ebook img

Entire solutions of the degenerateMonge-Ampere equation with a finite number of singularities PDF

1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entire solutions of the degenerateMonge-Ampere equation with a finite number of singularities

Entire solutions of the degenerateMonge-Ampe`re equation with a finite number of singularities. 6 1 Jose´ A.Ga´lveza,BarbaraNellib1 0 2 n a a Departamento de Geometr´ıa y Topolog´ıa, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, J Spain;e-mail: [email protected] 7 b Dipartimento Ingegneria e Scienze dell’Informazione e Matematica, Universita´ di L’Aquila, via Vetoio - Loc. ] G Coppito,E-67010L’Aquila,Italy;e-mail: [email protected] D . Abstract h t WedeterminetheglobalbehaviorofeveryC2-solutiontothetwo-dimensionaldegenerateMonge-Ampe`re a m equation,uxxuyy−u2xy =0,overthefinitelypuncturedplane.Withthis,weclassifyeverysolutionintheonce ortwicepuncturedplane. Moreover,whenwehavemorethantwosingularities,ifthesolutionuisnotlinearin [ ahalf-strip,weobtainthatthesingularitiesareplacedattheverticesofaconvexpolyhedronP andthegraphof 1 uismadebypiecesofconesoutsideofP whicharesuitablygluedalongthesidesofthepolyhedron. Finally, v ifwelookforanalyticsolutions,thenthereisatmostonesingularityandthegraphofuiseitheracylinder(no 4 singularity)oracone(onesingularity). 7 4 MathematicsSubjectClassification: 35K10,53C21,53A05. 1 0 . 1 1 Introduction. 0 6 1 AcelebratedresultprovedbyA.V.Pogorelov[16],andindependentlybyP.HartmanandL.Nirenberg[8],states : thatalltheglobalsolutionstothedegenerateMonge-Ampe`reequation v i X (1) u u −u2 =0, xx yy xy r a 1TheauthorswerepartiallysupportedbyINdAM-GNSAGA,PRIN-2010NNBZ78-009,MICINN-FEDERGrantNo.MTM2013-43970-P, andJuntadeAndaluc´ıaGrantNo.FQM325. 1 whereu:R2 −→RisafunctionofclassC2,aregivenby u(x,y)=α(x)+c y, 0 uptoarotationinthe(x,y)-plane,thatis,thegraphofuisacylinder(seealso[18,19]). ThisdegenerateMonge-Ampe`reequationhasbeenextensivelystudiedfromananalyticpointofviewandalso fromageometricpointofviewsincethegraphofeverysolutiondeterminesaflatsurfaceintheEuclidean3-space. Local properties of the solutions of (1) have been analyzed in many papers (see, for instance, [20, 21] and referencestherein). Ourobjectiveistostudytheglobalbehaviorofthesolutionsof(1)forthelargestnonsimply- connecteddomains,thatis,inthefinitelypuncturedplane. Observethat,whentheMonge-Ampe`reequationisellipticorhyperbolic,alargeamountofworkintheunder- standing of these solutions in the punctured plane has been achieved from a local and global point of view (see, amongothers,[1,2,3,4,5,6,7,9,10,11,13,14,17]). The paper is organized as follows. After a first section of preliminaries, in Section 3 we establish the global behaviorofeveryC2solutionu:R2\{p ,...,p }−→RtotheMonge-Ampe`reequation(1)withisolatedsingu- 1 n laritiesatthepointsp .Weshowthatforeverysingularpointp thereexistsatleastasectorS ⊆R2\{p ,...,p } i i i 1 n suchthatthegraphofuoverS isapieceofacone. Moreover,thereexistsatmostamaximalstripSsuchthatthe i graphofuoverS isacylinder. Asaconsequenceoftheseresults,weobtainthatifuisananalyticsolutionthen thereisatmostonesingularity,andthegraphofuiseitheracylinderifthereisnosingularityoraconeifthereis onesingularity. InSection4weclassifyallsolutionsto(1)withoneortwosingularities. Inparticular,ifuisasolutionwith onesingularityatp then,eitherthegraphofuisaconeorthereexistsalinercontainingtop suchthatthegraph 0 0 ofuisacylinderoveronehalf-planedeterminedbyrandaconeovertheotherhalf-plane. Wealsodescribeevery solutioninthetwicepuncturedplane. Althoughthebehaviorofasolutionuto(1)withmorethantwosingularitiescanbecomplicated, duetothe existenceofsomeregionsinthe(x,y)−planewhereuisalinearfunction,weclassifyinSection5everysolution whichdoesnotadmitalargeregionwhereuislinear,thatis,everysolutionsuchthatthedomainwhereuislinear does not contain a half-strip of R2. In such case, we show that the singular points are the vertices of a convex compact polyhedron C ⊆ R2 with non empty interior, the solution u must be linear over C and the graph of u is made by some cones over R2\C which are suitably glued along the segments of the boundary of the planar polyhedronu(C). 2 Preliminaries. Let Ω ⊆ R2 be a domain, and u : Ω −→ R be a function of class C2 satisfying the degenerate Monge-Ampe`re equation u u −u2 = 0, in Ω. As we mentioned in the introduction, it is well known that every solution xx yy xy u(x,y)tothedegenerateMonge-Ampe`reequationinthewholeplaneR2isgivenbyu(x,y)=α(x)+c y,upto 0 arotationinthe(x,y)-plane(see[8,12,16]),thatis,itsgraphisacylinder. Thus, it is natural to study the solutions to the degenerate Monge-Ampe`re equation in the possible largest domains. In other words, we consider solutions to (1) in the non simply-connected domains R2\{p ,...,p }. 1 n 2 Here,weassumeuhasanisolatedsingularityatanyp ,thatis,ucannotbeC2-extendedtop . i i Forthestudyofthesesolutions,wewillneedthefollowingresultwhichisaconsequenceof[8,Lemma2]. Lemma1. Letu(x,y)beaC2 solutiontothedegenerateMonge-Ampe`reequation(1)and(x ,y ) ∈ Ωapoint 0 0 where the Hessian matrix of u does not vanish. Then, there exists a line r in the (x,y)−plane such that the connectedcomponentr ofr∩Ωcontaining(x ,y )satisfies: 0 0 0 1. r ismadeofpointswithnonvanishingHessianmatrix, 0 2. thegradientofuisconstantonr . 0 Moreover,thereexistsanopensetU ⊆Ωcontainingr suchthatifapoint(x ,y )∈U hasthesamegradientas 0 1 1 apointofr then(x ,y )∈r . 0 1 1 0 Fromnowon,givenasolutionuto(1)inΩ,wewilldenotebyN theopensetgivenbythepointsinΩwhose Hessianmatrixdoesnotvanish,andbyU =Ω\N. NotethatthegraphΣofasolutionuto(1)corresponds,fromageometricpointofview,toaflatsurfaceinR3, andthepoints Σ :={(p,u(p)): p∈N}, Σ :={(p,u(p)): p∈U}, N U correspond,respectively,tothenonumbilicalpointsandtotheumbilicalpointsofthegraphΣ. Givenapointp∈N wewilldenotebyr(p)thepieceofliner determinedbyLemma1. Moreover,sincethe 0 gradientofuisconstantonr(p),theimageofr(p)givenby R(p):={(q,u(q))∈R3 : q ∈r(p)} isapieceoflineinR3. Thus,thepreviouslemmaassertsthatΣ ismadeofpiecesofpairwisedisjointlinesofR3. Inaddition,every N connected component of Σ with an interior point is contained in a plane, because its Hessian matrix vanishes U identically. AfirstconsequenceofthepreviouslemmaisthateachsolutionofthedegenerateMonge-Ampe`reequationcan becontinuouslyextendedtothesingularitybecausethenormofitsgradientisboundedaroundthesingularity. Lemma2. LetΩ ⊆ R2 beadomain,p ∈ ΩandubeaC2 solutionof(1)inΩ\{p }. Thenthemodulusofthe 0 0 gradientofuisboundedinaneighborhoodofp . Inparticular,ucanbecontinuouslyextendedtop . 0 0 Proof. Considerε>0suchthatthecloseddiskD (ε)centeredatp withradiusεiscontainedinΩ. Let p0 0 m=max{(cid:107)grad (u)(cid:107): (cid:107)p−p (cid:107)=ε}, p 0 wheregrad (u)denotesthegradientofuatapointp. p Letusseethatthemodulusofthegradientofuislessthanorequaltomforeverypointp∈D (ε)\{p }. p0 0 Let p ∈ N, then the piece of line r(p) has at least a point q in the boundary of the disk D (ε). So, from p0 Lemma1onehasthat(cid:107)grad (u)(cid:107)=(cid:107)grad (u)(cid:107)≤m. Hence,thepreviousinequalityhappensintheclosureof p q N. 3 On the other hand, if p is a point in the interior of U, we can consider the connected component U of U to 0 whichpbelongs. TheHessianmatrixofuvanishesidenticallyinU ,so,thegradientofuisconstantintheclosure 0 of U . Moreover, since the closure of U intersects the closure of N, we obtain that (cid:107)grad (u)(cid:107) ≤ m, as we 0 0 p wantedtoshow. 3 Global behaviour of the graphs. Now, consider a C2 solution u : R2\{p ,...,p } −→ R to the degenerate Monge-Ampe`re equation (1) with 1 n singularitiesatthepointsp . Letp∈N,thenfromthepreviousconsiderations,weknowthatr(p)mustbe: i 1. aline,or 2. ahalf-linewithendpointatasingularpointp ,or i 3. asegmentwithendpointsattwodifferentsingularpointsp ,p . i j Asaconsequenceweobtainthefollowingresult. Proposition1. Letu:R2\{p ,...,p }−→RbeaC2 solutionof(1)withisolatedsingularitiesatthepointsp . 1 n i Assumethereexistsapointp ∈ N suchthatr(p)isalineandletS(p) ⊆ R2\{p ,...,p }bethemaximalopen 1 n stripcontainingr(p). ThenuisgiveninS(p)by (2) u(xe +ye )=α(x)+v y, y ∈R 1 2 0 foraC2functionα(x),aconstantv ∈R,andanorthonormalbasis{e ,e }ofR2wheree isparalleltor(p). 0 1 2 2 Moreover, 1) ifq ∈N satisfiesthatr(q)isalinethenr(q)⊆S(p), 2) ifrisalinecontainedinU thenr ⊆S(p). Proof. Letq beapointintheopenstripS(p),withq ∈ N. SinceS(p)hasnosingularpointthenr(q)intersects r(p)orr(q)isparalleltor(p). FromLemma1,intheformercaser(q)=r(p)andinthelattercaser(q)mustbe alinecontainedinS(p). Now,letr beaparallellinetor(p)containedinS(p). Then,fromthepreviousdiscussionwehaveobtained 0 thatr ⊆ N orr ⊆ U. Asaconsequence,ifr hasapointqintheinteriorofU,int(U),thenr iscontainedin 0 0 0 0 int(U). Hence,ifr = r(q) ⊆ N thentheimageofr isthelineR(q),andifr ⊆ int(U)thentheimageofr isa 0 0 0 0 line,becausetheimageofeachconnectedcomponentofint(U)isapieceofaplane. Thus,theimageofr must 0 alsobealineifr ⊆∂N =∂(int(U)). 0 Therefore,uisgiveninS(p)by u(xe +ye )=α(x)+v(x)y, y ∈R 1 2 4 forcertainfunctionsα(x),v(x),and{e ,e }orthonormalbasisofR2,withe paralleltor(p). Inaddition,from 1 2 2 (1),v(x)mustbeaconstantv ∈R. 0 Let us prove now the case 1), that is, assume q ∈ N such that r(q) is a line and see that r(q) ⊆ S(p). If r(q)(cid:54)⊆S(p),thenr(q)isparalleltor(p)becauseotherwiser(q)intersectsr(p),andsor(p)=r(q). DenotebyS theuniqueconnectedcomponentofR2\S(p)containingr(q). ObservethatS isaclosedhalf- 0 0 planeofR2,paralleltor(p),sothatitsboundary∂S isalinecontainingatleastasingularpointp ,duetothe 0 i0 maximalityofS(p). Letε>0suchthattheopendiskD (ε)centeredatp withradiusεdoesnotcontainanothersingularpoint, pi0 i0 andD (ε)∩r(q)=∅. Moreover,sincethenumberofsingularpointsisfinite,wecanchooseεsmallenoughso pi0 thatifrisanylineparalleltor(p)intersectingD (ε)thenr =∂S orrhasnosingularpoint. ThesetD+ (ε) = D (ε)∩int(S )mustcpoin0tainsomepointa0 ∈ N. Otherwise,theimageofD+ would beapieceofapip0lane,andpfir0om(2)oneh0asthatp isasingularpointif,andonlyif,everypointinD pi∩0 ∂S is i0 pi0 0 singular. Thisisacontradictionwhichclaimstheexistenceofthepreviouspointa. SinceN isanopensetandthesetofsingularitiesisfinite,wecanassumethatr(a)isnotasegmentjoining twosingularpoints. So, r(a)isahalf-lineoralinewhichdoesnotintersectsr(p)orr(q), thatis, r(a)mustbe paralleltor(p). Then,fromthechoiceofε,onehasthatr(a)isalsoalineparalleltor(p). Finally,ifwechoosethemaximalstripS(a)⊆R2\{p ,...,p }containingtheliner(a),weobtainfromthe 1 n choiceofεthat∂S(p)∩∂S(a)isthelineparalleltor(p)containingp . Butthisisnotpossible,becauseinthis i0 caseonehasfrom(2)thatp isasingularpointifandonlyifeverypointin∂S(p)∩∂S(a)issingular. i0 Therefore,thereisnoq ∈N suchthatr(q)isalinewhichisnotcontainedinS(p). Inthecase2),theliner ⊆U mustbeparalleltor(p)becauseotherwiser∩r(p)(cid:54)=∅,contradictingLemma1. So,thiscasecanbeexactlyprovenasthepreviouscasereplacingr(q)byr. ThepreviousresultassertsthatthegraphofuoverS(p)isacylinderinR3foliatedbylines,allofthemparallel toR(p). Observethatthiscylinderhasnonumbilicalpoints,andprobablyumbilicalpointsaswell. Inparticular, ifthereisnosingularpointthenS(p)=R2anduisgloballydeterminedby(2). Definition1. WesaythatuisacylindricalfunctioninastripS ifuisgivenby(2)inS. Moreover,wesaythatu isaconicalfunctioninanopensector Sθ2(p)={p+ρ(cosθ,sinθ): ρ>0, θ <θ <θ }, 0<θ −θ <2π, θ1 1 2 2 1 orinR2\{p},ifuisgivenby (3) u(p+ρ(cosθ,sinθ))=u +ρα(θ) 0 inoneofthepreviousdomains,foracertainC2functionα(θ). Now,letusprovesometechnicallemmaswhichwillbenecessaryinourstudy. Lemma3. LetΩbeadomain,p ∈ Ω,S ⊆ Ωbeanopensectorwithvertexatp ,andu : Ω\{p } −→ Rbea 0 0 0 C2 solutionof(1)withisolatedsingularityatp . Ifforeveryp ∈ S∩N onehasthatr(p)isahalf-linewithend 0 pointatp thenuisaconicalfunctioninS. 0 5 Proof. Ifp ∈ S ∩N thenthegraphofr(p)isthehalf-lineR(p),andifr ⊆ int(U)∩S isahalf-linewithend 0 pointatp thentheimageofr isahalf-lineinR3,becauseeachconnectedcomponentofthegraphofint(U)is 0 0 apieceofaplane. Asaconsequence, theimageofahalf-liner withendpointatp isalsoahalf-lineofR3 if 0 0 r ⊆∂N =∂(int(U)). 0 Consequently,u(p +ρθ)=u (θ)+ρα(θ),withρ>0. And,fromLemma2,u (θ)mustbeconstantsince 0 0 0 uiscontinuousatp . 0 Lemma4. Letu:R2\{p ,...,p }−→RbeaC2 solutionof(1)withisolatedsingularitiesatthepointsp . Let 1 n i S ,S ⊆R2\{p ,...,p }betwodisjointopensetssuchthat 1 2 1 n 1) uisacylindricalfunctioninthestripS anduisaconicalfunctioninthesectorS ;or 1 2 2) uisaconicalfunctioninthesectorS andalsointhesectorS ,bothwithdifferentvertices. 1 2 If∂S ∩∂S containsasegment,theneverynonsingularpointin∂S ∩∂S iscontainedinU. 1 2 1 2 Proof. If S is a strip and e is a normal unit vector to a connected component of ∂S then, from (2), one has that Hess(u)(e,e)isconstantforallpointinthiscomponent. Ontheotherhand,ifS isasectorwithvertexatp andthehalf-linep +ρθ ,withρ>0,iscontainedin∂S 0 0 0 then,from(3),onehasthatHess(u)(e,e)= α(cid:48)(cid:48)(θ0)+α(θ0),whereeisanormalunitvectortothehalf-line. ρ Inthecase1)or2),itisclearthatα(cid:48)(cid:48)(θ )+α(θ )vanishesateverypointin∂S ∩∂S . Thisisequivalentto 0 0 1 2 showthattheHessianmatrixofuvanishesateverynonsingularpointin∂S ∩∂S . 1 2 Proposition2. Letu:R2\{p ,...,p }−→RbeaC2 solutionof(1)withisolatedsingularitiesatthepointsp , 1 n i andp∈N. Thenr(p)cannotbeasegment. Moreover,foranysingularpointp , i (4) N ={p∈N : r(p)isahalf-linewithendpointp } pi i isanopenset. Proof. Let p ∈ N such that r(p) is either a segment or a half-line. Up to a translation and a rotation, we can assumepistheoriginandasingularendpointofr(p)is(x ,0)withx <0. 1 1 SinceN isanopenset,weconsiderε>0suchthattheopendiskD(ε)centeredattheoriginwithradiusεis containedinN. Moreover, usingthatthesetofsingularpointsisfinite, εcanbechosensmallenoughinsucha waythereisnosingularpointp =(x ,y )with0<|y |<ε. k k k k Let q = (x ,y ) be a sequence in D(ε)+ = {(x,y) ∈ D(ε) : y > 0} going to p = (0,0). Observe that n n n thenumberofsegmentsoftheformr(q)containedinN canonlybefinitebecausethenumberofsingularitiesis finite. Thus,replacingq byapointclosetoit,wecanassumer(q )isahalf-lineoraline,foreverypointq of n n n thesequence. Sincer(q )cannotintersectr(p),theanglebetweenr(q )andr(p)tendstozero. n n Ifthereexistsasubsequenceq suchthatr(q )arelines,thenallofthemmustbeparalleland,fromPropo- m m sition1,r(q)isahorizontallineforallq =(x,y)∈D(ε)+. 6 Otherwise,sincethenumberofsingularitiesisfinite,thereexistsasubsequenceq suchthatr(q )arehalf- m m lines with the same singular end point p . Thus, as the angle between r(q ) and r(p) tends to zero, p is i1 m i1 necessarily placed on the line y = 0. In particular, taking ε small enough, we can assume that the sector made ofallhalf-linescontainingapointq ∈ D(ε)+ andwithendpointatp doesnotcontainanothersingularpoint. i1 Hence,eachhalf-lineofthissectorwithendpointp isoftheformr(q)forq ∈D(ε)+. i1 Analogously, we can follow the same reasoning for D(ε)− = {(x,y) ∈ D(ε) : y < 0}. Thus, r(q) is a horizontallineforall q ∈ D(ε)−, orr(q)isahalf-lineforallq ∈ D(ε)− withthesamesingularendpointp , i2 placedattheliney =0. Now,letusdenotebyS+ thestrip{(x,y) ∈ R2 : 0 < y < ε}ifr(q)isahorizontallineforallq ∈ D(ε)+, orthesectorcontainingD(ε)+ withvertexatp ifr(q)isahalf-lineforallq ∈ D(ε)+. WealsodenoteS− the i1 correspondingsetforthepointsinD(ε)−. From Proposition 1, S+ and S− cannot be two strips because the point (x ,0) is singular. Moreover, from 1 Lemma 4, S+ and S− are two sectors with the same vertex p = p because otherwise p = (0,0) would be i1 i2 containedinU. Thus, fromLemma3, ifr isthehalf-linecontainingp = (0,0)withendpointp = p thena i1 i2 pointinrisasingularpointifandonlyifeverypointinrissingular. Hence,p =p =(x ,0)andr(p)cannot i1 i2 1 beasegment. Thisprovesthatifp∈N suchthatr(p)isahalf-linethenthereexistsε>0suchthatD (ε)⊆N andforall p q ∈D (ε)thesetr(q)isahalf-linewiththesameendpoint. Thatis,N isanopenset. p pi AsaconsequenceofPropositions1and2,wegetthefollowingresult. Corollary1. Letu:R2\{p ,...,p }−→RbeaC2solutionof(1)withisolatedsingularitiesatthepointsp . If 1 n i V isaconnectedcomponentofN theneitherV ismadeofparallellinesorV ismadeofhalf-lineswithcommon endpointatsomep . i Corollary2. Letu : R2\{p ,...,p } −→ RbeaC2 solutionof(1)withisolatedsingularitiesatthepointsp . 1 n i ThenthesetN ,givenby(4),isanonemptyunionofopensectorswithvertexatp ,foreverysingularityp . In pi i i particular,uisaconicalfunctionineachconnectedcomponentofN . pi Proof. FromProposition2andLemma3,weonlyneedtoshowthatN isnonemptyforeachsingularpointp . pi i So,fixasingularpointp andassumeN isempty. i pi IfthereexistedapuncturedneighborhoodU ofp containedinU thentheimageofU wouldlieinaplaneand i p wouldnotbeasingularpoint. Thus,theremustexistasequenceq ∈N goingtop . Moreover,asubsequence i n i q mustsatisfythatr(q )isalineforallm(andsothelinesareparallel)orr(q )isahalf-lineforallmwith m m m acommonsingularendpointp (cid:54)= p . Uptoatranslationandarotation,wecanassumep istheoriginandthe j i i limitlineofthelinescontainingr(q )isy =0. Inparticular,inthelattercasep isplacedintheliney =0. m j Observe that q cannot be placed in the segment joining the singular points p and p , that is, in any case, m i j every point q is in the open upper half-space R2 = {(x,y) ∈ R2 : y > 0} or in the open lower half-space m + R2 ={(x,y)∈R2 :y <0}. − Passingtoasubsequence,ifnecessary,wecanassumeq iscontainedinR2 forallm,orq iscontainedin m + m R2 forallm. Supposeq ∈ R2 foreverym. Ifr(q )isalineforeachmthenwedenotebyS+ themaximal − m + m 7 stripdeterminedbyProposition1, whichsatisfiesthattheliney = 0isinitsclosure. Ifr(q )isahalf-linefor m allmthenformbigenoughtheopensectordeterminedbyr(q )andy = 0doesnotcontainanysingularpoint, m andwecallS+tothissector. InthefirstcasethefunctionuwouldbecylindricalinS+(Proposition1),andinthe secondcaseuwouldbeconicalinS+(Lemma3)withvertexatp (cid:54)=p . j i Ontheotherhand,theremustexistasequenceofpointsinN ∩R2 goingtop . Otherwisetherewouldexist − i ε > 0suchthattheopenhalf-diskD(ε)∩R2 iscontainedinU. Thus,theimageofD(ε)∩R2 liesinaplane. − − But, since u is cylindrical or conical in S+ then the origin p is a singular point if and only if every point of a i neighborhoodofp intheliney =0issingular,whichgivesusacontradiction. Thus,theprevioussequenceexists i andwecandefineS−inananalogousway. So,uwillbecylindricalorconicalinS+ andinS−. But,inanycase,thisisagainacontradictionbecausep i wouldbeasingularpointifandonlyifeverypointofaneighborhoodofp intheliney = 0issingular. Hence i N (cid:54)=∅. pi Asaconsequenceweobtainafirstglobalclassificationresult. Theorem1. Letu:R2\{p ,...,p }−→Rbeananalyticsolutionof(1)withisolatedsingularitiesatthepoints 1 n p . Then,eitherthereisnosingularpointanduisacylindricalfunctioninR2,orthereisauniquesingularpoint i anduisaconicalfunctioninR2\{p }. 1 Proof. Theresultiswellknownifthereisnosingularpoint[8,16]. Otherwise,uptoatranslation,wecanassume that the origin is a singular point. So, for polar coordinates (ρ,θ), the function u(ρ,θ) is analytic and, from the previousCorollary,u vanishesidenticallyinthenonemptyopensetN .Therefore,u mustvanishglobally, ρρ (0,0) ρρ thatis,uisaconicalfunctioninR2\{(0,0)}. 4 Entire solutions with one or two singularities. We devote this Section to the characterization of the entire solutions to the degenerate Monge-Ampe`re equation u u −u2 = 0,whereuisaC2 functioninR2 minusoneortwopoints. Theseresultswillbeaconsequence xx yy xy oftheglobalresultsstudiedinthepreviousSection. Wefirstprovethatthereonlyexisttwodifferentkindsofsolutionsinthepuncturedplane. Theorem2. Letu:R2\{(0,0)}−→RbeaC2 solutionof(1)withanisolatedsingularityattheorigin. Then,u isgivenbyoneofthefollowingcases(Figure1): 1. uisaconicalfunctioninR2\{(0,0)},or 2. thereexistsalinercontainingtheoriginsuchthatuisacylindricalfunctioninonehalf-planedetermined byr,anduisaconicalfunctionintheotherhalf-plane. Proof. FromCorollary2,N cannotbeempty. Thus,ifthereisnopointp∈N suchthatr(p)isalinethen,from Lemma3,uisaconicalsolutioninR2\{(0,0)}. 8 Ontheotherhand, ifthereisapointp ∈ N suchthatr(p)isalinethen, fromProposition1, thereexistsan open half-plane S(p), containing r(p), such that u is a cylindrical function in S(p). Moreover, the boundary of S(p)inR2isalinercontainingthesingularpoint(0,0).IfS−istheotheropenhalf-planedeterminedbyr,again Proposition1givesthatr(q)mustbeahalf-lineforeverypointq ∈ N ∩S−. Hence, uisaconicalfunctionin S−,byLemma3. Figure1: solutionswithonesingularity. Nowwepresentsomefamiliesofexamplesofsolutionstotheequation(1)inthetwicepuncturedplane. Example4.1. ConsideranopenstripS inR2sothatitsboundaryisgivenbytwolinesr ,r . Choosetwopoints 1 2 p ∈ r , and p ∈ r . Then, a solution u to the equation (1) can be obtained in R2\{p ,p } such that u is a 1 1 2 2 1 2 cylindricalfunctioninS,anduisaconicalfunctionineachhalf-planeofR2\S withvertexatp (Figure2). i Example4.2. LetS beanopenhalf-planeinR2 withboundarygivenbyaliner,andp ,p ∈ r. Leth ,h be 1 2 1 2 twoparallelhalf-linescontainedinR2\S withrespectiveendpointsp ,p . Asolutionuto(1)canbedefinedin 1 2 R2\{p ,p }suchthatuisacylindricalfunctioninS,uisalinearfunctioninthehalf-stripdeterminedbyh ,h 1 2 1 2 andr,anduisaconicalfunctionintheremainingtwodomainswithverticesatp ,p ,respectively(Figure3). 1 2 Example4.3. AssumeS isanopenhalf-planeinR2 withboundarygivenbyaliner, p ∈ r, andp ∈ R2\S. 1 2 Let h ,h be two half-lines in R2\S with end point at p such that at most one of them is contained in r, and 1 2 1 p belongs to the closed sector determined by h and h . Let h be the half-line parallel to h with end point 2 1 2 i i at p . Then, a solution u to (1) can be defined in R2\{p ,p } such that u is a cylindrical function in S, u is a 2 1 2 linearfunctionintheunboundeddomaindeterminedbyh ,h ,h andh ,anduisaconicalfunctionintherestof 1 2 1 2 domains(Figure4). 9 S p 1 p 2 r r 1 2 Figure2: theconfigurationofr(p)linesforexample4.1. S p 1 h 1 p h 2 2 r Figure3: theconfigurationofr(p)linesforexample4.2. Example 4.4. Consider p ,p ∈ R2, and S ,S two disjoint open sectors with vertex at p ,p , respectively. A 1 2 1 2 1 2 solutionuto(1)canbeobtainedinR2\{p ,p }suchthatuisaconicalfunctioninS andS ,anduislinearin 1 2 1 2 theopensetdeterminedbyR2\(S ∪S )(ifnotempty). SeeFigure5. 1 2 Ourobjectiveistoshowthateverysolutionto(1)inthetwicepuncturedplaneisgivenbyoneoftheprevious examples. Forthat,wewillneedsomepropertiesassociatedwiththesetsN definedin(4). pi Letu : R2\{p ,...,p } −→ RbeaC2 solutionof(1)withisolatedsingularitiesatthepointsp . Wedefine 1 n i 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.