ebook img

Entanglement Witnesses for Indistinguishable Particles PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entanglement Witnesses for Indistinguishable Particles

Entanglement Witnesses for Indistinguishable Particles A. Reusch, J. Sperling,∗ and W. Vogel Arbeitsgruppe Theoretische Quantenoptik, Institut fu¨r Physik, Universita¨t Rostock, D-18051 Rostock, Germany (Dated: April 22, 2015) We study the problem of witnessing entanglement among indistinguishable particles. For this purpose,wederiveasetofequationswhichresultsinnecessaryandsufficientconditionsforprobing multipartite entanglement between arbitrary systems of Bosons or Fermions. The solution of these equationsyieldstheconstructionofoptimalentanglementwitnessesforpartialandfullentanglement indiscreteandcontinuousvariablesystems. Ourapproachunifiestheverificationofentanglementfor distinguishableandindistinguishableparticles. Weprovidegeneralsolutionsforcertainobservables tostudyquantumentanglementinsystemswithdifferentquantumstatisticsinnoisyenvironments. PACSnumbers: 03.67.Mn,05.30.-d 5 1 0 I. INTRODUCTION the Schmidt decomposition [9]. Whenever a single ten- 2 sorproductstateissufficienttoexpandapurestate,itis r p Nonlocal correlations among many particles or quan- separable. In analogy, entanglement between IP is char- A tizedfieldsareonekeyelementofthequantumnatureof acterized by the Slater decomposition [15–17]. A pure Fermion or Boson state is separable, if it is a single an- physics [1–4]. Applications in metrology use this quan- 1 tisymmetric or symmetric product state, given in terms tum feature to beat classical limitations [5–8]. Quan- 2 of Slater determinants or permanents, respectively; see tumentanglementhasbeenalsostudiedasaresourcefor also [18, 19] for a slightly different approach. A classical ] quantum information technologies [9]. For a fundamen- h mixtureofproductstatesextendsthecorrespondingdefi- tal characterization, a lot of attention has been devoted p nitionstomixedquantumstates. Ifsucharepresentation to verify entanglement between distinguishable particles - is impossible, the state under study is entangled. t (DP) or multiple degrees of freedom [10, 11]. n Indistinguishable particles (IP), on the other hand, Irregardless of the product for constructing compound a u are indispensable for understanding the properties of Hilbert spaces, ⊗,∧,∨, one can detect quantum correla- q many-particle quantum systems. For IP systems having tion via so-called entanglement witnesses [15, 20, 21]. A [ a certain spin statistics [12], however, even the notion witnessisanobservablewhichisnon-negativeforallsep- of entanglement itself has no generally accepted defini- arable states, and may be negative for entangled states. 2 v tion [13]. For example, the two-Fermion or two-Boson Such criteria have been successfully applied to exper- 5 state, imentally probe quantum correlations [22–27]. In the 9 same dimensions, the characterization and application 5 |↑(cid:105)⊗|↓(cid:105)−|↓(cid:105)⊗|↑(cid:105)∼=|↑(cid:105)∧|↓(cid:105), of entanglement in systems of IP gained an increasing 2 |↑(cid:105)⊗|↓(cid:105)+|↓(cid:105)⊗|↑(cid:105)∼=|↑(cid:105)∨|↓(cid:105), (1) importance during the past years; see, e.g., [28–40]. In 0 particular, the entanglement of multiple qubits, realized . 1 is a Bell-like entangled state using the tensor product ⊗, in spin systems, has been investigated [41–44], and the 0 question of how to extract entanglement for applications and, at the same time, it is a product state in the notion 5 from systems subjected to the Pauli principle has been oftheantisymmetricproduct∧orsymmetricproduct∨, 1 addressed [45, 46]. Recently, a method for the construc- : respectively. Thisambiguityoriginatesfromthefactthat v tionofoptimizedmultipartiteentanglementwitnessesfor the(anti)symmetrizationrequirementof(Fermion)Boson i DP has been proposed [47] and applied to perform a full X systems has formally the same structure as a nonlocal entanglement analysis of experimentally generated mul- superposition. The left-hand side of Eq. (1) is closely re- r a lated to the well established theory of entanglement be- timode states [48]. tweendistinguishablesubsystems[14]. Hence,wewillfo- Inthepresentcontribution, wederiveequationswhich cus on the right-hand side [15–17]. That is, for Fermions allow the construction of optimized, necessary, and suf- andBosons,thestates(1)areseparableproductstatesin ficient entanglement probes for Boson and Fermion sys- theexterioralgebraandsymmetricalgebra, respectively. tems. The formalism is applicable to arbitrary numbers Ingeneral,wewillfocusonthefollowingquestion: ”How of particles, partially and fully entangled states, and dis- does one certify quantum entanglement which does not crete and continuous variable quantum systems. Our rely on (anti)symmetrization?” method unifies the detection of entanglement for DP For bipartite pure states, the relation between entan- and IP. Furthermore, we explicitly construct witnesses glement for DP and the tensor product is represented by to demonstrate the strength of this technique to certify entanglement for different spin statistics in noisy envi- ronments. This work is structured as follows. In Sec. II, we dis- ∗Electronicaddress: [email protected] cussthenotionofmultipartiteseparablestatesofIP.The 2 construction of corresponding entanglement witnesses is |bk(cid:105) is, in general, not a product state in H⊗Nk. Finally, derived in Sec. III. Bipartite examples are studied for IP a K-separable (anti)symmetric vector is defined as andrelatedtothesystemsofDPinSec.IV.SectionVis devotedtoestablishspinstatisticsindependentwitnesses |ψ±(cid:105)=Πˆ±|ψ (cid:105)=Πˆ±|b ,...,b (cid:105). (8) K K 1 K in multimode systems. We conclude in Sec. VI. Since the permutation is applied in (8), the initial or- dering of the Hilbert spaces in (7) does not play a role, II. K-SEPARABLE FERMION AND BOSON i.e., the partition (N1,...,NK) relates to the Hilbert STATES spacesequenceH⊗N1⊗···⊗H⊗NK forDPor–replacing ⊗ by ∧,∨ – for IP. Let us point out that (N ,...,N ) 1 K and (N(cid:48),...,N(cid:48) ) define, in general, different partitions The formulation of multipartite entanglement for DP 1 K if these tuples are not identical up to a permutation of is based on the tensor product structure of compound Hilbert spaces H⊗N. A N-partite quantum state σˆ is indices. For example, the three partition (2,3,1) of a six mode system describes the same partitioning as (1,2,3), fully separable, if it can be written as a convex combina- but it differs from (2,2,2). tion of product states of the subsystems [14], AnexplicitexampleofpartialseparabilityofDPisthe σˆ =(cid:90) dP(a ,...,a )|a1,...,aN(cid:105)(cid:104)a1,...,aN|. (2) tripartite state: 1 N (cid:104)a ,...,a |a ,...,a (cid:105) 1 N 1 N |Ψ(cid:105)=|0(cid:105)⊗(|1(cid:105)⊗|2(cid:105)+|3(cid:105)⊗|4(cid:105))∈H⊗3, (9) Here, |a ,...,a (cid:105) = |a (cid:105) ⊗ ··· ⊗ |a (cid:105) are, in general, 1 N 1 N unnormalizedN-partiteproductvectors,andP isaclas- using a single-mode orthonormal basis {|0(cid:105),...,|4(cid:105)}. sical probability distribution. Similarly, one can construct partially separable states of A fundamental postulate of quantum mechanics for DP in (8), e.g., Bosons or Fermions is that the quantum states are sym- metric or antisymmetric upon exchange of the subsys- |Ψ+(cid:105)∼=|0(cid:105)∨(|1(cid:105)∨|2(cid:105)+|3(cid:105)∨|4(cid:105))∈H∨3 (10) tems, respectively. This restricts the physical states to and |Ψ−(cid:105)∼=|0(cid:105)∧(|1(cid:105)∧|2(cid:105)+|3(cid:105)∧|4(cid:105))∈H∧3. the (anti)symmetric subspace of the N-fold tensor prod- uctHilbertspace,H∧N,H∨N ⊂H⊗N. Aprojectionfrom In Appendix B we prove – independently from the the tensor product space to these subspaces is given by method to be developed later on – that these projected the permutation operators Πˆ±, states,|Ψ±(cid:105)=Πˆ±|Ψ(cid:105),areindeedpartiallyseparable,K = 2, and not fully separable, K (cid:54)=3. Πˆ±|a ,...,a (cid:105)= (cid:88) (±1)|σ||a ,...,a (cid:105), (3) Basedonthe(anti)symmetricproduct,onegetsagen- 1 N N! σ(1) σ(N) eral definition of N-separability for IP [33, 49]. Addi- σ∈SN tionally, a N-Fermion or N-Boson quantum state σˆ is K where |σ| and (±1)|σ| denote the parity and the sign of separable, 1 ≤ K ≤ N, if it can be written as a convex the permutation σ ∈S , respectively. Other projections combination of (anti)symmetric product states, N might be similarly studied, which allow a generalization to other parastatistics. Now, the (anti)symmetric prod- σˆ=(cid:90)dP(b ,...,b )Πˆ±|b1,...,bK(cid:105)(cid:104)b1,...,bK|Πˆ±. uct states can be identified as [49] 1 K (cid:104)b ,...,b |Πˆ±|b ,...,b (cid:105) 1 K 1 K (11) |a (cid:105)∧···∧|a (cid:105)∼=Πˆ−|a ,...,a (cid:105), (4) 1 N 1 N |a (cid:105)∨···∨|a (cid:105)∼=Πˆ+|a ,...,a (cid:105). (5) Exchangingthetensorproduct⊗byeitherthesymmetric 1 N 1 N product ∨ or the antisymmetric product ∧, cf. Eqs. (4) In general, for every vector |ψ(cid:105) ∈ H⊗N, we get the and(5),keepstheseparabilitydefinition(2)ofDPstruc- (anti)symmetric vector in the projected subspace as turally preserved. If a state cannot be written according to definition (11) for K = N, then entanglement be- |ψ±(cid:105)=Πˆ±|ψ(cid:105). (6) tweenIPiscertifiedbeyondanycorrelationthatcanarise from the (anti)symmetrization requirement of the quan- See Appendix A for the symmetrization of operators. tum statistics itself. Equations (4) and (5) define fully or N-separable Fermions and Bosons, respectively. More involved is the notion of K-separable states; see [10, 11] for introduc- III. CONSTRUCTION OF ENTANGLEMENT tions. InsystemsofDPaK-separablevector|ψ (cid:105)∈H K N WITNESSES is defined as a product vector |ψ (cid:105)=|b (cid:105)⊗···⊗|b (cid:105)=|b ,...,b (cid:105), (7) A. Separation of entangled states K 1 K 1 K for positive integers (N1,...,NK), |bk(cid:105) ∈ H⊗Nk, and Since Eq. (11) defines a closed, convex set of states, (cid:80)K N = N. The tuple (N ,...,N ) defines a par- the Hahn-Banach separation theorem is applicable [50, k=1 k 1 K titioning of the N-fold Hilbert space. Further note that 51]. It states that for any closed, convex subset C of a 3 Banach space and a point, x ∈/ C, there exists a linear WedefinetheabbreviationXˆ foraHermitianoperator bk and continuous functional f that separates these sets: Xˆ, acting on H⊗N, by the relation f(x) > sup f(c). In our case the Banach space is c∈C the set of Hermitian trace-class operators and the dual (cid:104)x|Xˆ |y(cid:105)=(cid:104)b ,...,b ,x,b ,...,b |Xˆ (17) space is isomorphic to the set of bounded operators, i.e., bk 1 k−1 k+1 K f(ρˆ)=tr(ρˆLˆ) for some Hermitian Lˆ. This means for the ×|b1,...,bk−1,y,bk+1,...,bK(cid:105), problem under study that for any K-entangled state of IP,(cid:37)ˆ=Πˆ±(cid:37)ˆΠˆ±, existsaboundedHermitianoperatorLˆ, for all |x(cid:105),|y(cid:105)∈H⊗Nk. Now, the derivative reads as such that tr(Lˆ(cid:37)ˆ)>sup{tr(Lˆσˆ):for all σˆ in Eq. (11)}. (12) 0= ∂∂(cid:104)bgk| = ∂(cid:104)∂bk|(cid:104)bk(cid:104)|b(kΠˆ|(±ΠˆLˆ±Πˆ)±bk)|bbkk|(cid:105)bk(cid:105) (18) Related approaches to identify entanglement of DP can =(Πˆ±LˆΠˆ±)bk|bk(cid:105) − (cid:104)bk|(Πˆ±LˆΠˆ±)bk|bk(cid:105)(Πˆ±) |b (cid:105). be additionally found in Refs. [20, 21, 47, 52]. Since (cid:104)b |(Πˆ±) |b (cid:105) (cid:104)b |(Πˆ±) |b (cid:105)2 bk k the separation theorem ensures the existence of such an k bk k k bk k operator, we have a necessary and sufficient condition Further, inserting the definition of g in Eq. (15) yields in terms of observables Lˆ probing multipartite entangle- mentbetweenIPinfiniteandinfinitedimensionalspaces. (Πˆ±LˆΠˆ±) |b (cid:105)−g(Πˆ±) |b (cid:105) However,findingtheproperLˆ foragivenstate(cid:37)ˆandde- 0= bj j bj j . (19) termining the least upper bound of the right-hand side (cid:104)bj|(Πˆ±)bj|bj(cid:105) of inequality (12) are cumbersome problems. In the fol- lowing, we will propose a method to address the latter Let us summarize the conducted optimization which aspect. results in Eq. (19). The derived set of algebraic equa- tions, (cid:0)Πˆ±LˆΠˆ±(cid:1) |b (cid:105)=g(cid:0)Πˆ±(cid:1) |b (cid:105) for j =1,...,K, (20) B. Witness construction through optimization bj j bj j definetheseparabilityeigenvalue(SEvalue)equationsfor It is sufficient to take the least upper bound on the IP. The common eigenvalue g is denoted as the SEvalue, right-hand side of inequality (12) over all product vec- and the (anti)symmetric product vector Πˆ±|b ,...,b (cid:105) tors, being the extremal points of the given convex set 1 K is the corresponding separability eigenvector (SEvector) of K-separable states. Moreover, the operator Πˆ± plays for IP. the role of the identity in the (anti)symmetric subspace. The SEvalue equations for IP represent a system of K Combining these facts allows us to write condition (12) coupled eigenvalue equations. Remarkably, it turns out in terms of the expectation value of the entanglement that they have the same structure as the corresponding witness operator: equationsforDP[47]. ForDP,weusetheN-foldidentity Wˆ =GΠˆ±−Πˆ±LˆΠˆ±, (13) ˆ1 that replaces the projector Πˆ± in (20). Even though ± wefindastrongrelationtothecaseofDP,cf.[47,54],we (cid:40) (cid:41) (cid:104)b ,...,b |Πˆ±LˆΠˆ±|b ,...,b (cid:105) want to point out that neither the distinguishable case G=sup 1 K 1 K , (14) (cid:104)b ,...,b |Πˆ±|b ,...,b (cid:105) includes the indistinguishable one, nor vice versa. This 1 K 1 K isduetothepropertiesofthenoninvertibleoperatorΠˆ±. WefoundthattheSEvaluegcorrespondstoanoptimal where the least upper bound is taken over all product expectationvalueofLˆ forK-separableBosonorFermion vectors (7); see also [15, 19]. Interestingly, the simple states. Therefore, we get the bound in the entanglement modification Πˆ± → ˆ1 in Eqs. (13) and (14) yields the criterion (12) as corresponding construction of witnesses for DP [47, 53]. TheleastupperboundinEq.(14)definesanoptimiza- sup{tr(Lˆσˆ):for all σˆ in Eq. (11)}=sup{g}, (21) tion of the Rayleigh quotient, i.e., the initial convex optimization problem is solved by (cid:104)b ,...,b |Πˆ±LˆΠˆ±|b ,...,b (cid:105) g = 1 K 1 K →G, (15) the largest SEvalue g of the equations (20). Now, the (cid:104)b ,...,b |Πˆ±|b ,...,b (cid:105) entanglementconditionforthestate(cid:37)ˆmaybewrittenas 1 K 1 K under the constraint that the denominator exists, i.e., (cid:104)Lˆ(cid:105)=tr((cid:37)ˆLˆ)>sup{g}. (22) Πˆ±|b ,...,b (cid:105)=(cid:54) 0. The optimization is carried out as a 1 K derivative of the Rayleigh quotient: Alternatively,thisconditioncanbewrittenintermsof witnesses constructed from Eqs. (13) and (14): ∂g 0= for j =1,...,K. (16) ∂(cid:104)b | Wˆ =GΠˆ±−Πˆ±LˆΠˆ±, with G=sup{g}, (23) j ± 4 which reads as tr((cid:37)ˆWˆ ) < 0. Similarly, a witness can IV. BIPARTITE EXAMPLE ± be constructed using the lower bound of the Rayleigh quotient (15) as Inafirstapplicationofourintroducedmethod,weaim (cid:104) (cid:105) at witnessing bipartite entanglement. As our observable Wˆ± =Πˆ± Lˆ−inf{g}ˆ1 Πˆ±. (24) we may choose the rank one operator: Hence, by solving the algebraic problem (20) of ob- Lˆ =|ψ(cid:105)(cid:104)ψ|, (30) servables Lˆ, we are able to construct, in principle, any being defined by a two-mode vector |ψ(cid:105) ∈ H⊗H. For optimal entanglement witnesses for multiple correlated DP, we have the well-known Schmidt decomposition [9] Bosons or Fermions. Moreover, the SEvalue equations to represent this vector, for IP might be also used for a numerical optimization if ananalyticalsolutionisnotavailable. Sincethecriterion d d in (22) and the witnessing approach are equivalent, we |ψ(cid:105)= (cid:88) ψ |i,j(cid:105)= (cid:88)λ |u ,v (cid:105), (31) i,j n n n study from now on solely the former one. i,j=1 n=1 intermsoforthonormalsets{|u (cid:105)}d and{|v (cid:105)}d as n n=1 n n=1 C. Further properties of the SEvalue equations wellasnon-negativecoefficientsλ ≥0. ForaFermionor n BosonstatewegettheSlaterdecomposition–asstudied, EquivalenttotheformoftheSEvalueequationsforIP for example, in Refs. [19, 49, 55] – as in(20),onemightformulateasecondform. Thesolutions g andΠˆ±|b1,...,bK(cid:105)oftheHermitianoperatorLˆ canbe |f(cid:105)=Πˆ−|ψ(cid:105)= (cid:88)d f |i,j(cid:105) found by solving i,j i,j=1 Πˆ±LˆΠˆ±|b1,...,bK(cid:105)=gΠˆ±|b1,...,bK(cid:105)+|χ(cid:105), (25) (cid:98)d/2(cid:99) (cid:88) = κ (|w ,w (cid:105)−|w ,w (cid:105)), (32) n 2n−1 2n 2n 2n−1 with the perturbation term |χ(cid:105), which has to fulfill for n=1 all j =1,...,K and for all |x(cid:105)∈H⊗Nj an orthogonality d d relation of the form |b(cid:105)=Πˆ+|ψ(cid:105)= (cid:88) b |i,j(cid:105)= (cid:88)κ(cid:48) |w(cid:48),w(cid:48)(cid:105), (33) i,j n n n (cid:104)b ,...,b ,x,b ,...,b |χ(cid:105)=0 (26) i,j=1 n=1 1 j−1 j+1 K for f = −f , orthonormal |w (cid:105), (cid:98)x(cid:99) denoting the to be equivalent with the first form in (20). This treat- i,j j,i n largest integer less or equal to x, and κ ≥ 0; and for ment transforms the coupled set of equations of the first n b =b with orthonormal |w(cid:48)(cid:105) and κ(cid:48) ≥0. form (20) into a single, but perturbed, eigenvalue equa- i,j j,i n n In Appendix C, the solution of the SEvalue equation tion of the second form (25). Note that the perturbation for IP is explicitly computed for the considered observ- |χ(cid:105) is an element of the (anti)symmetric subspace, since able(30). Here, letussummarizetheresults. Itisworth Πˆ±[LˆΠˆ±−gˆ1]|b ,...,b (cid:105)=|χ(cid:105). 1 K pointing out that the nontrivial solutions, i.e., g (cid:54)= 0, Another important property of the SEvalue equations have forms which are directly related to the decomposi- for IP is the behavior under certain transformations of tions (32) and (33). Namely, we get for Fermions theobservable. LocalunitariesUˆ andshiftsofLˆ,leading to a transformed observable SEvalues: g =2κ2, (34) n n (cid:104) (cid:105)†(cid:104) (cid:105)(cid:104) (cid:105) SEvectors: |w (cid:105)∧|w (cid:105), (35) Lˆ(cid:48) = Uˆ⊗N λ Lˆ+λ Πˆ± Uˆ⊗N , (27) 2n−1 2n 1 2 and for Bosons: with λ , λ ∈ R\{0}, can be directly passed onto the 1 2 solutions. If the SEvalue g together with the SEvector SEvalues: g =κ(cid:48) 2 and g =κ(cid:48)2+κ(cid:48)2, (36) n n k,l k l Πˆ±|b1,...,bK(cid:105) is a solutions of the SEvalue equations SEvectors: |w(cid:48)(cid:105)∨|w(cid:48)(cid:105) and |w+ (cid:105)∨|w− (cid:105), (37) for IP of Lˆ, then the operator Lˆ(cid:48) has the corresponding n n k,l k,l solutions: respectively, with |w± (cid:105) = (cid:112)κ(cid:48)|w(cid:48)(cid:105)±i(cid:112)κ(cid:48)|w(cid:48)(cid:105). Now, k,l k k l l SEvalue: g(cid:48) =λ g+λ , (28) theentanglementcondition(22),canbewritteninterms 1 2 of the fidelities: SEvector: Πˆ±|b(cid:48),...,b(cid:48) (cid:105)=Uˆ⊗NΠˆ±|b ,...,b (cid:105) =Πˆ±Uˆ1⊗N|b ,.K..,b (cid:105). 1 K (29) (cid:104)b|(cid:37)ˆB|b(cid:105)> max (cid:8)κ(cid:48)k2+κ(cid:48)l2(cid:9) (38) 1 K 1≤k<l≤d or (cid:104)f|(cid:37)ˆ |f(cid:105)> max (cid:8)2κ2(cid:9), (39) Hence,bysolvingtheSEvalueequationsforIPforagiven F n 1≤n≤(cid:98)d/2(cid:99) Lˆ we gain the solutions for a whole class of observables. Additionally, we get for λ = 1 and λ = 0 that the for bipartite, mixed or pure entangled states of Bosons, 1 2 SEvalues are invariant under local transformations. (cid:37)ˆ , or Fermions, (cid:37)ˆ . Note that, for the case of DP, we B F 5 alsogettheseparableboundfromthedecomposition(31) Since the structure of (anti)symmetric product states is as G=max {λ2}, using the results in [52]: related to Bell-like states, cf. Eq. (1), we also consider 1≤n≤d n Schmidt rank (SR) two states for DP. The calculation SEvalues: gn =λ2n, (40) of the corresponding bounds is done in [58] and applied SEvectors: |u (cid:105)⊗|v (cid:105). (41) in [59]. For any p in gray area of the plot SR>2, we can n n conclude that more than two tensor-product states have Let us apply the method to characterize the entangle- to be superimposed to describe the state (42). Thus our ment of the pure state |ψ(cid:105) which is mixed with white approachallowsthedetectionofdifferentformsofentan- noise, glement based on a single observable. ˆI ρˆ=pˆI|ψ(cid:105)(cid:104)ψ|ˆI+(1−p) , (42) trˆI V. MULTIPARTITE EXAMPLE with p∈[0,1] being a noise parameter,ˆI∈{ˆ1,Πˆ+,Πˆ−}, In the following we will study a multipartite entangle- and the second term being separable. For p = 0, we get ment test, which is even independent of the spin statis- the separable stateˆI/trˆI, which is a uniformly weighted tics. We further assume dimH = ∞ given by the or- mixture of all normalized product state ˆI|a1,a2(cid:105) with thonormal single-mode basis {|n(cid:105)}∞n=0. The observable 1 = (cid:104)a ,a |ˆI|a ,a (cid:105); cf. Eqs. (2) and (11). Replacing ˆI is 1 2 1 2 withotherprojectionswecouldadditionallystudyentan- Lˆ=|1,...,N(cid:105)(cid:104)N+1,...,2N|+|N+1,...,2N(cid:105)(cid:104)1,...,N|. glement for other parastatistics, e.g., for anyons [56, 57], (43) using the same treatment as presented for Bosons and Fermions. For a state ρˆ, the observable Lˆ measures an interference term of the form distinguishable,SR(cid:62)1 distinguishable,SR(cid:62)2 1.0 1.0 (cid:104)Lˆ(cid:105)=(cid:104)N+1,...,2N|ρˆ|1,...,N(cid:105) 0.8 0.8 0.6 0.6 +(cid:104)1,...,N|ρˆ|N+1,...,2N(cid:105). (44) p p 0.4 0.4 In Appendix D, we solve the SEvalue equations for DP 0.2 0.2 and IP. The obtained maximal bound for K-separable 0.0 0.0 5 10 15 20 5 10 15 20 states is d d sup{g}=(1/2)K−1. (45) indistinguishable,Bosons indistinguishable,Fermions 1.0 1.0 Notethatthisboundisevenindependentofthequantum 0.8 0.8 statistics. Therefore, the entanglement condition (12) in 0.6 0.6 this case states: Whenever the interference (cid:104)Lˆ(cid:105) for N- p p 0.4 0.4 particle system of DP, Bosons, or Fermions exceeds the 0.2 0.2 bound (1/2)K−1, we have certified that the state cannot 0.0 0.0 be K separable. 5 10 15 20 5 10 15 20 The observable (43) may be applied to a GHZ-type d d state [60], FIG. 1: Mixing in terms of p for the state (42) depending (cid:113) ∞ on d = dimH is plotted. As long as p is in the gray shaded |q(cid:105)= ν(ˆI)ˆI(cid:88)(cid:112)1−|q|2qn|nN+1,...,(n+1)N(cid:105), (46) area, we successfully detected entanglement. The coefficients in Eqs. (31) and (33) for DP and Bosons, respectively, are n=0 chosentobeequalλk =κ(cid:48)k =d−1/2(k=1,...,d). Inthecase with ˆI ∈ {ˆ1,Πˆ+,Πˆ−}, ν(Πˆ±) = N!, and ν(ˆ1) = 1. ofFermions,wechooseκ =(2(cid:98)d/2(cid:99))−1/2 (k=1,...,(cid:98)d/2(cid:99)), k This state is of a GHZ-type structure, because for each see Eq. (32), yielding a different behavior for even and odd mode j holds that the individual vectors |nN +j(cid:105) are dimensions d. orthonormal for different n. Using the transformations Tˆ |n(cid:105)=|nN+j(cid:105) in (D1) of Appendix D, it can be di- j rectly seen that the state in (46) is a GHZ-type of state, In Fig. 1, we compare different quantum statistics |q(cid:105) = ˆI(Tˆ ⊗···⊗Tˆ )(cid:80)∞ λ |n,...,n(cid:105). In addition, regarding their entanglement properties for the mixed 1 N n=0 n the pure state might be perturbed due to a randomly state (42) in dependence on the dimensionality of the distributed parameter q (|q|<1): single particle’s Hilbert space, d=dimH. We apply the testoperatorin(30). Aslongas(cid:104)Lˆ(cid:105)>sup{g}(grayarea (cid:90) inFig.1),wehaveidentifiedentanglementforthemixing ρˆ= d2qp(q)|q(cid:105)(cid:104)q|, (47) parameter p for DP (plot: SR>1), Bosons or Fermions. |q|<1 6 where p is a classical probability distribution. for any number of particles. The optimization of these The identification of multipartite entangled Bosons criteria is based on a set of generalized eigenvalue equa- and Fermions as well as DP is shown in Fig. 2 for a de- tions. These equations yield a structural unification of phasing channel, i.e., the amplitude r = |q| is fixed and entanglement for distinguishable particles, Fermions and phase ϕ = argq is randomized. This uniform dephasing Bosons, anditcanbegeneralizedtootherparastatistics. in the interval ϕ∈[−δ,+δ] results in the density matrix We analyzed and compared a number of examples for studyingthedifferencesandsimilaritiesbetweenfulland (cid:90) +δ dϕ partialseparabilityaswellasentanglementinsystemsof ρˆ= |rexp[iϕ](cid:105)(cid:104)rexp[iϕ]| (48) 2δ distinguishable and indistinguishable particles. For in- −δ stance, the determination of entanglement in bipartite ∞ = (cid:88) (1−r2)rn+n(cid:48)sinc[δ(n−n(cid:48))]ν(ˆI) and multipartite as well as discrete and continuous vari- ablequantumsystemsdemonstratethewiderangeofap- n,n(cid:48)=0 plications of our technique even in the presence of noise. ׈I|nN+1,...,(n+1)N(cid:105)(cid:104)n(cid:48)N+1,...,(n(cid:48)+1)N|ˆI, This also shows that our method is not limited to bi- partitions or small numbers of particles. Moreover, the with sinc[x] = sin[x]/x (sinc[0] = 1). Hence we have for construction of spin-statistics independent entanglement thisstate,forallˆI∈{ˆ1,Πˆ+,Πˆ−},andforallK partitions probes has been established. Such witnesses can detect (N ,...,N ) the entanglement condition 1 K entanglement of a quantum system independent of sym- metrization effects. (cid:104)Lˆ(cid:105)=2(1−r2)rsinc[δ]>(1/2)K−1. (49) We presented an approach which allows one to con- struct entanglement criteria, in principle, from almost As long as the expectation value in Fig. 2 is above the allobservables. However,thequestionwhichmeasurable dashed lines, we certified that the state cannot be a K- quantity is able to witness the entanglement of a partic- separableone. Notethatforafulldephasing, δ =π,this ular state is open and requires further studies. Beyond stateisdiagonalinproductstatesand,therefore,separa- theherepresentedfullanalyticalapproach,numericalim- ble. For no dephasing, δ = 0, we have a pure GHZ-type plementations may allow one to generate more sophisti- entangled state. This example demonstrates the general catedentanglementprobesfordetectingentanglementin possibilitytoconstructspinstatisticsindependententan- more general scenarios. Therefore, we believe that our glement tests with our approach. approach will provide a versatile tool to characterize en- tanglement in future experiments, with applications to 1.0 Bose-Einstein condensates or ultra-cold Fermi systems. 0.8 Acknowledgments 0.6 (cid:96)L (cid:92) K(cid:61)2 ThisworkwassupportedbytheDeutscheForschungs- (cid:88) 0.4 gemeinschaft through SFB 652. K(cid:61)3 0.2 K(cid:61)4 Appendix A: Symmetrization of operators K(cid:61)5 0.0 0 Π4 Π2 3Π4 Π For an N-fold Hilbert space H⊗N, the projection op- ∆ erators Πˆ+ and Πˆ− are defined as FIG. 2: Expectat(cid:144)ion value in(cid:144)Eq. (49√) is (cid:144)plotted for N = Πˆ± = (cid:88) (±1)|σ|Pˆ , (A1) 5 (solid curve), an amplitude |q| = 1/ 3, and a uniformly N! σ distributedphaseintheintervalargq∈[−δ,δ]. If(cid:104)Lˆ(cid:105)isabove σ∈SN thedashedlineK,thenthestatecannotbeaK-separableone with Pˆ |a ,...,a (cid:105) = |a ,...,a (cid:105) for any permu- σ 1 N σ(1) σ(N) – independent of the quantum statistics. tation σ ∈ S . It holds (Πˆ±)† = Πˆ±. We may study N Hermitian operators in a product basis operator expan- sion, given by terms of the form Xˆ =Yˆ ⊗···⊗Yˆ , (A2) 1 N VI. CONCLUSIONS with Yˆ = Yˆ† for j = 1,...,N. The symmetric form of j j In summary, we derived a method which allows the Xˆ is defined as caonndstFreurcmtiioonnso.fTenhteasnegnleemceesnstapryroabnedsisnuffisycsiteenmtscoofnBdiotsioonnss Xˆ(sym) = (cid:88) N1!Yˆσ(1)⊗···⊗Yˆσ(N). (A3) are capable of determining full and partial entanglement σ∈SN 7 We claim withtheorthogonalvectors|Φ (cid:105)=|1,2(cid:105)±|2,1(cid:105)+|3,4(cid:105)± 0 |4,3(cid:105), |Φ (cid:105) = |2,0(cid:105)±|0,2(cid:105), |Φ (cid:105) = |0,1(cid:105)±|1,0(cid:105), |Φ (cid:105) = 1 2 3 Πˆ±XˆΠˆ± =Xˆ(sym)Πˆ± =Πˆ±Xˆ(sym). (A4) |4,0(cid:105)±|0,4(cid:105),and|Φ (cid:105)=|0,3(cid:105)±|3,0(cid:105). Thereducedstate 4 – tracing with respect to the first subsystem – is The first equality can be directly computed, since for all |a1,...,aN(cid:105) holds: ρˆred =tr1|Ψ±(cid:105)(cid:104)Ψ±| (B4) |Φ (cid:105)(cid:104)Φ |+|Φ (cid:105)(cid:104)Φ |+|Φ (cid:105)(cid:104)Φ |+|Φ (cid:105)(cid:104)Φ |+|Φ (cid:105)(cid:104)Φ | Πˆ±XˆΠˆ±(cid:79)N |a (cid:105)=Πˆ± (cid:88) (±1)|σ| (cid:79)N (cid:104)Yˆ |a (cid:105)(cid:105) = 0 0 1 1 26 2 3 3 4 4 , j N! j σ(j) and it has a rank of five, rank(ρˆ )=5. j=1 σ∈SN j=1 red For proving that the states |Ψ±(cid:105) cannot be fully sepa- = (cid:88) (±1)|σ|+|τ| (cid:79)N (cid:104)Yˆ (cid:105)(cid:79)N |a (cid:105) rable,|Ψ+(cid:105)(cid:29)|a1(cid:105)∨|a2(cid:105)∨|a3(cid:105)and|Ψ−(cid:105)(cid:29)|a1(cid:105)∧|a2(cid:105)∧|a3(cid:105), N!2 τ(j) τ(σ(j)) let us study the properties of the reduced density matrix σ,τ∈SN j=1 j=1 of fully separable Boson and Fermion states. We have = (cid:88) N1!(cid:79)N Yˆτ(j) (cid:88) (±N1)!|µ|Pˆµ(cid:79)N |aj(cid:105) |s±(cid:105)=Πˆ±(|a1(cid:105)⊗|a2(cid:105)⊗|a3(cid:105)) τ∈SN j=1 µ∈SN j=1 1 1 1 = |a (cid:105)⊗|s (cid:105)+ |a (cid:105)⊗|s (cid:105)+ |a (cid:105)⊗|s (cid:105), (B5) =Xˆ(sym)Πˆ±(cid:79)N |a (cid:105), (A5) 6 1 1 6 2 2 6 3 3 j with |s (cid:105) = |a ,a (cid:105)±|a ,a (cid:105), |s (cid:105) = |a ,a (cid:105)±|a ,a (cid:105), j=1 1 2 3 3 2 2 3 1 1 3 and |s (cid:105)=|a ,a (cid:105)±|a ,a (cid:105). Consequently, the range or 3 1 2 2 1 whereweusedasubstitutionµ=τ◦σ and(±1)|τ|+|σ| = image of the partially reduced operator is (±1)|τ◦σ|. The second equality in (A4) follows from the R=Im(tr |s±(cid:105)(cid:104)s±|)⊆span{|s (cid:105),|s (cid:105),|s (cid:105)}=R(cid:48), (B6) fact that Xˆ and Πˆ± are Hermitian operators, 1 1 2 3 where the linear span R(cid:48) has a dimensionality of three Πˆ±Xˆ(sym) =Πˆ±XˆΠˆ± =(cid:0)Πˆ±XˆΠˆ±(cid:1)† (if |s1(cid:105),|s2(cid:105),|s3(cid:105) are linearly independent) or less. Since dimR ≤ 3, it follows that the rank of the partially =(cid:0)Πˆ±Xˆ(sym)(cid:1)† =Xˆ(sym)Πˆ±. (A6) reduced operator of any fully separable state of IP is bounded by three: For Xˆ = ˆ1 ⊗ ··· ⊗ ˆ1, we get from (A4) that Πˆ± is idempotent. An observable Lˆ which solely acts on the rank(ρˆ(cid:48)red)≤3, for all (B7) (cid:104) (cid:105) correspondingsubspaces(H∨N orH∧N)shouldfulfillthe ρˆ(cid:48) =tr Πˆ±|a ,a ,a (cid:105)(cid:104)a ,a ,a |Πˆ± . red 1 1 2 3 1 2 3 commutation relation [Lˆ,Πˆ±] = 0. From (A4) follows that this is fulfilled for every Lˆ =Lˆ(sym). Finally,weconcludethatthestates|Ψ±(cid:105)cannotbefully separablebecauseofrank(ρˆ )=5>3. Thus,thestates red in(B1),usingEq.(9),areauthenticexamplesofpartially Appendix B: Existence of partial separable Bosons separablestatesofFermionsandBosonsthatarenotfully and Fermions separable. Let us prove that the set of partially separable states Appendix C: Bipartite observable of IP includes more elements than the fully separable ones. For this reason, we consider the orthonormal basis {|0(cid:105),...,|4(cid:105)} and the three-partite vector |Ψ(cid:105) ∈ (cid:0)C5(cid:1)⊗3 In the following two subsections, the solution of the inEq.(9). Itispartiallyseparableinthetensorproduct, SEvalue equation for IP will be explicitly computed for i.e., |Ψ(cid:105) = |0(cid:105)⊗|Φ(cid:105). Applying the symmetrization or theconsideredobservable(30). Forsimplicity,wewillas- anti-symmetrization operator, Πˆ±, we get sumeinthefollowingLˆ =|f(cid:105)(cid:104)f|(Lˆ =|b(cid:105)(cid:104)b|)forthetwo- Fermion (two-Boson) system which yields Lˆ = Πˆ−LˆΠˆ− |Ψ+(cid:105)=Πˆ+|Ψ(cid:105)∈(cid:0)C5(cid:1)∨3 and |Ψ−(cid:105)=Πˆ−|Ψ(cid:105)∈(cid:0)C5(cid:1)∧3, (B1) (Lˆ =Πˆ+LˆΠˆ+). or, more explicitly, we have the expansion 1. Solution for Fermions 1 |Ψ±(cid:105)= [|0,1,2(cid:105)±|0,2,1(cid:105)+|0,3,4(cid:105)±|0,4,3(cid:105) 6 First, we give a unitary state representation for arbi- +|1,2,0(cid:105)±|1,0,2(cid:105)+|3,4,0(cid:105)±|3,0,4(cid:105) trary d-dimensional (d ∈ N∪{∞}) pure states of two +|2,0,1(cid:105)±|2,1,0(cid:105)+|4,0,3(cid:105)±|4,3,0(cid:105)] (B2) Fermions. We start with a Fermion state, 1 =6[|0(cid:105)⊗|Φ0(cid:105)+|1(cid:105)⊗|Φ1(cid:105)+|2(cid:105)⊗|Φ2(cid:105) |f(cid:105)= (cid:88)d f |i,j(cid:105), with f =−f , (C1) i,j i,j j,i +|3(cid:105)⊗|Φ (cid:105)+|4(cid:105)⊗|Φ (cid:105)], (B3) 3 4 i,j=1 8 and introduce the skew-symmetric coefficient matrix for all n = 1,...,(cid:98)d/2(cid:99). For the special case L = m,n κ κ , we get the maximal SEvalue as Mˆ =(f ) =−MˆT. (C2) m n f i,j i,j f G=max{2κ2}. (C9) n Using the Autonne-Takagi factorization in Ref. [55], we n find the Slater decomposition of this coefficient matrix, Note that trivial solutions, g = 0, can be obtained by |k(cid:105)∧|l(cid:105) with (k,l)(cid:54)=(2n,2n+1). Mˆ =UˆDˆUˆT, with Uˆ†Uˆ =ˆ1 (C3) f d/2 (cid:20) (cid:21) and (d even): Dˆ =(cid:77)κ 0 +1 , 2. Solution for Bosons j −1 0 j=1 Again, we first give the state representation according (d−1)/2 (cid:20) (cid:21) or (d odd): Dˆ = (cid:77) κ 0 +1 (cid:77)[0], to Ref. [55] for arbitrary d-dimensional pure state of two j −1 0 Bosons. This means that the symmetric state j=1 d with Dˆ being a block diagonal matrix containing anti- |b(cid:105)= (cid:88) b |i,j(cid:105), with b =b , (C10) i,j i,j j,i diagonal 2×2 blocks and κ ≥0. This yields Eq. (32) in j i,j=1 the form can be identified with a symmetric coefficient matrix (cid:98)d/2(cid:99) |f(cid:105)=Uˆ ⊗Uˆ (cid:88) κn(|2n−1,2n(cid:105)−|2n,2n−1(cid:105)), (C4) Mˆb =(bi,j)i,j =MˆbT and Mˆb =UˆDˆUˆT, (C11) n=1 with Uˆ†Uˆ = ˆ1 and Dˆ = diag[κ(cid:48),...,κ(cid:48)] ≥ 0. Thus the 1 d with an orthonormal single-mode basis {|1(cid:105),|2(cid:105),...} and symmetric Slater representation (33) of the state is Uˆ|k(cid:105) = |w (cid:105). Since the SEvalues are invariant under k unitary separable operations Uˆ⊗Uˆ, we assume, without |b(cid:105)=Uˆ ⊗Uˆ (cid:88)d κ(cid:48) |n,n(cid:105), with Uˆ|n(cid:105)=|w(cid:48)(cid:105). (C12) loss of generality, that Uˆ =ˆ1. n n n=1 Now, we consider more general operators having an expansion as As in the previous example for Fermions, let us con- sider the more general operator (cid:98)d/2(cid:99) Lˆ = (cid:88) Lm,n(|2m−1,2m(cid:105)−|2m,2m−1(cid:105)) Lˆ = (cid:88)d L |m,m(cid:105)(cid:104)n,n|. (C13) m,n m,n=1 m,n=1 ×((cid:104)2n−1,2n|−(cid:104)2n,2n−1|), (C5) The relation Lˆ = Πˆ+LˆΠˆ+ simplifies the SEvalue equa- which includes the special case L = κ κ of pro- m,n m n tions for Bosons in the second form to jection operator Lˆ = |f(cid:105)(cid:104)f|. Since Lˆ = Πˆ−LˆΠˆ−, the 1 SEvalue equations for Fermions in the second form (25) Lˆ|a ,a (cid:105)=g (|a ,a (cid:105)+|a ,a (cid:105))+|χ(cid:105). (C14) 1 2 2 1 2 2 1 read as Using γ =(cid:104)n,n|a ,a (cid:105), we can now write 1 n 1 2 Lˆ|a ,a (cid:105)=g (|a ,a (cid:105)−|a ,a (cid:105))+|χ(cid:105). (C6) 1 2 2 1 2 2 1 d (cid:34) d (cid:35) Lˆ|a ,a (cid:105)= (cid:88) (cid:88)L γ |m,m(cid:105). (C15) Using γ =((cid:104)2n−1,2n|−(cid:104)2n,2n−1|)|a ,a (cid:105), we get 1 2 m,n n n 1 2 m=1 n=1 Lˆ|a ,a (cid:105) (C7) Hence one class of solutions with |a (cid:105)=|a (cid:105) is given by 1 2 1 2   (cid:98)(cid:88)d/2(cid:99) (cid:98)(cid:88)d/2(cid:99) Πˆ+|a1,a2(cid:105)=|n,n(cid:105)∼=|n(cid:105)∨|n(cid:105), =  Lm,nγn(|2m−1,2m(cid:105)−|2m,2m−1(cid:105)). g =L , (C16) n,n m=1 n=1 (cid:88) |χ(cid:105)= L |m,m(cid:105). m,n We find that Lˆ|a ,a (cid:105) is already diagonalized in the 1 2 m(cid:54)=n form (C4). Hence, the orthogonality of |a ,a (cid:105) to the 1 2 Unlike in the Fermion case, we have to take a brief perturbation |χ(cid:105) is fulfilled if look on the decomposition of product states of Bosons. 1 Namely the state Πˆ+|a ,a (cid:105) for any |a (cid:105) =(cid:54) |a (cid:105) has a Πˆ−|a ,a (cid:105)= (|2n−1,2n(cid:105)−|2n,2n−1(cid:105))∼=|2n−1(cid:105)∧|2n(cid:105), 1 2 1 2 1 2 2 decomposition, cf. Eq. (C12), as g =2L , (C8) n,n Πˆ+|a ,a (cid:105)=Uˆ(cid:48)⊗Uˆ(cid:48)(λ(cid:48)|1,1(cid:105)+λ(cid:48)|2,2(cid:105)), (C17) (cid:88) 1 2 1 2 |χ(cid:105)= Lm,n(|2m−1,2m(cid:105)−|2m,2m−1(cid:105)), for |a (cid:105)=Uˆ(cid:48)(cid:104)(cid:112)λ(cid:48)|1(cid:105)+(−)i(cid:112)λ(cid:48)|2(cid:105)(cid:105). m(cid:54)=n 1(2) 1 2 9 Hence, we get a more involved set of solutions of withν(Πˆ±)=N!andν(ˆ1)=1. Duetothisfact,wemay Eq. (C15) in the form (for k (cid:54)=l): define the K-separable vectors Πˆ+|a ,a (cid:105)=λ(cid:48)|k,k(cid:105)+λ(cid:48)|l,l(cid:105), (C18) |v ,...,v (cid:105)=|1,...,N(cid:105) 1 2 k l 1 K (D4) |χ(cid:105)= (cid:88) (Lm,kλ(cid:48)k+Lm,lλ(cid:48)l)|m,m(cid:105), (C19) and |w1,...,wK(cid:105)=|N+1,...,2N(cid:105), m(cid:54)=k,l which are orthogonal for Fermions, Bosons, and DP and where the coefficients λ(cid:48) and λ(cid:48) have to be determined. any partition (N ,...,N ). k l 1 K We insert (C18) and (C19) into (C14), As a last fact before we solve the SEvalue equations forthisoperator,letusrecallanexampleofthestandard LˆΠˆ+|a1,a2(cid:105)−|χ(cid:105)=gΠˆ+|a1,a2(cid:105), (C20) eigenvalue problem: and find that the remaining terms to be computed are Mˆ =m|m (cid:105)(cid:104)m |+m∗|m (cid:105)(cid:104)m |, (D5) w v v w (L λ(cid:48) +L λ(cid:48))|k,k(cid:105) (cid:18) m∗ (cid:19) √ k,k k k,l l |µ (cid:105)= |m (cid:105)± |m (cid:105) / 2, (D6) +(L λ(cid:48) +L λ(cid:48))|l,l(cid:105)=g(λ(cid:48)|k,k(cid:105)+λ(cid:48)|l,l(cid:105)). (C21) ± w |m| v l,k k l,l l k l µ =±|m|, (D7) This is a standard eigenvalue problem in C2, which has ± the solutions with complex m (cid:54)= 0, orthonormal {|m (cid:105),|m (cid:105)}, and w v g± =Lk,k+Ll,l±∆, ∆=(cid:113)(L −L )2+4|L |2, |µ±(cid:105) being the eigenvectors of Mˆ to the eigenvalues µ±. 2 k,k l,l k,l Now, let us use the first form of the SEvalue equation λ(cid:48) =2L and λ(cid:48) =L −L ±∆, (C22) for IP and DP of the operator (43). Since the spanned k k,l l l,l k,k subspace of Lˆ is span{|v ,...,v (cid:105),|w ,...,w (cid:105)}, let us with the Hermiticity condition L =L∗ . 1 K 1 K l,k k,l expand Again,intheparticularcaseL =κ(cid:48) κ(cid:48) ,wegetthe m,n m n simplified solutions |b (cid:105)=β |v (cid:105)+β |w (cid:105). (D8) j v,j j w,j j g =λ2, g− =0, and g+ =κ(cid:48)2+κ(cid:48)2. (C23) n k l WegetforthejthSEvalueequationthetwocomponents Combiningthesolutionsoftheform|a1(cid:105)∨|a1(cid:105)and|a1(cid:105)∨ (cid:104)v |(cid:0)ˆILˆˆI(cid:1) |b (cid:105)=g(cid:104)v |(cid:0)ˆI(cid:1) |b (cid:105), |a2(cid:105)aswellasusingthefactthatκ(cid:48)k2+κ(cid:48)l2 ≥κ(cid:48)l2, weget j bj j j bj j (D9) the maximal SEvalue as (cid:104)w |(cid:0)ˆILˆˆI(cid:1) |b (cid:105)=g(cid:104)w |(cid:0)ˆI(cid:1) |b (cid:105). j bj j j bj j G=max{λ2 +λ2}. (C24) k(cid:54)=l k l Equivalently, we get by a rescaling with ν(ˆI) (cid:89)(cid:0)β∗ β (cid:1) β =g (cid:89)(cid:0)|β |2+|β |2(cid:1) β , Appendix D: Multipartite observable v,i w,i w,j v,i w,i v,j i(cid:54)=j i(cid:54)=j (D10) We considered an interference operator Lˆ in Eq. (43) (cid:89)(cid:0)βw∗,iβv,i(cid:1) βv,j=g (cid:89)(cid:0)|βv,i|2+|βw,i|2(cid:1) βw,j, whose expectation value is the real part of an off- i(cid:54)=j i(cid:54)=j diagonal element of the density operator ρˆ, (cid:104)Lˆ(cid:105) = whichhasthestructureoftheeigenvalueproblemin(D5) 2Re(ρ ). Local unitary operations al- (1,...,N),(N+1,...,2N) withthesolutioninEqs.(D6)and(D7). Henceforeachj low the generalization to other off-diagonal elements or wegetthesolutionforcomponentswith|β |=|β |= phase shifts, Re(exp[iϕ]ρ(1,...,N),(N+1,...,2N)). √ v,j w,j The injective transformations Tˆ of the orthonormal 1/ 2, yielding |βv,i|2+|βw,i|2 =1 and the eigenvalues j basis {|n(cid:105)}n∈N, g =±(cid:12)(cid:12)(cid:89)(cid:0)β∗ β (cid:1)(cid:12)(cid:12)=±(1/2)K−1. (D11) (cid:12) w,i v,i (cid:12) Tˆ |n(cid:105)=|nN+j(cid:105) for j =1,...,N, (D1) j i(cid:54)=j are constructed such that one can directly see that the Note for (cid:81) (cid:0)β∗ β (cid:1) = 0, we get the trivial SEvalue for all j,j(cid:48) = 1,...,N and n,n(cid:48) ∈ N an orthogonality is i(cid:54)=j v,i w,i given, (cid:104)nN +j|n(cid:48)N +j(cid:48)(cid:105) = δ δ . Therefore, we get g = 0 and, for example, the SEvector ˆI|b1,...,bK(cid:105) = forˆI∈{ˆ1,Πˆ+,Πˆ−} the orthogno,nn(cid:48)alji,tjy(cid:48) relation ˆI|v1,...,vK(cid:105). Finally, the maximal SEvalue is (cid:104)1,...,N|ˆI|N+1,...,2N(cid:105)=0 (D2) G=sup{g}=(1/2)K−1. (D12) as well as the normalizations Note that this result is independent of the particular K- (cid:104)N+1,...,2N|ˆI|N+1,...,2N(cid:105) partition (N1,...,NK) and, due to especially chosen or- thonormality in (D2), the result is also independent of =(cid:104)1,...,N|ˆI|1,...,N(cid:105)=1/ν(ˆI), (D3) the spin statistics. 10 [1] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum- bility of n-particle mixed states: necessary and sufficient Mechanical Description of Physical Reality Be Consid- conditions in terms of linear maps,Phys.Lett.A283,1 ered Complete?, Phys. Rev. 47, 777 (1935). (2001). [2] E. Schro¨dinger, Discussion of probability relations be- [22] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. tween separated systems, Proc. Cambr. Philos. Soc. 31, Weinfurter, O. Gu¨hne, P. Hyllus, D. Bruß, M. Lewen- 555 (1935). stein, and A. Sanpera, Experimental Detection of Mul- [3] E. Schro¨dinger, Probability relations between separated tipartite Entanglement using Witness Operators, Phys. systems, Proc. Cambr. Philos. Soc. 32, 446 (1936). Rev. Lett. 92, 087902 (2004). [4] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and [23] G. Vallone, R. Ceccarelli, F. De Martini, and P. Mat- S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 aloni,Hyperentanglement of two photons in three degrees (2014). of freedom, Phys. Rev. A 79, 030301(R) (2009). [5] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum- [24] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. EnhancedMeasurements: BeatingtheStandardQuantum Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Limit, Science 306, 1330 (2004). Devoret,andR.J.Schoelkopf,PreparationandMeasure- [6] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. ment of Three-Qubit Entanglement in a Superconducting Plick, S. D. Huver, H. Lee, and J. P. Dowling, Quantum Circuit, Nature (London) 467, 574 (2010). Metrology with Two-Mode Squeezed Vacuum: Parity De- [25] B. Jungnitsch, S. Niekamp, M. Kleinmann, O. Gu¨hne, tectionBeatstheHeisenbergLimit,Phys.Rev.Lett.104, H. Lu, W.-B. Gao, Y.-A. Chen, Z.-B. Chen, and J.-W. 103602, (2010). Pan, Increasing the Statistical Significance of Entangle- [7] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in ment Detection in Experiments, Phys. Rev. Lett. 104, quantum metrology, Nature Photon. 5, 222 (2011). 210401 (2010). [8] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, [26] J.M.Arrazola,O.Gittsovich,J.M.Donohue,J.Lavoie, General framework for estimating the ultimate precision K. J. Resch, and N. Lu¨tkenhaus, Reliable entanglement limit in noisy quantum-enhanced metrology, Nat. Phys. verification, Phys. Rev. A 87, 062331 (2013). 7, 406 (2011). [27] J. Dai, Y. L. Len, Y. S. Teo, B.-G. Englert, and L. A. [9] M. A. Nielsen and I. L. Chuang, Quantum Computation Krivitsky, Experimental Detection of Entanglement with andQuantumInformation,(CambridgeUniversityPress, Optimal-Witness Families,Phys.Rev.Lett.113,170402 Cambridge, UK, 2000). (2014). [10] R. Horodecki, P. Horodecki, M. Horodecki, and K. [28] F. Benattia, R. Floreaninib, and U. Marzolinoa, Sub- Horodecki,Quantumentanglement,Rev.Mod.Phys.81, shot-noise quantum metrology with entangled identical 865 (2009). particles, Ann. Phys. (N.Y.) 325, 924 (2010). [11] O. Gu¨hne and G. To´th, Entanglement detection, Phys. [29] T. Sasaki, T. Ichikawa, and I. Tsutsui, Entanglement Rep. 474, 1 (2009). of Indistinguishable Particles, Phys. Rev. A 83, 012113 [12] A.M.L.MessiahandO.W.Greenberg,Symmetrization (2011). Postulate and Its Experimental Foundation, Phys. Rev. [30] F. Buscemi and P. Bordone, A measure of tripartite en- 136, B248 (1964). tanglementinbosonicandfermionicsystems,Phys.Rev. [13] F.Benatti,R.Floreanini,andK.Titimbo,Entanglement A 84, 022303 (2011). of Identical Particles, Open Syst. Inf. Dyn. 21, 1440003 [31] F. Benattia, R. Floreaninib, and U. Marzolinoa, Entan- (2014). glement robustness and geometry in systems of identical [14] R.F.Werner,QuantumstateswithEPRcorrelationsad- particles, Phys. Rev. A 85, 042329 (2012). mitting a hidden-variable model, Phys. Rev. A 40, 4277 [32] F.Benattia,R.Floreaninib,andU.Marzolinoa,Bipartite (1989). entanglement in systems of identical particles: the par- [15] J.Schliemann,J.IgnacioCirac,M.Ku´s,M.Lewenstein, tial transposition criterion,Ann.Phys.(N.Y.)327,1304 andD.Loss,QuantumCorrelationsinTwo-FermionSys- (2012). tems, Phys. Rev. A 64, 022303 (2001). [33] M.OszmaniecandM.Ku´s, Universal framework for en- [16] G.Ghirardi,L.Marinatto,andT.Weber,Entanglement tanglement detection, Phys. Rev. A 88, 052328 (2013); and Properties of Composite Quantum Systems: a Con- M.OszmaniecandM.Ku´s,Fraction of isospectral states ceptual and Mathematical Analysis, J. Stat. Phys. 108, exhibitingquantumcorrelations,arXiv:1312.7359[quant- 49 (2002). ph]. [17] G. Ghirardi and L. Marinatto, General criterion for the [34] T. Sasaki, T. Ichikawa, and I. Tsutsui, Universal Sepa- entanglement of two indistinguishable particles, Phys. rability and Entanglement in Identical Particle Systems, Rev. A 70, 012109 (2004). Phys. Rev. A 87, 052313 (2013). [18] R.PaˇskauskasandL.You,Quantumcorrelationsintwo- [35] A. P. Balachandran, T. R. Govindarajan, A. R. de boson wave functions, Phys. Rev. A 64, 042310 (2001). Queiroz,andA.F.Reyes-Lega,EntanglementandParti- [19] K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, cleIdentity: AUnifyingApproach,Phys.Rev.Lett.110, Quantum Correlations in Systems of Indistinguishable 080503 (2013). Particles, Ann. Phys. (N.Y.) 299, 88 (2002). [36] F.IeminiandR.O.Vianna,ComputableMeasuresforthe [20] M.Horodecki,P.Horodecki,andR.Horodecki,Separabil- Entanglement of Indistinguishable Particles, Phys. Rev. ityofMixedStates: NecessaryandSufficientConditions, A 87, 022327 (2013). Phys. Lett. A 223, 1 (1996). [37] F. Iemini, T. O. Maciel, T. Debarba, and R. O. Vianna, [21] M. Horodecki, P. Horodecki, and R. Horodecki, Separa- QuantifyingQuantumCorrelationsinFermionicSystems

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.