ebook img

Entanglement production in Quantized Chaotic Systems PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entanglement production in Quantized Chaotic Systems

PRAMANA (cid:13)c IndianAcademyofSciences —journalof physics pp. 1–16 Entanglement production in Quantized Chaotic Systems JayendraN.BandyopadhyayaandArulLakshminarayanb aPhysicalResearchLaboratory,Navrangpura,Ahmedabad380009,India. bDepartmentofPhysics,IndianInstituteofTechnology,Madras,Chennai600036,India 5 Abstract. Quantumchaosisasubjectwhosemajorgoalistoidentifyandtoinvestigatedifferent 0 quantumsignaturesofclassicalchaos. Herewestudyentanglement productionincoupledchaotic 0 systemsasapossiblequantumindicatorofclassicalchaos.Weusecoupledkickedtopsasamodelfor 2 ourextensivenumericalstudies. Wefindthat,ingeneral,presenceofchaosinthesystemproduces more entanglement. However, coupling strength between two subsystems is also very important n parameterfortheentanglementproduction.Hereweshowhowchaoscanleadtolargeentanglement a whichisuniversalanddescribablebyrandommatrixtheory(RMT).Wealsoexplainentanglement J productionincoupledstronglychaoticsystemsbyderivingaformulabasedonRMT.Thisformula 0 isvalid forarbitrarycoupling strengths, aswellasforsufficientlylong time. Hereweinvestigate 2 also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed state entanglement production are qualitatively similar to the pure 1 stateentanglementproduction. Wehoweverstilllackananalyticalunderstandingofthemixedstate v entanglementproductioninchaoticsystems. 3 1 Keywords. chaos,entanglement,randommatrixtheory,mixedstate 1 1 PACSNos 05.45.Mt,03.65Ud,03.67.-a 0 5 0 1. Introduction / h p Entanglementisauniquequantumphenomenonwhichcanbeobservedinasystemcon- - t sistsofatleasttwosubsystems. Incaseofanentangledsystemevenifweknowtheexact n state of the system, it is not possible to assign any pure state to the subsystems and that a u leads to the well-knownuniquequantumcorrelationswhich exists even in spatially well q separated pairs of subsystems. This phenomenon was first discussed by Schro¨dinger to : pointoutthe nonclassicality implied by the quantummechanicallaws [1]. This remark- v ablefeatureofquantummechanicshasrecentlybeenidentifiedasaresourceinmanyareas i X ofquantuminformationtheoryincludingquantumteleportation[2],superdensecoding[3] r andquantumkeydistribution[4]. Moreover,entanglementis alsoa keyingredientofall a theproposedquantumalgorithmswhichoutperformtheirclassicalcounterparts[5,6]. Quantummechanicalstudyofclassicallychaoticsystemsisthesubjectmatterof‘quan- tumchaos’[7,8].Amajorchallengeofquantumchaosistoidentifyquantumsignaturesof classicalchaos. Varioussignatureshavebeenidentified,suchasthespectralpropertiesof thegeneratingHamiltonian[9],phasespacescarring[10],hypersensitivitytoperturbation [11],andfidelitydecay[12],whichindicatepresenceofchaosinunderlyingclassicalsys- tem. Recentstudieshaveshownthatentanglementinchaoticsystemscanalsobeagood 1 indicatorofthe regularto chaotic transitionin its classical counterpart[13–24]. A study of the connections between chaos and entanglement is interesting because the two phe- nomenaareprimafacieuniquelyclassicalandquantum,respectively.Thisisdefinitelyan importantreasontostudyentanglementinchaoticsystems. Moreover,presenceofchaos hasalsobeenidentifiedinsomerealisticmodelofquantumcomputers[25]. Inthispaper,wehaveinvestigatedentanglementproductionincoupledchaoticsystems. We have used coupledkicked topsas a modelfor our whole study. We have considered the entanglementproductionforbothchaoticandregularcases. Moreover,we havealso consideredtheeffectofdifferentcouplingstrengthsonentanglementproduction. Mostof theearlierstudieshaveconsideredtheeffectofchaosonentanglementproductionforthe case of initially pure state of the overall system. A basic assumption of these studies is thattheinitialstate ofthe overallsystem iscompletelyknown. However,in manyofthe realisticscenarios,wedonothaveacompleteknowledgeofthestateofaquantumsystem. For instance, when a quantum system interacts with its surroundings, it is not possible to know the exact state of the system. We may only express the state of the system as statisticalmixtureofdifferentpurestates,andthatisamixedstate. Inthispaperwehave alsostudiedmixedstateentanglementproductioninchaoticsystems. This paper is organizedas follows. In the nextsection we discuss aboutclassical and quantumpropertiesoftwocoupledkickedtops,ourprimarymodel.Thenwehavedefined themeasuresofbothpureandmixedstateentanglement. Finally,wehaveconcludedthis sectionwithadiscussionontheinitialstates(bothpureandmixed)usedhere. InSec.3., we present the numericalresults on the entanglementproductionin coupled kicked tops fordifferentsingletopdynamicsandalsofordifferentcouplingstrengths. Herewehave studiedentanglementproductionforbothpureandmixedinitialstate. InSec.4.,wederive the statistical universal bound on entanglementusing random matrix theory (RMT). We alsoderiveanapproximateformula,basedonRMT,toexplaintheentanglementproduction incoupledstronglychaoticsystems. Finally,wesummarizeinSec.5. 2. Preliminaries 2.1Coupledkickedtops 1Quantumtop ThesinglekickedtopischaracterizedbyanangularmomentumvectorJ = (J ,J ,J ), x y z wherethesecomponentsobeytheusualcommutationrules.TheHamiltonianofthesingle topisgivenby[26] n=+∞ π k H(t)= J + J2 δ(t n). (1) 2 y 2j z − n=−∞ X The first term describes free precession of the top aroundy axis with angular frequency π/2,andthesecondtermisduetoperiodicδ-functionkicks. Thesecondtermistorsion about z axis by an angle proportional to J , and the proportionality factor is a dimen- z sionlessconstantk/2j. Now theHamiltonianofthe coupledkickedtopscanbe written, followingRef.[14],as 2 (t)=H (t)+H (t)+H (t), (2) 1 2 12 H where π k H (t) J + 1J2 δ(t n) (3a) i ≡ 2 yi 2j zi − n X ǫ H (t) J J δ(t n), (3b) 12 ≡ j z1 z2 − n X wherei=1,2.HereH (t)’srepresenttheHamiltoniansoftheindividualtops,andH (t) i 12 is the coupling between the tops via spin-spin interaction with a coupling strength ǫ/j. Correspondingtimeevolutionoperator,definedinbetweentwoconsecutivekicks,isgiven by U =Uǫ (U U )=Uǫ [(UkUf) (UkUf)], (4) T 12 1⊗ 2 12 1 1 ⊗ 2 2 wherethedifferenttermsaregivenby, π k ǫ Uf exp i J , Uk exp i J2 , Uǫ exp i J J (5) i ≡ − 2 yi i ≡ − 2j zi 12 ≡ − j z1 z2 (cid:16) (cid:17) (cid:18) (cid:19) (cid:18) (cid:19) andasusuali=1,2. 2Classicaltop Theclassicalmapcorrespondingtothecoupledkickedtopscanbeobtainedfromthequan- tum description with the Heisenberg picture in which the angular momentum operators evolveas J =U†J U . (6) n+1 T n T Explicit form of this angular momentum evolution equation for each component of the angular momentum is presented in Ref. [17]. We now proceed by rescaling the angular momentumoperatoras (X ,Y ,Z ) (J ,J ,J )/j, for i = 1,2. The commutation i i i ≡ xi yi zi relationssatisfiedbythecomponentsofthisrescaledangularmomentumvectorasfollow : [X ,Y ] = iZ /j,[Y ,Z ] = iX /j and[Z ,X ] = iY /j. Therefore,in j limit, i i i i i i i i i → ∞ componentsofthisrescaledangularmomentumvectorwillcommuteandbecomeclassical c-number variables. In this large-j limit, we obtain the classical map corresponding to coupledkickedtopas[17]: X′ =Z cos∆ +Y sin∆ , (7a) 1 1 12 1 12 Y′ = Z sin∆ +Y cos∆ , (7b) 1 − 1 12 1 12 Z′ = X , (7c) 1 − 1 X′ =Z cos∆ +Y sin∆ , (7d) 2 2 21 2 21 Y′ = Z sin∆ +Y cos∆ , (7e) 2 − 2 21 2 21 Z′ = X , (7f) 2 − 2 3 Figure 1. Phasespacepicturesofthesingletop,correspondingtodifferentparameter values,arepresented.(a)k=1.0.Phasespaceismostlycoveredbytheregularregion. (b)k=2.0. Thephasespaceisstillverymuchregular,butnowathinstochasticlayer canbeobservedattheseparatrix. (c)k = 3.0. Thephasespaceistrulymixedtype. Few regular elliptic islands are visible inside the chaotic region. (d) k = 6.0. The phasespaceisalmostcoveredbythechaoticregionwithfewtinyellipticislands. The solidcircle(•)isthepointatwhichwewillconstructtheinitialwavepacketduringour studyofthepurestateentanglementproduction where ∆ kX +ǫX and ∆ kX +ǫX . (8) 12 1 2 21 2 1 ≡ ≡ Inthelimitǫ 0,theclassicalmapforthecoupledkickedtopsdecoupleintotheclassical → mapfortwosingletops. Theclassicalmapforonesuchuncoupledtopcanbewrittenas X′ =ZcoskX +Y sinkX (9a) Y′ = ZsinkX+Y coskX (9b) − Z′ = X. (9c) − It is clear from the aboveexpressionthatthe variables(X,Y,Z) lie on the sphere of ra- dius unity, i.e. X2 +Y2 +Z2 = 1. Consequently, we can parameterizethe dynamical variablesintermsofthepolarangleθandtheazimuthalangleφasX =sinθ cosφ,Y = sinθ sinφ,andZ = cosθ. InFig. 1,wehavepresentedthephasespacediagramsofthe singletopfordifferentvaluesoftheparameterk. Fork = 1.0,asshowninFig.1(a),the phasespaceismostlycoveredbyregularorbits,withoutanyvisiblestochasticregion.Our initialwavepacket, markedbya solidcircleatthecoordinate(0.89,0.63),isonthereg- ularellipticorbits. Aswefurtherincreasetheparameter,regularregionbecomessmaller. 4 Fig.1(b)isshowingthephasespacefork = 2.0. Stillthe phasespace ismostlycovered bytheregularregion,butnowwecanobserveathinstochasticlayerattheseparatrix. In thiscase,theinitialwavepacketisontheseparatrix.Forthechangeintheparametervalue fromk =2.0tok =3.0,thereissignificantchangeinthephasespace.Atk =3.0,shown inFig.1(c),thephasespaceisofatrulymixedtype. Thesizeofthechaoticregionisnow verylargewithfewregularislands. Atthisparametervalue,theinitialwavepacketisin- sidethechaoticregion. Fig.1(d)isshowingthephasespacefork = 6.0. Nowthephase space is mostly coveredby the chaotic region, with very tiny regular islands. Naturally, ourinitialwavepacketisinthechaoticregion. 2.2Measuresofentanglement 1Purestate Entanglementmeasureforasystemconsistingoftwosubsystems(bipartite)iswelldefined if overall state of the system is in a pure state. In this case subsystem von Neumann entropy,i.e. vonNeumannentropyofthereduceddensitymatrices(RDMs),isameasure ofentanglement. Ifthereisnoentanglementamongthetwosubsystems,thentheRDMs willcorrespondtodensitymatricesofpurestatesandhencethesubsystemvonNeumann entropywillvanish.Otherwise,incaseofentanglement,anon-zerovalueofthesubsystem vonNeumannentropywillbeameasureofentanglementamongthetwosubsystems. Let us assume that the state space of a bipartite quantum system is = , 1 2 H H ⊗ H where dim = N dim = M, and dim = d = NM. If ρ = p φ φ H1 ≤ H2 H i i| iih i| is an ensemble representation of an arbitrary state in , the entanglement of formation H P is found by minimizing p E(φ ) over all possible ensemble realizations. Here E i i | ii is the von Neumann entropy of the RDM of the state φ belonging to the ensemble, i P | i i.e. its entanglement. For pure states ψ there is only one unique term in the ensemble | i representationandtheentanglementofformationis simplythe vonNeumannentropyof theRDM. The two RDMs of any bipartite pure state ψ are ρ = Tr (ψ ψ ) and ρ = 1 2 2 | i | ih | Tr (ψ ψ ). The Schmidt decomposition of ψ is the optimal representation in terms 1 | ih | | i ofaproductbasisandisgivenby N ψ = √λ φ(1) φ(2) , (10) | i i| i i| i i i=1 X where0 < λ 1arethe(non-zero)eigenvaluesofeitherRDMsandthevectorsarethe i ≤ correspondingeigenvectors.ThevonNeumannentropyS istheentanglementE(ψ )is V | i givenby N S = Tr(ρ lnρ )= λ ln(λ ) ; l =1,2. (11) V l l l i i − − i=1 X ThevonNeumannentropycanonlybecalculatedintheeigenbasisoftheRDMsdueto thepresenceoflogarithmicfunctioninitsdefinition. Thereforeitisnoteasytocalculate 5 this measure unless one has some information of the eigenvaluesof the RDMs. Conse- quently linearized version of the von Neumann entropy, called linear entropy, has also becomeapopularmeasureofentanglement.Thismeasureofentanglementisdefinedas N S =1 Tr ρ2 =1 λ2 ; l=1,2. (12) R − l l − i i=1 X The linear entropycan be calculated withoutknowingthe eigenvaluesof the RDMs, be- cause Tr ρ2 is equal to the summation of absolute square of all the elements of RDMs. l l However,strictlyspeaking,thelinearentropyisnotatruemeasureofentanglement,rather itisameasureofmixednessofthesubsystemswhichincreaseswithentanglementamong the two subsystems. Therefore, the linear entropy can be considered as an approximate measureofentanglement. 2Mixedstate Amajorissuerelatedtothestudyofthemixedstateentanglementislackofuniquemea- sureofentanglement. Probablythisissue hasdiscouragedanyworkrelatedtothemixed state entanglementproductionin chaotic systems. Recently Vidal and Werner [27] have proposed a computable measure of entanglement called Log-negativity following Peres’ criterion of separability [28]. We use this measure to characterize mixed state entangle- mentproductioninchaoticsystems.Basicideaofthismeasureisverysimpleandstraight- forwardtostate. Amostgeneralformofaseparablebipartitemixedstateisgivenby ρ= p ρ(1) ρ(2), (13) i i ⊗ i i X wherethepositiveweightfactorsp satisfy p = 1,ρ(1) andρ(2) aredensitymatrices i i i i i for the two subsystems. We can constructa matrix ρT2 from ρ by taking transpose only P oversecondsubspace,i.e. T ρT2 = p ρ(1) ρ(2) . (14) i i ⊗ i Xi (cid:16) (cid:17) Thispartialtransposeoperationisdefinitelynotaunitaryoperation,butρT2 isstillHermi- T tian. Thetransposedmatrices ρ(2) arepositivematrices,andhencetheyarelegitimate i densitymatrices. Consequentl(cid:16)y,ifρ(cid:17)isseparable,ρT2 isapositivematrix.Thisisalsotrue forρT1. Ingeneral,thisisanecessaryconditionofseparability. Log-negativitymeasures the degreeto which ρT2 orρT1 fails to be positive. If ρ is an entangledstate, then ρT2 may havesome negativeeigenvalues. The Log-negativityis (cid:0) (cid:1) logarithmofthesumofabsolutevalueofthenegativeeigenvaluesofρT2 whichvanishes for unentangled state. It can be shown by simple algebraic manipulation that the sum of absolute value of all the negative eigenvalues of ρT2 is linearly related to the sum of absolutevalueofalltheeigenvaluesofρT2. Therefore,theLog-negativitymeasureE (ρ) N canbedefinedas 6 d E (ρ)=ln λ (15) N i | |! i=1 X wheredisthedimensionofρ. 2.3Initialstate 1purestate WeusegeneralizedSU(2)coherentstateorthedirectedangularmomentumstate[7,26]as ourinitialstatefortheindividualtopsandthisstateisgiveninstandardangularmomentum basis j,m as | i 2j j,mθ ,φ =(1+ γ 2)−jγj−m , (16) h | 0 0i | | s j+m (cid:18) (cid:19) whereγ exp(iφ )tan(θ /2). Forthecoupledkickedtop,wetaketheinitialstateasthe 0 0 ≡ tensor product of the directed angular momentum state corresponding to individual top, i.e., ψ(0) = θ(1),φ(1) θ(2),φ(2) , (17) | i | 0 0 i| 0 0 i where (θ(i),φ(i)) = (0.89,0.63)for i = 1,2. This initial state is evolved under U as 0 0 T ψ(n) = Un ψ(0) for different values of the parameter k and for different coupling | i T| i strengthǫ,andtheresultsaredisplayedinFig. 2. 2mixedstate In thiscase we haveconsidereda verysimple unentangledmixedstate, wherethe initial state correspondingto firsttopismixedandthesame correspondingtothe secondtopis pure. Mathematically we express this state as ρ(0) = ρ (0) ψ (0) ψ (0), where 1 ⊗ | 2 ih 2 | ρ (0)istheinitialmixedstateofthefirstsubsystemand ψ (0) istheinitialpurestateof 1 | 2 i thesecondsubsystem.Wetake ψ (0) asageneralizedSU(2)coherentstateaspresented 2 | i above in Eq.(16). The mixed state ρ (0) is a combination of two such coherent states 1 placedattwodifferentpointsonthephasespace,i.e., ρ (0)=p θ(1),φ(1) θ(1),φ(1) +(1 p) θ(1),φ(1) θ(1),φ(1) . (18) 1 | a0 a0ih a0 a0| − | b0 b0 ih b0 b0 | Herewechoose θ(1),φ(1) =(0.89,0.63)and θ(1),φ(1) =(2.25, 0.63)insuchaway a0 a0 b0 b0 − thatthedynamicalpropertiesofthesepointsaresimilarforanyvalueofk. Forthesecond (cid:0) (cid:1) (cid:0) (cid:1) top, we choose ψ (0) = θ(2) = 0.89,φ(2) = 0.63 . We onlyconsiderp = 1/2case, | 2 i | 0 0 i thismeansthecontributionofeachcoherentstateissameontheformationofρ (0). The 1 initialmixedstateρ(0)isevolvedunderU asρ(n) = Unρ(0)U−n. We studythetime- T T T evolutionoftheLog-negativitymeasurefordifferentkandǫ,andtheresultsaredisplayed inFig. 3. 7 3. Numericalresults 3.1Purestateentanglementproduction InFig.2,wehavepresentedourresultsfortheentanglementproductionincoupledkicked tops for the spin j = 80. As we go from top to bottom window, coupling strength is decreasingby a factor of ten. Top window correspondsto ǫ = 10−2, middle windowis showingtheresultsforǫ = 10−3,andthebottomonecorrespondstothecaseǫ = 10−4. For each couplingstrengths, we have studied entanglementproductionfor four different singletopparametervalues,whosecorrespondingclassicalphasespacepicturehasalready beenshowninFig.1. 1Couplingǫ=10−2 The entanglement production for this strong coupling strength has been presented in Fig.2(a). It shows that there exists a saturation of S for the regular cases (k = 1.0 V and k = 2.0), which are much less than the saturation value corresponding to strongly chaoticcasessuchaswhenk =6.0.ThesaturationvalueofS fork =6.0isastatistical V bound S = ln(N) 1 4.57 (where N = 2j +1 = 161), which can be estimated V − 2 ≃ analyticallyfromRMT[16],andwewilldiscussaboutthisinthenextsection. However for k = 3.0, correspondingto a mixed classical phase space, the saturation value of S V is less than the above mentioned statistical bounds, which indicates the influence of the regularregions.Thesedistinctbehaviorsoftheentanglementsaturationcanbeunderstood fromthe underlyingclassical dynamics. Fork = 1.0, the initial unentangledstate isthe productofthecoherentwavepacketplacedonsomeellipticorbitsofeachtop. Therefore, theevolutionofthisunentangledstateunderthecoupledtopunitaryoperatorsisrestricted bythoseellipticorbits. Finally,thewave packetspreadsalloverthoseellipticorbitsand the entanglementproduction reaches its saturation value. At k = 2.0, the center of the initialcoherentstateisinsidetheseparatrix.Therefore,initstimeevolution,thespreading of the wave packet is restricted to be inside the separatrix region. Finally it spread over thewholeseparatrixregion,andtheentanglementproductionarrivesatitssaturation. At k = 3.0 and k = 6.0, the initial wave packets are inside the chaotic region. However, duetothesmallersizeofthechaoticregioncorrespondingtothecaseofk =3.0thanthe casecorrespondingtok =6.0,thewavepacketcanspreadoverlessofthephasespacefor k = 3.0thank = 6.0. Consequently,thesaturationvalueoftheentanglementproduction islessfork =3.0thank =6.0. 2Couplingǫ=10−3 Let us now discuss the case of couplingstrength ǫ = 10−3, whose results are presented in Fig.2(b). For the non-chaotic cases (k = 1.0 and k = 2.0), the saturation value of the entanglement production is less than the entanglement saturation value observed in the stronger coupling case (ǫ = 10−2). This is because, for weaker coupling case, the interactionbetweentwosubsystemsislessandtheindividualsubsystemsbehavemorelike 8 Figure 2. TimeevolutionofthevonNeumannentropyincoupledkickedtopsispre- sentedfordifferentcouplingstrengthsandfordifferentunderlyingclassicaldynamics. (a)ǫ = 10−2. (b)ǫ = 10−3. (c) ǫ = 10−4. Solidlinerepresents k = 1.0, dotted linecorrespondstok = 2.0, dashedlineisfork = 3.0anddash-dotlinerepresents k=6.0. isolatedquantumsystems.Similarly,forthestrongchaoscase(k =6.0),theentanglement productioniswellshortoftheknownstatisticalboundln(N) 1. − 2 3Couplingǫ=10−4 The entanglementproductionforthis veryweak couplingstrengthhasbeen presentedin Fig.2(c).Theentanglementproductionfortheweaklycoupledstronglychaoticsystemhas recently been explained by perturbationtheory [18]. However, the formula presented in thatworkis onlyvalidforshorttime. Inthe nextsection we havepresentedan approxi- mateformulafortheentanglementproductionincoupledstronglychaoticsystemswhich isvalidforsufficientlylongtimeandforanyarbitrarycouplingstrengths.Thisformulaex- plainstheentanglementproductionforthestronglychaoticcase(k =6.0). Herewehave observedaninterestingphenomenonthattheentanglementproductionismuchlargerfor thenon-chaoticcasesthanthechaoticcases. Rather,wecansaythat,forweaklycoupled cases,thepresenceofchaosinthesystemsactuallysuppressesentanglementproduction. 3.2Mixedstateentanglementproduction InFig.3,we havepresentedtheLog-negativitymeasureE (ρ)ofthemixedstateentan- N glementproductionfordifferentindividualtopdynamics(k = 1.0,2.0,3.0,and6.0)and 9 Figure 3. EvolutionoftheLog-negativitymeasure(evolvingunderthecoupledtops timeevolutionoperator UT). Solidlinesanddottedlinesarerepresentingtheresults correspondingtothenon-chaoticcases(k = 1.0andk = 2.0,respectively). Dashed lines are representing the mixed case (k = 3.0) and dash-dot lines are showing the results for the strongly chaotic case (k = 6.0). (a) Representing the results for the stronger coupling strength (ǫ = 1.0). (b) This window is showing the results for ǫ = 0.1. (c) This window is for ǫ = 0.01 case. (d) This window is showing the resultsfortheweakcouplingcase(ǫ=0.001). fordifferentcouplingstrengths. 1Couplingǫ=1.0 Letusstartthediscussionwiththecaseofstrongcouplingǫ=1.0,whoseresultsarepre- sentedinFig.3(a).Thiscouplingstrengthissostrongthat,irrespectiveoftheindividualtop dynamics,theoverallcoupledsystemischaotic. Therefore,thelocationoftheinitialstate and the dynamicsof the individualtopsare irrelevantfor the saturationof E (ρ). Con- N sequently, we have observedalmost same saturationvalue of E (ρ) for all the different N individualtopdynamics. 2Couplingǫ=0.1 The time evolution of E (ρ) corresponding to ǫ = 0.1 is presented in Fig.3(b). For N thiscouplingstrength, we haveobservedthatthe saturationvalueof E (ρ) for the non- N chaotic cases (k = 1.0andk = 2.0) are less than the saturation value correspondingto othertwocases. TheselowersaturationvaluesofE (ρ)forthenon-chaoticcasesindicate N 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.