ebook img

Entire Slice Regular Functions PDF

121 Pages·2016·0.892 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entire Slice Regular Functions

SPRINGER BRIEFS IN MATHEMATICS Fabrizio Colombo Irene Sabadini Daniele C. Struppa Entire Slice Regular Functions 123 SpringerBriefs in Mathematics Series editors Nicola Bellomo Michele Benzi Palle Jorgensen Tatsien Li Roderick Melnik Otmar Scherzer Benjamin Steinberg Lothar Reichel Yuri Tschinkel George Yin Ping Zhang SpringerBriefsinMathematicsshowcasesexpositionsinallareasofmathematics andappliedmathematics.Manuscriptspresentingnewresultsorasinglenewresult inaclassicalfield,newfield,oranemergingtopic,applications,orbridgesbetween newresultsandalreadypublishedworks,areencouraged.Theseriesisintendedfor mathematicians and applied mathematicians. More information about this series at http://www.springer.com/series/10030 Fabrizio Colombo Irene Sabadini (cid:129) Daniele C. Struppa Entire Slice Regular Functions 123 Fabrizio Colombo Daniele C.Struppa Dipartimento di Matematica Schmid Collegeof Science andTechnology Politecnico di Milano Chapman University Milan Orange,CA Italy USA IreneSabadini Dipartimento di Matematica Politecnico di Milano Milan Italy ISSN 2191-8198 ISSN 2191-8201 (electronic) SpringerBriefs inMathematics ISBN978-3-319-49264-3 ISBN978-3-319-49265-0 (eBook) DOI 10.1007/978-3-319-49265-0 LibraryofCongressControlNumber:2016957500 MathematicsSubjectClassification(2010): 30G35,30B10,30D15 ©TheAuthor(s)2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 2 Slice Regular Functions: Algebra.... .... .... .... .... ..... .... 7 2.1 Definition and Main Results. .... .... .... .... .... ..... .... 7 2.2 The Representation Formula. .... .... .... .... .... ..... .... 11 2.3 Multiplication of Slice Regular Functions... .... .... ..... .... 17 2.4 Quaternionic Intrinsic Functions.. .... .... .... .... ..... .... 22 2.5 Composition of Power Series.... .... .... .... .... ..... .... 24 3 Slice Regular Functions: Analysis ... .... .... .... .... ..... .... 31 3.1 Some Integral Formulas .... .... .... .... .... .... ..... .... 31 3.2 Riemann Mapping Theorem. .... .... .... .... .... ..... .... 38 3.3 Zeros of Slice Regular Functions. .... .... .... .... ..... .... 40 3.4 Modulus of a Slice Regular Function and Ehrenpreis–Malgrange Lemma.... .... .... .... ..... .... 45 3.5 Cartan Theorem . .... ..... .... .... .... .... .... ..... .... 52 4 Slice Regular Infinite Products.. .... .... .... .... .... ..... .... 55 4.1 Infinite Products of Quaternions.. .... .... .... .... ..... .... 55 4.2 Infinite Products of Functions.... .... .... .... .... ..... .... 59 4.3 Weierstrass Factorization Theorem.... .... .... .... ..... .... 64 4.4 Blaschke Products.... ..... .... .... .... .... .... ..... .... 73 5 Growth of Entire Slice Regular Functions. .... .... .... ..... .... 77 5.1 Growth Scale ... .... ..... .... .... .... .... .... ..... .... 77 5.2 Jensen Theorem . .... ..... .... .... .... .... .... ..... .... 84 5.3 Carathéodory Theorem..... .... .... .... .... .... ..... .... 89 5.4 Growth of the H-Product of Entire Slice Regular Functions.. .... 98 5.5 Almost Universal Entire Functions.... .... .... .... ..... .... 101 5.6 Entire Slice Regular Functions of Exponential Type .. ..... .... 106 References.... .... .... .... ..... .... .... .... .... .... ..... .... 109 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 117 v Chapter 1 Introduction Thetheoryofholomorphicfunctionsinonecomplexvariableassumesaparticular flavorwhenoneconsidersfunctionsthatareholomorphicontheentireplane,namely entirefunctions.Thereasonsfortherichnessofresultsthatarepossibleinthatcontext aremany,butcertainlyincludethefactthatforentirefunctionswecanstudygrowth phenomenainacleanerwaythanwhatwouldbepossibleifoneweretoconsiderthe issuesintroducedbytheboundaryofthedomainofholomorphyassociatedwithan individualfunction.Whilethebeautifulissuesconnectedwithanalyticcontinuation donotariseinthecontextofentirefunctions,thetheoryacquiresmuchstrengthfrom the ability to connect the growth of the functions to the coefficients that appear in theirTaylorseries. The study of entire functions, in addition, has great relevance for the study of convolutionequations,wheredifferentspacesofentirefunctionsarisenaturallyfrom the application of the Paley Wiener theorem (in its various forms), and from the topologicalvectorspaceapproachthatwassoinstrumentalintheworkofSchwarz, Malgrange,Ehrenpreis,Palamodov,andHörmander. Furtherargumentsinsupportofthestudyofentirefunctionsaresuppliedbythe considerationthatnotonlythemostimportantelementaryfunctionsareentire(poly- nomials,exponentials,trigonometricandhyperbolicfunctions),butalsothatmany ofthegreatspecialfunctionsofanalysis(theJacobithetafunction,theWeierstrass sigmafunction,theWeierstrassdoublyperiodicfunctions,amongothers)areentire. Finally,oneknowsthatthesolutionsoflineardifferentialequationswithpolynomial coefficients and with constant highest derivative coefficient are entire as well (this includestheelementaryfunctions,aswellastheAiryfunctions,forexample). While many texts exist, which are devoted exclusively to the study of entire functions(seeforexample[34,126,134]),oneofthebestwaystounderstandthe importanceandthebeautyofentirefunctionsisthearticlebydeBranges[82]. Onemightthereforeaskwhetherananalogousanalysiscanbedoneforfunctions definedonthespaceHofquaternions.Asitiswellknown,thereareseveraldifferent definitionsofholomorphicity(orregularity,asitisoftenreferredto)forfunctions definedonquaternions.Themostwell-knowndefinitionisprobablytheonedueto Fueter,whoexpandedontheworkofMoisil,whodefinedregularfunctionsasthose that satisfy a first-order system of linear differential equations that generalizes the ©TheAuthor(s)2016 1 F.Colomboetal.,EntireSliceRegularFunctions, SpringerBriefsinMathematics,DOI10.1007/978-3-319-49265-0_1 2 1 Introduction one of Cauchy–Riemann. These functions are often referred to as Fueter regular, and their theory is well developed, see e.g. [69, 127]. It is therefore possible to consider those functions which are Fueter regular on the entire quaternionic space H,andseewhetherthereareimportantpropertiesthatcanbededuced.However,the mathematician interested in this generalization would immediately encounter the problemthatthesefunctionsdonotadmitanaturalpowerseriesexpansion.While thiscommentwouldneedtobebetterqualified,itisthebasicreasonwhymostof what is known for holomorphic entire functions cannot be extended to the case of Fueterregularentirefunctions. In the past ten years, however, many mathematicians have devoted significant attentiontoadifferentnotionofregularity,knownassliceregularityorslicehyper- holomorphy.Thistheorybeganasatheoryoffunctionsfromthespaceofquaternions H to itself whose restriction to any complex plane contained in H was in the ker- nelofthecorrespondingCauchy–Riemannoperator,see[110,111].Itimmediately appeared that this class of functions, at least the ones defined on balls centered at theorigin,coincideswiththeclassofpolynomialsandconvergentpowerseriesof thequaternionicvariable,previouslyintroducedin[83].Inparticular,therearevery natural generalizations of the exponential and trigonometric functions that happen to be entire slice regular functions. Further studies showed that on suitable open setscalledaxiallysymmetricslicedomainsthisclassoffunctionscoincideswiththe class of functions of the form f(q)= f(x +Iy)=α(x,y)+Iβ(x,y) when the quaternionq iswrittenintheform x +Iy (I beingasuitablequaternionsuchthat I2 =−1)andthepair(α,β)satisfiestheCauchy–Riemannsystemandthecondi- tionsα(x,−y)=α(x,y),β(x,−y)=−β(x,y).Thisclassoffunctionswhenαand β arereal,quaternionicor,moreingeneral,Cliffordalgebravaluediswellknown: theyaretheso-calledholomorphicfunctionsofaparavectorvariable,see[127,150], whichwerelaterstudiedinthesettingofrealalternativealgebrasin[117]. Buttherearedeeperreasonswhythesefunctionsarearelevantsubjectofstudy. Maybe the most important point is to notice that slice regular functions and their Cliffordvaluedcompanions,theslicemonogenicfunctions(see[72,73]),havesur- prising applications in operator theory. In particular, one can use these functions (collectivelyreferredtoasslicehyperholomorphicfunctions)todefineacompletely newandverypowerfulslicehyperholomorphicfunctionalcalculus(whichextends theRiesz–Dunfordfunctionalcalculustoquaternionicoperatorsandton-tuplesof noncommutingoperators).Thesepossibleapplicationsinoperatortheoryhavegiven greatimpulsetothetheoryoffunctions. In particular, the Cauchy formulas with slice hyperholomorphic kernels are the basictoolsneededtoextendtheRiesz–Dunfordfunctionalcalculustoquaternionic operatorsandton-tuplesofnotnecessarilycommutingoperators.Theyalsoleadto thenotionofS-spectrumwhichturnedouttobethecorrectnotionofspectrumforall applications in different areas of quaternionic functional analysis and in particular tothequaternionicspectraltheorem. The function theory of sliceregular and slicemonogenic functions was developed inanumberofpapers,seethelistofreferences(notethatsomeofthereferencesare notexplicitlyquotedinthetext)andthecommentsbelow.Ithasalsobeenextended 1 Introduction 3 to vector-valued and more in general operator-valued functions, see [23] and the referencestherein.Themonographs[23,76,109]arethemainsourcesforthestudy ofslicehyperholomorphicfunctionsandtheirapplications. It should be pointed out that the theory of slice hyperholomorphic functions is differentfromthemoreclassicaltheoryoffunctionsinthekerneloftheDiracoperator [35,69,84],theso-calledmonogenicfunctions.Whilethelatterisarefinementof harmonic analysis in several variables, the former has many applications among whichoneofthemostimportantisinquaternionicquantummechanics,see[3,32, 89, 91, 128]. Slice hyperholomorphic functions and monogenic functions can be relatedusingtheFuetertheorem,see[51,56,64,86]andtheRadontransform,see [149]andthemorerecent[36]. Togiveaflavoroftheseveralresultsavailableintheliteratureinthecontextofslice regular functions, with no claim of completeness, we gather the references in the variousareasofresearch. Function theory. The theory of slice regular functions was developed in [47, 105, 107, 108, 110, 111, 113, 114], in particular, their zeros were treated in [104, 106, 112]whilefurtherpropertiescanbefoundin[33,44,85,93,94,103,141,142,151, 152,153,155].SlicemonogenicfunctionswithvaluesinaCliffordalgebraandtheir mainpropertieswerestudiedin[58,72,73,74,75,78,81,123,156].Approximation ofslicehyperholomorphicfunctionsiscollectedin[77,95,96,97,98,99,100,101, 146].Thecaseofseveralvariableswastreatedin[2,79],butalotofworkhasstill tobedoneinthisdirectionsincethetheoryisatthebeginning.Thegeneralization ofsliceregularitytorealalternativealgebraswasdevelopedin[26,117,118,119, 120] and, finally, some results related to the global operator associated with slice hyperholomorphicityarein[53,70,80,121]. Function spaces. Several function spaces have been studied in this framework. In particular,thequaternionicHardyspaces H2(Ω),whereΩ isthequaternionicunit ballBorthehalfspaceH+ ofquaternionswithpositiverealpart,togetherwiththe Blaschkeproductsarein[14,15,16]andfurtherpropertiesarein[28,29,30].The Hardyspaces Hp(B), p >2,areconsideredin[145].TheBergmanspacescanbe foundin[50,52,54]andtheFockspacein[24].WeightedBergmanspaces,Bloch, Besov,andDirichletspacesontheunitballBareconsideredin[38].Innerproduct spacesandKreinspacesinthequaternionicsettingarestudiedin[21]. Groupsandsemigroupsofoperators.Thetheoryofgroupsandsemigroupsofquater- nionicoperatorshasbeendevelopedandstudiedin[22,62,125]. Functionalcalculi.Thereexistsatleastfivefunctionalcalculiassociatedwithslice hyperholomorphicity.Foreachonewehaveaquaternionicversionandaversionfor n-tuplesofoperators.The S-functionalcalculus,see[9,45,48,49,59,60,61,71], is the analog of the Riesz–Dunford functional calculus in the quaternionic setting. Further developments are in [40, 42]. The SC-functional calculus, see [65], is the commutative version of the S-functional calculus. For the functional calculus for groupsofquaternionicoperatorsbasedontheLaplace–Stieltjestransform,see[8]. The H∞ functional calculus based on the S-spectrum, see [25], is the analog, in thissetting,ofthecalculusintroducedbyA.McIntosh,see[138].TheF-functional calculus,see[18,41,63,67,68],whichisbasedontheFuetermappingtheoremin 4 1 Introduction integralform,isamonogenicfunctionalcalculusinthespiritoftheonedevelopedin [129,130,131,135,139],butitisassociatedwithslicehyperholomorphicity.Finally, the W-functional calculus, see [57], is a monogenic plane wave calculus based on slicehyperholomorphicfunctions. Spectraltheory.ThespectraltheorembasedontheS-spectrumforboundedandfor unboundedquaternionicnormaloperatorsonaHilbertspacewasdevelopedin[10, 11,116].Thecaseofquaternionicnormalmatriceswasprovedin[90]anditisbased on the right spectrum. Note that the right spectrum is equal to the S-spectrum in thefinitedimensionalcase.Thecontinuousslicefunctionalcalculusinquaternionic Hilbertspacesisstudiedin[115]. SchurAnalysis.Thisisaverywidefieldthathasbeendevelopedinthelastfiveyears in the slice hyperholomorphic setting. Schur analysis originates with the works of Schur, Herglotz, and others and can be seen as a collection of topics pertaining to Schur functions and their generalizations; for a quick introduction in the classical caseseeforexample[5].Fortheslicehyperholomorphiccasesee[1,2,6,7,12,13, 14,15,16,17,19,20]andalsotheforthcomingmonograph[23]. Sincetheliteratureinthefieldissovast,itisnaturaltoaskwhetherthedeeptheoryof holomorphicentirefunctionscanbereconstructedforsliceregularfunctions.Asthis bookwilldemonstrate,theanswerispositive,andourcontributionhereconsistsin showingthewaytoacompletetheoryofentiresliceregularfunctions.Itisprobably safe to assert that this monograph is only the first step, and in fact we only have chosenafairlylimitedsubsetofthegeneraltheoryofholomorphicentirefunctions, todemonstratethefeasibilityofourproject.Weexpecttoreturntootherimportant topicsinasubsequentvolume. Thismonographcontainsfourchapters,besidesthisintroduction.InChapters2 and3weintroduceanddiscussthealgebraandtheanalysisofsliceregularfunctions. Whilemostoftheresultsinthosechaptersarewellknown,andcanbefoundinthe literature, see e.g. [23, 76, 109], we repeated them to make the monograph self- contained.However,thereareafewnewobservations(e.g.,inSection2.5and3.2 where we tackle the composition of slice regular functions and also the Riemann mappingtheorem)thatdonotappearintheaforementionedmonographs.Thereare alsoafewnewresults(forexamplewecompletethediscussiononlowerboundsfor sliceregularfunctionsinitiatedwiththeEhrenpreis–MalgrangelemmainSection3.4, byaddingabrand-newCartan-typetheoreminSection3.5). Chapter4dealswithinfiniteproductsofsliceregularfunctions.Theresultsinthis chapterareknown,butatleasttheWeierstrasstheoremreceiveshereatreatmentthat isdifferentfromtheoneoriginallygivenin[114],seealso[109].Thistreatmentleads alsotothedefinitionofgenusofacanonicalproduct.Thecoreofthework,however, is Chapter5, where we study the growth of entire slice regular functions, and we showhowsuchgrowthisrelatedtothecoefficientsofthepowerseriesexpansions that these functions have. This chapter contains new results, the only exception is Section5.5 which is taken from [100]. It should be noted that the proofs we offer arenotsimplereconstructions(ortranslations)oftheholomorphiccase.Indeed,the noncommutativesettingcreatesaseriesofnontrivialproblemsthatforceustodefine compositionandmultiplicationinwaysthatarenotconducivetoasimplerepetition 1 Introduction 5 of the complex case. Also, the counting of the zeros is not trivial because of the presenceofsphericalzeroswhichhaveinfinitecardinality. Webelievethatmuchworkstillneedstobedoneinthisdirection,andwehope that our monograph will inspire others to turn their attention to this nascent, and alreadysorich,newfieldofnoncommutativeanalysis. Acknowledgements ThefirsttwoauthorsaregratefultoChapmanUniversityforthekindhospi- talityandthesupportduringtheperiodsinwhichthisworkhasbeenwritten.Thesecondauthor thankstheprojectFIRB2012“GeometriaDifferenzialeeTeoriaGeometricadelleFunzioni”for partiallysupportingthisresearch.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.