ebook img

Entanglement dynamics of two nitrogen vacancy centers coupled by a nanomechanical resonator PDF

0.89 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Entanglement dynamics of two nitrogen vacancy centers coupled by a nanomechanical resonator

Entanglement dynamics oftwo nitrogenvacancy centers coupled by ananomechanical resonator Z.Toklikishvili,1L.Chotorlishvili,2S.K.Mishra,3 S.Stagraczynski,2M.Schüler,2A.R.P.Rau,4 andJ.Berakdar2 1Department of Physics, TbilisiStateUniversity, Chavchavadze av. 3, 0128, Tbilisi, Georgia 2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany 3DepartmentofPhysics,IndianInstituteofTechnology, BanarasHinduUniversity,Varanasi-221005, India 4DepartmentofPhysicsandAstronomy,LouisianaStateUniversity,BatonRouge, Louisiana70803-4001, USA In this paper we study the time evolution of the entanglement between two remote NV Centers (nitrogen vacancy in diamond) connected by adual-mode nanomechanical resonator withmagnetic tipson bothsides. Calculatingthenegativityasameasurefortheentanglement,wefindthattheentanglementbetweentwospins oscillateswithtimeand canbemanipulated by varying theparametersof thesystem. Weobserved thephe- nomenonofasuddendeathandtheperiodicrevivalsofentanglementintime. Forthestudyofquantumdeco- 7 herence,weimplementaLindbladmasterequation.Inspiteofitscomplexity,themodelisanalyticallysolvable 1 0 underfairlyreasonableassumptions,andshowsthatthedecoherenceinfluencestheentanglement, thesudden 2 death,andtherevivalsintime. n a I. INTRODUCTION time-varyingmagneticfieldisasuperpositionoftwodifferent J frequencies. Such a magnetic field connects the two remote 8 NV centers and causes an indirect interaction between them 1 Coherent steering of the dynamics of quantum systems throughananomechanicalresonator. Thisinteractioninvolve has always been a subject of intense research due to its all the three levels of the NV centers. In previous studies, ] wide spread applications in devices and setups where quan- h the"dark"superpositionstatewasdecoupled.Usingthedual- p tum coherence is relevant. Notable examples are nano- moderesonatorallowconsideringthecasewhenboth"bright" - electromechanical devices1,2, quantum resonators3–5, two- nt and three-level quantum systems6–10, and confined cold and"dark"superpositionstatesareinvolvedinthedynamics. a atoms11–15. In recent years, much attention has been paid We will demonstrate that in spite of the complexity, with u to nitrogen-vacancy (NV) impurities in diamonds and to q realisticassumptions,thismodelisanalyticallysolvableeven the possibilities of their usage in quantum computing and [ in the presenceof quantumdecoherence. The paper is orga- entanglement16–27.Thesedefectscanbeconsideredasathree- nizedasfollows: InsectionII,westudythedynamicsofthe 1 levelsystem or spin triplets(S = 1). The advantageofNV- dual-modecantilever, in section IIIwe presentan exactana- v basedsystemsisthattheyhavealongcoherencetimeevenat 1 room temperaturesand they are easily manipulatedby light, lytical solution for the case of one and two NV centers. We 7 derivethe Hamiltonianofthe non-directinteractionbetween electricormagneticfields. 0 NVcentersmediatedbythedual-modecantilever. Insection 5 Recent developments in fabrication technologies of IV, we study the time dependence of the system’s entangle- 0 nanomechanical resonators made it possible to implement ment,andinthelastsectionwestudytheproblemofquantum 1. the coherent connection between the motion of the magne- decoherenceusingaLindbladmasterequation. 0 tized resonator tip and the individual point defect centers in 7 diamond19. The resonators also allow to link two NV cen- 1 ters of diamonds.20,26 Previousworksstudied mainlythe en- v: tanglementbetweentwoNVcenters,whichareconnectedby i a resonator in vibration. The resonator is assumed to have X only one fundamental frequency of vibration and only two r statesoftheNVcenterspintripletsareentangledwiththeres- a onator. Moderntechnologiesallow producingnanomechani- calresonatorswithtwoorseveralfundamentalfrequenciesof II. DYNAMICSOFTHEDUAL-MODERESONATOR vibrations28–30. Thedual-moderesonatorlinkallowsthepar- ticipation of all the three spin states of NV centers. In this paper,westudythequantumcorrelationbetweentworemote A prototype model of a nanomechanical resonator con- NV Centersthrougha dual-modenanomechanicalresonator. nected to two NV centers of diamond is shown in Fig. 1. Twomagnetictipsareattachedtobothsidesoftheresonator, A smallhigh-frequencycantileveris attachedatthe endofa whichisplacedsymmetricallybetweentwoNVcenters. largerlow-frequencycantilever,whichinturnisattachedtoa The physical set-up consists of two cantilevers in series, base. Two magnetic tips are attached to the small cantilever both excited at their effective resonant frequencies to pro- and two spin-one systems (NV centers) denoted by ‘1’ and duce a tip response as a superposition of a low- and a high- ‘2’areplacedatdistancesh andh fromtherespectivemag- 1 2 frequencyoscillationstate. Sincetheresonatorisattachedto netic tips. The model representsa union of two consecutive thetopoftwomagnetictips,thevibrationcausesatimevary- resonators. A mechanical analogue in terms of springs and ing magnetic field. The vibrating resonator tip can be con- massesisshowninFig.2. Theequationofmotionoftworods sidered as the superposition of two oscillations, so that the inthemechanicalmodelcanberepresentedbythefollowing 2 spin1 Physical system h1 k1 , Q1 k2 , Q2 h2 base spin2 z x y FIG.1.(coloronline)Ananomechanicalresonator,connectedtotwo FIG. 2. (color online) A mechanical model of the system, which NVvacancycentersofdiamond. Twomagnetictipsareattachedat representsacombinationofspringsandmasses. theendoftheresonator,whichoscillatesinthedirectionofthezaxis. h1andh2aredistances(approximately25nm)fromthemagnetictip tothefirstandsecondNVspin. tions: 2πν1−0 ω , 2πν2−0 ω . Giventheseestimateswe Q1 ≪ 1 Q2 ≪ 2 canrewriteEq.(1)as equations29: m z¨ = (k +k )z +k z , 1 1 1 2 1 2 2 − d2z (t) m z¨ = k z +k z , (2) m1 dt12 =−k1[z1(t)−z0(t)]+k2[z2(t)−z1(t)] 2 2 − 2 2 2 1 whichcanfurtherbesimplifiedto 2πν dz (t) 1 0 1 m1 − , − Q1 dt z¨ = ω2z +ω2 z , d2z2(t) 2πν2 0dz2(t) 1z¨ =− 1ω21(z +21z2), (3) m2 dt2 =−k2[z2(t)−z1(t)]−m2 Q− dt 2 − 2 2 1 2 +Fts[z2(t)], (1) where ω1 = (k1+k2)/m1, ω21 = k2/m1 and ω2 = k /m . where m and m are the effective masses of the first and 2 2 p p 1 2 Thegeneralsolutionofthe system ofequationsEq. 3has thesecondrod,k1 andk2arespringconstants(vibratingrods pthefollowingform: obey Hooke’s law). z (t) and z (t) are the coordinates of 1 2 the first and second rod tips, Q and Q are quality factors, 1 2 z =Acos(Ωt+φ), 1 ν and ν are free-resonantfrequencies of the first and th1e−0second2ro−d0. F [z (t)] is the externalforceacting onthe z2 =Bcos(Ωt+φ). (4) ts 2 second rod tip. The system can be excited by flapping the HereA,B andΩareconstantsandcanbecalculatedbysub- stembase,z isthelocationofthefirststembaseattimet. 0 stitutingEq.4intoEq.3as We will study the dynamical equation Eq. 1 by employ- ing severalassumptions: First, let usassume that the base is (ω2 Ω2)A ω2 B =0, stopped at z0 = 0 and there is no magnetic interaction be- ω12A−+(ω2−Ω221)B =0. (5) tween magnetic tips and spins: F [z (t)] = 0. Before pro- − 2 2 − ts 2 ceeding further, it is useful to estimate the range of realistic Thenon-trivialsolutionforΩ,obtainedbysolvingtheabove parameters for the cantilever26. A typical cantilever fabri- equations,is cated out of Si(100) has a Young’s modulus Y = 130 GPa andadensityρ=2.33 103kg/m3. Inthedual-modehybrid ω2+ω2 (ω2 ω2)2+4ω2ω2 × Ω2 = 1 2 ± 1− 2 2 21, (6) cantilever (see Fig. 1), the length of the two different parts 1,2 2 is L 15 103nm, L 9 103 nm, width w =300nm, p 1 2 1 w2 =2≈00nm· andthicknes≈sd1·=30nm,d2 =20nm,masses where Ω1 and Ω2 are the system’s own frequencies. They m1 = 3.5 10−16kgandm2 = 10−16kg. Usingequations differfromtheresonancefrequenciesω1andω2ofthesystem × becauseofthecouplingtermω ω inEq.6. 2πν1−0 = 1.82 Y3dρ212L121 and 2πν2−0 = 1.82 Yρd222L122, TheratioofamplitudesAan2dB21atΩ =Ω1canbewritten we therefore obtqain the frequencies πν1 0 = 0q.54 MHz, as πν =1.7MHz. Theestimatedspringc−onstantsare: k = 2 0 1 Y×wL−131×d31 =3·10−4kg/s2,k2 = Y×wL232×d32 =2·10−4kg/s2. BA = ω12−ω22+ (ω212ω−2 ω22)2+4ω22ω221 ≡κ1, The quality factor is large19, Q1,2 105, and the frequen- (cid:18) (cid:19)Ω1 p 21 ≈ (7) ciesareω = k1+k2 = 1.2MHz,ω = k2 = 1.4MHz. 1 m1 2 m2 Thus, by desigqning geometricalcharacterisqtics of the hybrid where κ1 is completelydeterminedby the parametersof the dual cantilever, one can easily achieve the following condi- system and does not depend on the initial conditions. It is 3 calledthedistributioncoefficientamplitudeforΩ1. Similarly |+1> δ+ 3 ωe |e> wefindthedistributioncoefficientforΩ as 2 ~BS 0 z BA = ω12−ω22− (ω212ω−2 ω22)2+4ω22ω221 ≡κ2, |-1> Ω+ δ- 2 ωd |d1> (cid:18) (cid:19)Ω2 p 21 ω (8) Ω 0 - a) |0> b) 1 ω |g> andthegeneralsolutionofthecoupledequationsEq.4canbe g writtenas: FIG.3.(coloronline)(a)Theconfigurationoftheenergylevels.Ω± stand for theRabi frequencies between the ground and theexcited z =A cos(Ω t+φ )+A cos(Ω t+φ ), 1 1 1 1 2 2 2 levels(0 , 1 ) and(0 , 1 ). δ± denotethedetuning between z =κ A cos(Ω t+φ )+κ A cos(Ω t+φ ). (9) | i |− i | i | i 2 1 1 1 1 2 2 2 2 themicrowavefrequencyω0andthetransitionfrequencies. (b)The transitionfromtheground statetothebright andthe darkstatesis This means that the oscillations of each stem tip are the su- shown. perpositionof two harmonicoscillationswith frequenciesof vibrationgivenbyEq. 6. Letusdefinetwonormalcoordinatesxandysuchthatx= expressed as zˆ = a10(aˆ1 +aˆ†1)+a20(aˆ2 +aˆ†2) and the in- A1cos(Ω1t+φ1)andy =A2cos(Ω2t+φ2).Intermsofthese teraction between the magnetic tip and the spin is expressed normalcoordinates,thesolutiontakesonasimplerform, as z1 =x+y, Hsr =h¯(λ1(aˆ1+aˆ†1)+λ2(aˆ2+aˆ†2))Sz, (16) z =κ x+κ y, (10) 2 1 2 where λ = g µ G a , i = 1,2, the gyromagneticratio i s B m i0 andΩ1,2canbewrittenas gs 2,andai0 = ¯h/2MiΩi aretheamplitudezero-point ≈ fluctuations. The system is placed in an external magnetic Ω21,2 = k1m+k+2(κm1,2κ−2 1)2. (11) fieldB0alongthezpdirection.Iftheconditions 2πQν11−0 ≪ω1, 1 2 1,2 2πν2−0 ω donotholdtrue, insteadofEq. (2)oneneeds Q2 ≪ 2 TheHamiltonianofthesystemcanbewrittenas to solve directly Eq. (1). The difference between Eq. (1) and Eq. (2) is the weak damping term and this damping of 1 = (m +m κ2)(x˙2+Ω2x2) the cantilever’s oscillation leads to quantum decoherence. H 2 1 2 1 1 Usually, NV centersare characterizedby a low decoherence + 1(m +m κ2)(y˙2+Ω2y2). (12) rate. However, in order to take into account environmental 2 1 2 2 2 effects,insectionVweutilizeaLindbladmasterequationfor NVcentresandaddresstheproblemofquantumdecoherence IntroducingthemassesM = m +m κ2 andmomenta 1,2 1 2 1,2 morecompletely. P =M x˙,P =M y˙,theHamiltoniancanbeexpressedas x 1 y 2 1 1 1 1 = P2+ M Ω2x2+ P2+ M Ω2y2.(13) H 2M x 2 1 1 2M y 2 2 2 1 2 III. NVCENTERSCOUPLEDTOADUAL-MODE In this way, the Hamiltonian of the nanomechanical res- CANTILEVER onator can be considered as the sum of two noninteract- ingharmonicoscillators. Thequantum-mechanicalHamilto- Inthissection,wepresentananalyticalsolutionforthesin- nian operator can be written by replacing x, y, P and P x y gleandtwoNVcenterscoupledtothedual-modecantilever. by quantum-mechanical operators xˆ, yˆ, Pˆx and Pˆy, respec- We derivetheHamiltonianofnon-directinteractionbetween tively. Afurthertransformationintocreationandannihilation NVcentersmediatedviathedual-modecantilever. operators30leadsto 1 1 H=¯hΩ1(aˆ†1aˆ1+ 2)+¯hΩ2(aˆ†2aˆ2+ 2), (14) A. One-spincase where aˆ aˆ have the usualmeaning. If we neglectthe zero 1 2 The total spin of a nitrogen vacancy center in diamond is point vibrations, the nanomechanical resonator may be de- S = 1, with the three spin sub-states, m = 1, 0 and +1 s scribedbytheHamiltonian: − being separated from each other by the frequencyω /2π 0 2.88GHz19. AnaddedexternalmagneticfieldB shifts 1≃ Hnr =¯hΩ1aˆ†1aˆ1+¯hΩ2aˆ†2aˆ2. (15) and +1 states(Zeemanshift)proportionallyt0oB0Sz|.−Thei | i The magnetic tip movement generates a magnetic field spinpartoftheHamiltonian NV reads H B~ G zˆ, whereG isthemagneticfield gradientand |zˆitsipt|he≃tipmlocation opermator. Since the tip peak vibrationis H = ¯hδ i i + ¯hΩi 0 i +(i 0 , (17) NV i asuperpositionoftwoharmonicwaves,thezˆoperatorcanbe − | ih | 2 | ih | | ih | i= (cid:18) (cid:19) X± (cid:0) (cid:1) 4 where δ and Ω denote the detunings and the Rabi fre- where quences±of the tw±o transitions. We consider here the case 2 w∆hΩe(nBth)e),RwabhierfereΩqueinsctiheesRΩa±biartreannsoittieoqnufarle,q(uΩe±ncy=inΩz0er±o H0 =Hnr+ HNi V, (21) 0 0 i=1 X magnetic field and ∆Ω(B0) = µBB0. In addition, we con- i =¯hω Ri +¯hω Ri +¯hω Ri , siderthecasewhenthedetuningsareequal19 δ = δ = δ. HNV g 11 d 22 e 33 + Theschematicsof thetransitionis shownin Fig. 3(a)−. With and this assumption, we can calculate the eigenfunctions of the 2 Hamiltonian as d = 1 (Ω 1 Ω +1 ), e = V = i , (22) | 1i Ω√2 +|− i− −| i | i 0 Hsr cosθ b + sinθ 0 and g = cosθ 0 sinθ b , where i=1 1 1 X | i | i | i | i − | i |b1i= Ω√12(Ω−|−1i+Ω+|+1i)andtan(2θ)=−√2Ω/δ, Hsir =h¯(λg(aˆ1R2i1+aˆ†1R1i2)+λe(aˆ2R3i2+aˆ†2R2i3)). 2arΩe2s=upeΩr2+po+sitΩio2−ns. Iotfsh"boruilgdhbt"enbote=dt(hatst1ate+s|b1+ia1nd)/|d√12i sTphien,sruepseprescctriivpetlsy.iT=he1i,n2tesratacntidonfoorftthheefisprsitnsanwditthhethesemcoangd- | i | − i | i and "dark" d = ( 1 + 1 )/√2 states19: b = netic tips of the resonator results in an indirectcoupling be- 1 | i | − i − | i | i Ω0|bi−∆ΩΩ(B)|di, |d1i = Ω0|di+∆ΩΩ(B)|bi. The correspond- tweTehnetHheamspilitnosn.ianoftheindirectinteractionbetweentheNV ing eigenfrequenciesare ω = δ, ω = δ+√δ2+2Ω2 and d − e − 2 spins can be evaluated using the Fröhlich method35(set ¯h = ωg = −δ−√δ22+2Ω2. Notethatωg <ωd <ωe. 1): Inthediagonalbasis,theHamiltonianassumesthefollow- i 0 ingform: = dt[V (t),V (0)] (23) eff ′ 0 ′ 0 H 2 Z−∞ NV =¯hωg g g +¯hωe e e +¯hωd d1 d1 . (18) and H | ih | | ih | | ih | In this diagonal basis, the z-component of the spin is Sz = V0(t)=e−iH0tV0(0)eiH0t. (24) −Ω+ΩΩ2− sinθ(|d1ihg|+|gihd1|)−cosθ(|d1ihe|+|eihd1|) . Intherotating-waveapproximation,wewriteEqs. (22)-(24) Sinceωg <ωd <ωewecanrelabeltheenergylevels g , d1 as (cid:0) | i | (cid:1)i and e as 1 , 2 , and 3 , respectively. We also introduce | i | i | i | i ˆ = ˆ +Vˆ, (25) theoperatorsR = i j , obeyingR R = R δ where eff 0 ij ij kl il kj H H | ih | i,j =1,2,3.AfterimplementingtheoperatorsRij andusing where Eqs.(15),(16),(17),and(18),werewritethetotalHamiltonian ˆ =α(nˆ (R1 +R2 ) (nˆ +1)(R1 +R2 ))+ ofthesysteminamoreconvenientform H0 1 11 11 − 1 22 22 +β(nˆ (R1 +R2 ) (nˆ +1)(R1 +R2 )), (26) 3 22 22 − 3 33 33 = + + , Hs Hnr HNV Hsr and =¯hω R +¯hω R +¯hω R , (19) HNV g 11 d 22 e 33 Vˆ = α(R1 R2 +R2 R1 ) β(R1 R2 +R2 R1 ). Hsr =¯h(λg(aˆ1R21+aˆ†1R12)+λe(aˆ2R32+aˆ†2R23)). − 12 21 12 21 − 23 32 32 23(27) HereHnristheHamiltonianofthenanomechanicalresonator Intheabovenˆi = aˆ†iaˆi isthemeanphotonnumberoperator, (see Eq.(15), is the Hamiltonian of the NV-center and α = λ2/∆ , β = λ2/∆ , ∆ = Ω ω , ∆ = Ω +ω . HNV g 1 e 2 1 1− e 2 2 g istheHamiltonianofinteractionbetweenthem,obtained In the next section we demonstrate the phenomenon of the sr Hintherotatingwaveapproximation:λ = λ1Ω−Ω+sinθ and early-stage disentanglementin the system (the entanglement g − Ω2 λ = λ2Ω−Ω+cosθ. TheaboveHamiltonianrepresentsagen- suddendeath). Importantlyforaparticularratiobetweenthe erealizedJayΩn2es–Cummingsmodel7,34. Thelevelsandtransi- parametersα=β,meaningthat Ω1+ √2Ω2+δ2 δ /2= − tionsareshowninFig.3(b). tan2 θ Ω2 − √2Ω2+δ2 +δ(cid:0)/2th(cid:0)e entanglement(cid:1)in the system acquires a persistent value. Here Ω are the fre- 1,2 (cid:0) (cid:1)(cid:0) (cid:0) (cid:1) quencies of the dual mode cantilever and Ω is the Rabi fre- quency.Togetherwiththedetuningδandtheangletan(2θ)= B. Two-spincase √2Ω/δalltheseparameterscanbecontrolledbythesizeof − thecantileverandtheappliedmagneticfield. Consider the case of two identical spins (NV centers) placedonthedifferentsidesofaresonatorandcoupledbyit. LetusassumethatthetwospinshavethesameRabitransition IV. MEASUREOFTHEENTANGLEMENT:NEGATIVITY frequency,Ωi = Ω ,detuningδi = δ,andinteractioncon- stantswithth±ereson±atorλig,e = λ±g,e, wherethesuperscripts Theamountofentanglementsharedbetweenthetwospins i=1,2representthespins. TheHamiltonianforthetwospin canbemeasuredbythe"negativity"whichisdefinedas casecanbewrittenas χ χ N(ρ)= | i|− i, (28) = +V , (20) 2 H H0 0 Xi 5 whereχ ’s are the eigenvaluesof the partialtransposedden- i sitymatrixwithrespecttothespin .Ifχ >0then χ χ = 0.5 1 i i i | |− 0,however,ifχ < 0, then χ χ = 2χ andthenega- i i i i | |− − tivity 0.4 N(ρ)= χ . (29) i − 0.3 χXi<0 ρ) ( Thetimedependenceofthenegativitycanbecalculatedusing N 0.2 theSchrödingerequation(with¯h=1): β d 1 i ψ =Hˆeff ψ , (30) 0.1 2 dt| i | i 3 where the initial state can be considered in its most general 0 4 form 0 1 2 3 4 5 6 7 ψ =a 1 1 +a 1 2 +a 1 3 +a 2 1 +a 2 2 | i 1| i| i 2| i| i 3| i| i 4| i| i 5| i| i t +a 2 3 +a 3 1 +a 3 2 +a 3 3 . (31) 6 7 8 9 | i| i | i| i | i| i | i| i Here i j i j , the kets corresponding to the first FIG.4. (coloronline)Negativityasafunctionoftime,whenα=1 and th|eis|eico≡nd|spiin⊗, a|nid a , a a are coefficientsto be kHz and β = 1,2,3,4 kHz. The initial conditions are a2(0) = 1 2 9 determined. ··· a6(0) = 1/√2ora4(0) = a8(0) = 1/√2andalltheothercoeffi- cientsareequaltozero.Thenegativityvanisheswhenα=1,β =2 UsingtheSchrödingerequation,wecanwrite: orwhenα = 1,β = 4att = π +πk,k = 0,1,2.... Thetimeis 2 da measuredinmilliseconds. 1 i =2αn a , 1 1 dt da i 2 = αa +βn a αa , Using these coefficients, we can write the density matrix ρ 2 3 2 4 dt − − withelementsρ = a a . Forthisdensitymatrix,wecan da nm n ∗m i 3 =αn a β(n +1)a , easilycalculatethepartialtransposematrixwithrespecttothe 1 3 3 3 dt − spin . The elements of the partial transpose matrix are con- 1 da 4 nectedtotheelementsρ ofthedensitymatrixasfollows: i = αa +βn a αa , nm 4 3 4 2 dt − − ida5 = 2α(n +1)a +2βn a , hi1,j2|ρTspin1|k1,l2i≡hk1,j2|ρ|i1,l2i. (34) 1 5 3 5 dt − TheeigenvaluesofthematrixρTspin1 canbecalculatedandthe da6 negativeeigenvaluesusedinEq.(29)tocalculatethetimede- i = α(n +1)a βa βa , 1 6 6 8 dt − − − pendenceofnegativity. ThevalueoftheNegativityishighly da7 dependenton thechoiceof initialconditions,i.e., thechoice i =αn a β(n +1)a , dt 1 7− 3 7 ofCi,i=1 9. ··· da Letusconsidertheinitialstateofthesystemtobe 8 i = α(n +1)a βa βa , 1 8 8 6 dt − − − ψ =a (0)1 2 +a (0)2 3 , (35) ida9 = 2β(n +1)a . (32) 2 | i| i 6 | i| i dt − 3 9 with a (0) = a (0) = 1/√2 and a (0) = a (0) = 2 6 1 3 Theequationsfora2anda4aswellasfora6anda8showthe a4(0) = a5(0) = a7(0) = a8(0) = a9(0) = 0. sameoscillations,whichisobviousasthepairofcoefficients For this choice of initial state, we can calculate the non- a anda relatestates 1 2 and 2 1 suchthata 1 2 zero elements of the density and the eigenvalues of its par- 2 4 2 a4 2 1 and the pair o|fic|oiefficie|ntis|ai6 and a8 rela|tei|stiat⇔es tial transpose with respect to spin1. The partial transpose 2|3i|aind 3 2 suchthata 2 3 a 3 2 .Thesolutions matrix has only one negative eigenvalue given as χ = 6 8 o|fie|qiuation|si(|32i)are | i| i⇔ | i| i √ρ24ρ42+ρ26ρ62+ρ48ρ84+ρ68ρ86 and the negativity − fromEq. (29)comesouttobe a1 =C1e−2iαn1t, a2 =C2e−iβn3t+C4ei(2α−βn3)t, N = (36) a3 =C3e−i(αn1−β(n3+1))t, 6−cos4αt−cos4βt+2cos2(α−β)t+2cos2(α+β)t. a4 = C2e−iβn3t+C4ei(2α−βn3)t, p 4√2 − a5 =C5e−2i(α(n1+1)−βn3)t, It should be noted that if α = β then N(ρ) = 0.5. We a =C eiα(n1+1)t+C ei(2β+α(n1+1))t, obtainthesameresultifwetaketheinitialconditiona4(0)= 6 6 8 a (0) = 1/√2 and a (0) = a (0) = a (0) = a (0) = a7 =C3e−i(αn1−β(n3+1))t, a8(0) = a (0) = a (01) = 0. InF2ig. 4,the3timedepe5ndence a8 = C6eiα(n1+1)t+C8ei(2β+α(n1+1))t, of6thenega7tivityiss9hownforachoiceoftheinitialconditions − a =C e2iβ(n3+1)t. (33) a (0) = a (0) = 1/√2 or a (0) = a (0) = 1/√2 and the 9 9 2 6 4 8 6 0.5 0.5 γ γ 0.45 1.00 d 0.45 1.00 e 0.4 0.75 0.4 0.75 0.50 0.50 0.35 0.35 0.3 0.3 ) ) (ρ 0.25 (ρ 0.25 N N 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 t t 0.5 0.5 α β 0.45 1 0.45 1 0.4 2 0.4 2 3 3 0.35 0.35 0.3 0.3 ) ) (ρ 0.25 (ρ 0.25 N N 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 t t FIG.5. Timeevolutionofthenegativityofthesysteminthepresenceofdissipationisshown. (a)α = β = γe = 1andγd isvaried. (b) α=β=γd =1andγeisvaried.(c)β=1,γe =γd =0.5,andαisvaried.(d)α=1,γe =γd =0.5,andβisvaried. restofthecoefficientsbeingzero. Wesee thatthenegativity where n and m are integers. n + m + 1 and n m have − oscillates in time and the oscillations are more rapid as the different parity. If the first is even, then the second is odd differencebetweenαandβ increases. Inthiscase,thevalue andviceversa. Thus,negativitybecomeszerowhentheratio ofthenegativityisboundedbetween0and0.5. α/β isequaltoafractionwhosedenominatorisevenandthe It is interesting to find the instances where the negativity numeratorisoddorviceversa.InFig.4,weseethatN(ρ)=0 vanishes resulting in zero entanglement between the spins. when α isequalto 1 or 1 andt= π +πk,k =0,1,2... β 2 4 2 FromEq.(36)weinfer Itshouldbenotedherethatifwetaketheinitialconditions as a (0) = a (0) = a (0) = a (0) = 1/2 and the rest of 2 4 6 8 cos2t(α+β)cos2t(α β) cos2t(α+β) thea tobezero,thenegativitywillbeN(ρ) = 1/2. Foran − − − i cos2t(α β)=3. initial state with all the a being the same and equal to 1/3, i − − (37) the eigenvaluesof the partialtransposeof the densitymatrix cannotbe calculated analyticallyexceptfor the case α = β. Itiseasytoseethattheaboveequationholdstruewhen Forthiscase,thenegativityis 4 cos2t(α+β)= 1, N(ρ)= ( sinαt sinαt), (40) − 9 | |− cos2t(α β)= 1. (38) − − whichcanbeexpressedintheform Thesolutionoftheseequationsdeliverstheconditionforthe 0, 2πk t (2k+1)π choiceofαandβ forazeronegativityas N(ρ)= α ≤ ≤ α (8sinαt, (2k+1)π <t< 2(k+1)π α n+m+1 9 α α = , (39) β n m where k is an integer. The maximum of the negativity is − 7 N (ρ) = 8 at t = π + 2πk We find that the entan- and R1 = R I , R2 = I R , with I the three- max 9 −2α α ij ij ⊗ 3 ij 3 ⊗ ij 3 glementiszeroduringthetimeinterval 2πk t (2k+1)π, dimensional unit matrix. The most general solution of the α ≤ ≤ α master equation (41) for an arbitrary initial state is given in however,there is a partialentanglementsharingbetweenthe spinsduringtheinterval (2k+1)π <t< 2(k+1)π. theappendix. Infig. 5wehaveshowntheeffectofdamping α α ontheentanglementbetweenthetwospinsbyvaryingallthe parametersofinterest.Fig.5(a)showsthedynamicsofentan- glement for differentvalues of γ with the other parameters V. LINDBLADEQUATION d fixedasα = β = γ = 1. Weseethattheentanglementde- e caysmoresharplyduetotheincreaseindecoherenceparame- We consider two three-levelatoms (NV centers), with the terγ .Thesamecanbeseenbyvaryingtheotherdecoherence energylevelsofeachNV centerasin Fig.(3). We havedis- d parameterγ infig.5(b). Aswesee,duetothedecoherence, cussedabovethesetwoNVcentersinteractingwitheachother e entanglement’ssuddendeathissmearedout. indirectlyviaananomechanicalresonator,aschemedescribed in ref. 27. We now introducedampingby assumingthatthe excited levels 2 and 3 decay to the ground state 1 , and | i | i | i a direct transition between the excited levels is not allowed. The time evolution of such a system is given by the master VI. CONCLUSIONS equation(LindbladEquation)38,39: dρ OneofthemainchallengesfortheNVspin-basednanome- = i[Vˆ,ρ]+Lρ, (41) dt − chanical resonator is to achieve a high degree of entangle- ment between NV spins. The success of this proposal nat- whereVˆ isthe(27),andLρisthedampingterm38,39: urally depends on the strength of the coupling between NV γ spins. On the other hand, single NV spins S = 1 are a Lρ= e 2R1 ρR1 R1 ρ ρR1 + 2 13 31− 33 − 33 tripletstate with two characteristictransitionfrequenciesbe- +γd(cid:0)2R1 ρR1 R1 ρ ρR1 (cid:1)+ (42) tweenthethreetripletstates. Therealizationofthecontrolled 2 12 21− 22 − 22 transitionsbetweenallthethreelevelsrequirestwo-frequency +γe(cid:0)2R2 ρR2 R2 ρ ρR2 (cid:1)+ nanomechanical resonator with a special type of dual fre- 2 13 31− 33 − 33 quency cantilever. The frequency characteristics of the can- +γ(cid:0)d 2R2 ρR2 R2 ρ ρR(cid:1)2 . tileverdependsontheparticularchoiceofthecantilever’sge- 2 12 21− 22 − 22 ometry.Apropersetupofthedualcantileverhelpstuningthe Thespontaneousemis(cid:0)sionofatoms1and2fromth(cid:1)eirexcited oscillationfrequenciestotheresonancefrequencies.Thedual states 3 to the ground states 1 is described by the spon- cantilever is supplemented by the magnetic tips. Thus, the taneou|sdiecay rate γ , similarly|γi is the spontaneousdecay oscillation of the cantilever leads to the indirect interaction e d rateofexcited 2 totheground 1 . Forthederivationofthe between the NV spins, while the direct interaction is small. masterequation|,iwechoosetheb|asiis: Hence, the entanglementbetween the NV spins is fueled by the dynamicsof the cantilever. In spite of the complexityof 1 0 0 thesystem(twocoupledNVcentersandadualfrequencycan- 1 = 0 , 2 = 1 , 3 = 0 (43) tilever), the modelis analyticallysolvable. In orderto study | i 0! | i 0 ! | i 1 ! decoherence, we utilized the Lindblad master equation. An exact analyticalsolution of the Lindblad equationshows the andtheR = i j operatorsinthisbasishavethefollowing ij influence of the decoherence. A prominenteffect of the en- | ih | forms: tanglement’ssuddendeathissmearedoutbydecoherence. 1 0 0 0 0 0 R = 1 1 = 0 0 0 ,R = 2 2 = 0 1 0 , 11 22 | ih | 0 0 0 ! | ih | 0 0 0 ! 0 0 0 0 0 1 ACKNOWLEDGMENTS R = 3 3 = 0 0 0 ,R = 1 3 = 0 0 0 , 33 13 | ih | 0 0 1 ! | ih | 0 0 0 ! We acknowledge financial support from by Deutsche 0 1 0 0 0 0 ForschungsgemeinschaftSFB762. R = 1 2 = 0 0 0 ,R = 2 1 = 1 0 0 , 12 21 | ih | 0 0 0 ! | ih | 0 0 0 ! 0 0 0 0 0 0 R = 2 3 = 0 0 1 ,R = 2 1 = 0 0 0 , 23 32 | ih | 0 0 0 ! | ih | 0 1 0 ! VII. APPENDIX 0 0 0 R = 3 1 = 0 0 0 ThemostgeneralsolutionoftheLindbladequation(41)for 31 | ih | 1 0 0 ! anarbitraryinitialstateisgivenas(ρij ontheright-handside 8 aretheinitialvalues): ρ76(t)=e−γd+22γet(ρ76cosβt iρ78sinβt); − ρ75(t)=ρ75e−2γd2+γet; ρ74(t)=e−γd+2γet γ74cosαt iγ72sinαt)+ − +e−γd+2γet cosα(cid:0)t eγd+2γetF74(t)cosαt+ Z ρ99(t)=ρ99e−2γet; +sinαtZ eγd+2γetF74(t)sinαt!; ρ98(t)=e−γd+23γet(ρ98cosβt iρ96sinβt); ρ73(t)=ρ73e−γet; − ρ97(t)=ρe−23γet; ρ72(t)=e−γd+2γet γ72cosαt−iγ74sinαt)+ ρ96(t)=e−γd+23γet(ρ96cosβt−iρ98sinβt); +ie−γd+2γet cosα(cid:0)t eγd+2γetF74(t)sinαt ρ95(t)=ρ95e−(γd+γe)t; Z − ρ94(t)=e−(γ2d+γe)t(ρ94cosαt−iρ92sinαt); sinαt eγd+2γetF74(t)cosαt ; ρ93(t)=ρ93e−23γet; − Z ! ρ92(t)=e−(γ2d+γe)t(ρ92cosαt iρ94sinαt); F74(t)=γdρ85(t)+γeρ96(t); − ρ91(t)=ρ91e−γet; 2 eγd+2γetF74(t)sinαt= ρ89(t)=e−γd+23γet(ρ89cosβt+iρ69sinβt); Z (α β)cos(α β)t+γ sin(α β)t ρ (t)= 1 ρ (1 cos2βt)+ρ (1+cos2βt)+ =−γdρ85e−γdt − (α−β)2+γd2 − + 88 2 66 − 88 (cid:16) − d (α+β)cos(α+β)t+γ sin(α+β)t +iρ68sin2β(cid:0)t−iρ86sin2βt e−(γd+γe)t; + (α+β)2+γd2 + ρρ8867((tt))==e21−(ργ62d8+(1γe−)t(cρo8s72cβots)(cid:1)β+t+ρ8i6ρ(617+sincoβst2)β; t)− +iγdρ65e−γdt(cid:16)(α−β)sin(d(αα−−ββ))t2−+γγd(cid:17)d2cos(α−β)t − (α+β)sin(α+β)t γ cos(α+β)t −iρ88sin2β(cid:0)t+iρ66sin2βt e−(γd+γe)t; − (α+β)2−+γd2 − d ρρ8854((tt))==ee−−32γγdd22++γγeett(ρs8in5cαots(−β(cid:1)tiρ+82iρc6o5ssβint+βtρ);62sinβt)+ −γeρ96e−γet(cid:16)(α−β)cos((αα−−ββ))t2++γγee2(cid:17)sin(α−β)t + (α+β)cos(α+β)t+γ sin(α+β)t +cosαt(ρ84cosβt(cid:0)+iρ64sinβt) ; + e (α+β)2+γ2 − ρρ8823((tt))==ee−−2γγdd+22+2γγeett(ρc8o3scαots(βρ8t2+coi(cid:1)ρs6β3ts+iniβρt6)2;sinβt)+ −iγeρ98e−γet(cid:16)(α−β)sin(e(αα−−ββ))t2−+γγe(cid:17)e2cos(α−β)t − (α+β)sin(α+β)t γ cos(α+β)t +sinαt( iρ84cosβ(cid:0)t+ρ64sinβt) ; − e ; − − (α+β)2+γ2 ρ81(t)=e−γd+2γet(ρ81cosβt+iρ6(cid:1)1sinβt); e (cid:17) ρ79(t)=ρ79e−32γet; 2 eγd+2γetF74(t)cosαt= Z ρ78(t)=e−γd+22γet(ρ78cosβt−iρ76sinβt); =γdρ85e−γdt (α−β)sin((αα−ββ))t2−+γγd2cos(α−β)t + ρ (t)= 1 2ρ +ρ +ρ +2ρ (cid:16) − d 77 2 77 66 88 99− (α+β)sin(α+β)t γdcos(α+β)t (cid:18) + − + −γd2(cid:0)4ρβ626+−γρd288(cid:1) − 2iβγ4dβ(cid:0)2ρ8+6−γd2ρ68(cid:1)(cid:19)e−γet− +iγdρ65e−γdt(α(α+−β)β2)+coγsd(2(αα−ββ))t2++γγd(cid:17)2sin(α−β)t − −γ2d ρ66−ρ88 2βsin24ββt2−+γγd2cos2βte−(γd+γe)t+ (α+β)cos((cid:16)α+β)t+γdsin−(α+β)td d + +−2i1γ2dρ(cid:0)(cid:0)6ρ68+6−ρ8ρ868e(cid:1)(cid:1)−2(γβe+coγsd)24tββ−t2+ρ+9γ9γedd2−si2nγe2tβ;te−(γd+γe)t− −+γ(αeρ+96eβ−)γseitn(cid:16)((α(αα++−βββ))t)2s+inγγ((eαd2αco−−s(ββα))t+2−+βγ)γete2(cid:17)cos(α−β)t + + − (cid:0) (cid:1) (α+β)2+γ2 − e (cid:17) (α β)cos(α β)t+γ sin(α β)t −iγeρ98e−γet − (α−β)2+γe2 − − (cid:16) − e (α+β)cos(α+β)t+γ sin(α+β)t e ; − (α+β)2+γ2 e (cid:17) 9 γ =ρ 1γ ρ γd + γd + ρ69(t)=e−γd+23γet(ρ69cosβt+iρ89sinβt); 72 72− 2 d 65 (α+β)2+γd2 (α−β)2+γd2! ρ (t)= 1 ρ (1 cos2βt)+ρ (1+cos2βt)+ 68 86 68 2 − 1 γ γ +2γeρ98 (α+β)e2+γd2 + (α−β)e2+γd2!+ ρ+6i7ρ(8t8)s=ine2−β(cid:0)(tγ2d−+iγρe6)6t(sρi6n72cβots(cid:1)βet−+(γdi+ργ8e7)sti;nβt); i α β α+β 1 + γ ρ − + 2 d 85 (α−β)2+γd2 − (α+β)2+γd2! ρ66(t)= 2 ρ88(1−cos2βt)+ρ66(1+cos2βt)− i α β α+β iρ68sin2β(cid:0)t+iρ86sin2βt e−(γd+γe)t; − + γ ρ − ; 2 e 96 (α−β)2+γe2 − (α+β)2+γe2! ρ65(t)=e−3γd2+γet(ρ65cosβ(cid:1)t+iρ85sinβt); 1 γd γd ρ64(t)=e−2γd2+γet cosαt(ρ64cosβt+iρ84sinβt)+ γ =ρ + γ ρ + + 74 74 2 d 85 (α+β)2+γd2 (α−β)2+γd2! +sinαt(−iρ62cosβ(cid:0)t+ρ82sinβt) ; +1γ ρ γe + γe ρ63(t)=e−γd+22γet(ρ63cosβt+iρ(cid:1)83sinβt); 2 e 96 (α+β)2+γd2 (α−β)2+γd2!− ρ62(t)=e−2γd2+γet sinαt( iρ64cosβt+ρ84sinβt)+ − iγ ρ α−β + α+β + +cosαt(ρ62cosβt(cid:0)+iρ82sinβt) ; −2 d 65 (α−β)2+γd2 (α+β)2+γd2! ρ61(t)=e−γd+2γet(ρ61cosβt+iρ(cid:1)81sinβt); +iγ ρ α−β + α+β ; ρ59(t)=ρ59e−(γd+γe)t; 2 e 98 (α−β)2+γe2 (α+β)2+γe2! ρ58(t)=e−3γd2+γet(ρ58cosβt iρ56sinβt); − ρ71(t)=γ71e−γ2et−ρ93e−3γ2et + γ2de−2γd2+γet ρρ5576((tt))==ρe−573eγ−d2+2γγed2+t(γρe5t6;cosβt iρ58sinβt); − ρ (α−β)sin(α−β)t−γdcos(α−β)t + ρ55(t)=ρ55e−2γdt; 82(cid:16) (α−β)2+γd2 ρ54(t)=e−3γ2dt(ρ54cosαt iρ52sinαt); − +(α+β)sin((αα++ββ))t2−+γγd2cos(α+β)t + ρ53(t)=ρ53e−2γd2+γet; (α β)cos(α β)dt+γdsin(α (cid:17)β)t ρ52(t)=e−3γ2dt(ρ52cosαt−iρ54sinαt); +iρ62 − (α−β)2+γ2 − − ρ51(t)=ρ51e−γdt; (α+(cid:16)β)cos(α+β)t−+γdcos(αd +β)t ρ49(t)=e−γd+22γet(ρ49cosαt iρ29sinαt); + − − (α+β)2+γd2 (cid:17) ρ48(t)=e−2γd2+γet sinαt(iρ28cosβt+ρ26ρ28sinβt)+ (α β)cos(α β)t+γ sin(α β)t +iρ84 − (α−β)2+γd2 − + +cosαt(ρ48cosβt(cid:0)−iρ46sinβt) ; (α+(cid:16)β)cos(α+β)t−+γdcos(αd +β)t ρ47(t)=e−γd+2γet γ47cosαt+iγ(cid:1)27sinαt + + + (α+β)2+γd2 (cid:17) +e−γd+2γet cosαt(cid:0) eγd+2γetF47(t)cosαt(cid:1)+ (α β)sin(α β)t γ cos(α β)t d Z ρ64(cid:16) − (α−−β)2−+γd2 − − +sinαt (cid:0)eγd+2γetF47(t)sinαt ; (α+β)sin(α+β)t γ cos(α+β)t Z − d ; F47(t)=γdρ58(t)+γeρ69(t); (cid:1) −γ71 =ρ71+ρ(9α3++β)2+γd2 (cid:17)! ρ46(t)=e−2γd2+γet cosαt(ρ46cosβt−iρ48sinβt)+ +sinαt(iρ26cosβt(cid:0)+ρ28sinβt) ; γ γ γ d d d + 2 ρ82(cid:18)(α−β)2+γd2 + (α+β)2+γd2(cid:19)− ρ45(t)=e−23γdt(ρ45cosαt+iρ2(cid:1)5sinαt); α β α+β iρ − − 62 (α β)2+γ2 − (α+β)2+γ2 − (cid:18) − d d(cid:19) α β α+β iρ − + + − 84 (α β)2+γ2 (α+β)2+γ2 (cid:18) − d d(cid:19) γ γ d d +ρ ; 64(cid:18)(α−β)2+γd2 − (α+β)2+γd2(cid:19)! 10 2 eγd+2γetF47(t)sinαt= Z =−γdρ58e−γdt(cid:16)(α−β)cos((αα−−ββ))t2++γγdd2sin(α−β)t + γ47 =ρ47+ 21γdρ58 (α+βγ)d2+γd2 + (α−βγ)d2+γd2!+ (α+β)cos(α+β)t+γ sin(α+β)t + d 1 γe γe (α+β)2+γd2 (cid:17)− +2γeρ69 (α+β)2+γd2 + (α−β)2+γd2!+ (α β)sin(α β)t γ cos(α β)t −i(γαdρ+56βe)−sγidnt((cid:16)α+−β)t γd(cαo−s−(αβ+)2−β+)tγdd2 − − +2iγdρ56 (α−αβ−)2β+γd2 − (α+αβ+)2β+γd2!+ − − (α+β)2+γ2 − i α β α+β d −γeρ69e−γet (α−β)cos((αα−ββ))t2++γγe2(cid:17)sin(α−β)t + −2γeρ89 (α−β−)2+γe2 − (α+β)2+γe2!; (α+β)cos(cid:16)(α+β)t+γ si−n(α+β)te ρ44(t)= 1 ρ22+ρ44+2ρ55+ρ88+ρ66 e−γdt e 2 − + + (α+β)2+γe2 (cid:17) ρ55e−2γdt(cid:0) 1(ρ88+ρ66)e−(γd+γe)t (cid:1) (α β)sin(α β)t γ cos(α β)t − − 2 − +iγeρ89e−γet − (α− β)2−+γe2 − − e−γdt (α+β)sin((cid:16)α+β)t γ co−s(α+β)te − 2 γxcos2αt−iγysin2αt − e − (α+β)2−+γe2 (cid:17); −γde2−γ(cid:0)dt cos2αt eγdt(ρ88(t)(cid:1)−ρ66(t))cos2αtdt+ 2 eγd+2γetF47(t)cosαt= +sin2αt (cid:0) eγdt(ρ Z(t) ρ (t))sin2αtdt ; Z 88 − 66 =γdρ58e−γdt(cid:16)(α−β)sin((αα−−ββ))t2−+γγdd2cos(α−β)t + eγdt(ρ8Z8(t)−ρ66(t))sin2αtdt= (ρ88−2(cid:1)ρ66)e−γet (α+β)sin(α+β)t γdcos(α+β)t Z + − 2(α β)cos2t(α β)+γ sin2t(α β) (α+β)2+γ2 − − − e − d (cid:17) − 4(α β)2+γ2 − (α β)cos(α β)t+γ sin(α β)t (cid:18) − e −iγdρ56e−γdt − (α−β)2+γd2 − − 2(α+β)cos2t(α+β)+γesin2t(α+β) + (α+β)cos((cid:16)α+β)t+γ sin−(α+β)td − 4(α+β)2+γe2 (cid:19) d + (ρ ρ ) − (α+β)2+γd2 (cid:17) +i 68−2 86 e−γet (α β)sin(α β)t γ cos(α β)t +γeρ69e−γet − (α− β)2−+γe2 − + 2(α−β)sin2t(α−β)−γecos2t(α−β) (α+β)sin(cid:16)(α+β)t γ co−s(α+β)te (cid:18) 4(α−β)2+γe2 − + − e + 2(α+β)sin2t(α+β) γecos2t(α+β) (α+β)2+γ2 − ; e − 4(α+β)2+γ2 (cid:17) e (cid:19) (α β)cos(α β)t+γ sin(α β)t +i(γαeρ+89βe)−cγoest((cid:16)α+−β)t+γ(αsin−−(αβ)+2β+)tγee2 − − Z eγdt(ρ88(t)−ρ66(t))cos2αtdt= (ρ88−2 ρ66)e−γet e ; 2(α β)sin2t(α β) γecos2t(α β) − (α+β)2+γ2 − − − − + e 4(α β)2+γ2 (cid:17) (cid:18) − e γ27 =ρ27+ 12γdρ56 (α+βγ)d2+γd2 − (α−βγ)d2+γd2!− +2(α+β)sin24t((αα++ββ))2−+γγee2cos2t(α+β)(cid:19)+ (ρ ρ ) −21γeρ89 (α+βγ)e2+γd2 − (α−βγ)e2+γd2!− +i2(α68−2β)8c6ose2−t(γαet β)+γ sin2t(α β) e − − − i α β α+β 4(α β)2+γ2 − −2γdρ58 (α−β−)2+γd2 + (α+β)2+γd2!− (cid:18)2(α+β)cos2t(α−+β)+γeesin2t(α+β) ; − 4(α+β)2+γ2 i α β α+β e (cid:19) γ ρ − + ; ρ ρ −2 e 69 (α−β)2+γe2 (α+β)2+γe2! γx =ρ22−ρ44+γd 88−2 66 γ γ e e + 4(α+β)2+γe2 4(α−β)2+γe2!− ρ ρ 68 86 iγ − d − 2 2(α β) 2(α+β) − ; 4(α−β)2+γe2 − 4(α+β)2+γe2!

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.