrichoptera,incomparisonwiththestudiedamberfromSimojovelwhichcontain about2%aquaticinsects. Theseresultsunderlinetheimportanceofanewanalysisofthepalaeoenvironmentofthe Mexicanamberforest,comparedwithnewambermaterialfromnewcollectionsites.Probably, theprincipalcongregationofHymenaeatreeswaswithinthelowlandforest,closetotheman- groveforest.However,theamberforestprobablycoveredawiderareawithconditionsvery similartotodayintheCentralandSouthAmericanlowlandforest. Whichtrapisthemostsimilartotheamber? Withthecollectedarthropodsfrombothcollectingareas,weobtaineddendrogramscomparing alldifferenttypesoftrapswitheachother.Nosignificantdifferenceswerefoundbetweendif- ferentmethodstoproducethecluster(UPGMC,UPGM,andsinglelinkage–clustering)aswell asbetweendifferentdistancemeasures(Manhattan,andEuclidean),showingthatthediffer- encebetweentrapsarelargeenoughtobedetectedwithourdata.Asexpected,both, PLOSONE|DOI:10.1371/journal.pone.0118820 March18,2015 10/24

Description:
captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber and humidity were probably higher than in modern Central America. (DFG) and the Spanish Ministry of Economy and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.