ebook img

Enhancing Photon Correlations through Plasmonic Strong Coupling PDF

1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Enhancing Photon Correlations through Plasmonic Strong Coupling

Enhancing Photon Correlations through Plasmonic Strong Coupling R. Sáez-Blázquez,1 J. Feist,1 A. I. Fernández-Domínguez,1,∗ and F. J. García-Vidal1,2,† 1DepartamentodeFísicaTeóricadelaMateriaCondensadaandCondensedMatterPhysicsCenter(IFIMAC), Universidad Autónoma de Madrid, E- 28049 Madrid, Spain 2Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastián, Spain Weinvestigatethequantumstatisticsofthelightscatteredfromaplasmonicnanocavitycoupledtoa mesoscopicensembleofemittersunderlowcoherentpumping.Wepresentananalyticaldescriptionofthe intensitycorrelationstakingplaceinthesesystems,andunveilthefingerprintofplasmon-exciton-polaritons inthem.Ourfindingsrevealthatplasmoniccavitiesareabletoretainandenhanceexcitonicnonlinearities 7 evenwhenthenumberofemittersislarge.Thismakesplasmonicstrongcouplingapromisingroutefor 1 generatingnonclassicallightbeyondthesingleemitterlevel. 0 2 n Muchresearchattentionhasfocusedlatelyonnanocavi- a tiesforstrongcouplingapplications. Inthesedevices,the J interactionbetweensurfaceplasmons(SPs)andquantum 1 emitters(QEs)canbeintenseenoughtoyieldnewhybrid 3 D light-matterstates,theso-calledplasmon-exciton-polaritons (PEPs) [1]. PEPs involving macroscopic QE ensembles QE SP ] L ll have been reported in planar [2–4] and nanoparticle [5– QE QE a 7] geometries, and they have been used for controlling h r chemicalreactions[8,9]orenhancingcharge/energytrans- QE - SP s port[10,11]. Fromapurelyphotonicsperspective,room e SP m temperature PEP lasing has been recently reported [12]. QE nr QE However,inordertofullyharnessthepotentialofplasmonic . t cavities for optical applications, quantum nonlinearities a m mustberetained[13]. Thisisnotpossibleinmacroscopic ensembles,whichpresentcollectiveboson-likebehaviorat FIG. 1. A QE ensemble resonantly coupled to a generic plas- - moniccavity.Thesetofparameterscharacterisingthesystemare d pumpinglevelsbelowtheQEsaturationregime[14]. sketched.Therightinsetdepictsthetwo-levelQEmodel. n o Very recently, strong-coupling signatures in the power c [ spectrum of nano-gap metallic cavities filled with only a isthesolutionoftheLiouvillianequation few QEs have been reported [15, 16]. These experimen- 1 4v taaimlaidnvgatnoccelsahriafvyethbeeenneaarc-cfioemldpcaonniedditiboynsthyeioerldeitnicgalPeEfPfosratst (cid:126)i[ρˆ,Hˆ]+γ2SPLaˆ[ρˆ]+γQ2rELSˆ−[ρˆ]+γQ2nrE (cid:88)N Lσˆi[ρˆ] = 0, 6 the single emitter level [17]. However, the generation of i=1 9 nonclassical light through plasmonic strong coupling has (1) 8 whereaˆ,σˆ ,andSˆ− = (cid:80)N σˆ aretheannihilationopera- not been explored yet. In this Letter, we fill this gap by i i=1 i 0 torsfortheSPmode,thei-thQE,andtheensemblesuper- investigatingthequantumstatisticsofthephotonsscattered . 1 radiantstate,respectively. Thedampingassociatedtooper- byananocavitystronglycoupledtoamesoscopicemitter 0 ensemble(upto∼ 100QEs)undercoherentpumping. We atorOˆ isdescribedbystandardLindbladsuper-operators 7 1 develop an analytical description of the quantum optical LOˆ[ρˆ] = 2OˆρOˆ† −{Oˆ†Oˆ,ρ}. Intherotatingframe,the : propertiesofthesystemthatallowsustorevealthat,con- coherent dynamics is governed by the time-independent v trarytowhatisexpected,plasmoniccavitiesallowphoton Tavis-CummingsHamiltonian[18] i X correlationstosurviveinQEensemblesofconsiderablesize r understrongcouplingconditions. Hˆ = (cid:126)∆SPaˆ†aˆ+(cid:126)∆QESˆz +(cid:126)λ(Sˆ+aˆ+Sˆ−aˆ†)+ a +(cid:126)Ω (aˆ†+aˆ)+(cid:126)Ω (Sˆ++Sˆ−), (2) SP QE Figure1depictsthesystemunderstudy: N identicalQEs withtransitiondipolemomentµ andfrequencyω in- with∆ = ω −ω andSˆ = 1[Sˆ+,Sˆ−]. The QE QE QE/SP QE/SP L z 2 teractwiththenear-fieldE (thesameforallQEs)ofasin- QE-SPcouplingisλ = E ·µ ,whileΩ = E ·µ SP SP QE QE L QE gleSPmodeofenergyω supportedbyagenericnanocav- and Ω = E ·µ are the pumping amplitudes. Here, SP SP L SP ity. Both subsystems undergo radiative and nonradiative µ is the effective SP dipole moment. Once the steady- SP damping, with decay rates γ = γr +γnr , state densitymatrix is known, the first- and second-order QE/SP QE/SP QE/SP andarecoherentlydrivenbyalaserfieldE withfrequency correlationfunctionscanbecalculatedfromthescattered L ω . Thesteady-statedensitymatrixρˆforthehybridsystem far-fieldoperatoratthedetectorEˆ− ∝ µ aˆ†+µ Sˆ+. L D SP QE 2 obtainedfromourmodelisinaccordancewithmoresophis- ticateddescriptions[19]. ExactnumericalsolutionstoEquation(1)canbeobtained forstrongQE-SPcoupling. However,suchcalculationsare only possible for configurations involving very small QE ensembles[20],evenfarfromtheQEsaturationregime[21]. Inordertocircumventthislimitationandexplorephoton statistics in mesoscopic ensembles, we map Equation (1) into an effective non-Hermitian Hamiltonian [22] of the form γ γnr γr Hˆ = Hˆ −i(cid:126) SPaˆ†aˆ−i(cid:126) QESˆ −i(cid:126) QESˆ+Sˆ−(,3) eff 2 2 z 2 FIG.2.Zero-delaysecond-ordercorrelationfunctionversuslaser whereHˆ isgivenbyEquation(2). NotethatHˆ depends eff detuning for SP (black dash-dotted line) and QEs (color lines) onlyonthecollectivebrightstateoperatorsoftheQEsand uncoupled.Variousensemblessizesareshown,with(solid)and isindependentofthedarkstatesoftheensemble(superposi- without(dashed)theinclusionofQEnonradiativedecay,γnr . QE tionsofQEexcitationswhichdonotcoupletotheplasmon or external light), which means a drastic reduction in the Hilbert space for large N. Equation (3) results from ne- glecting the so-called refilling or feeding terms OˆρOˆ† in Before investigating photon correlations under strong theLindbladsuper-operatorsinEquation(1). Thisapproxi- coupling conditions, we consider first both SP and QE mateapproachcanbesafelyemployedintheregimeoflow subsystems uncoupled. For this purpose, we solve Equa- pumping,wherethegroundstate(noexcitationsinthesys- tion (1) numerically and compute the normalized zero- tem)canbeconsideredasareservoirwithpopulationequal delaysecond-ordercorrelationfunctioninthesteadystate to1. Inthislimit,wecansolvetheSchrödingerequation g(2)(0) = (cid:104)E−DE−DE+DE+D(cid:105)/(cid:104)E−DE+D(cid:105)2. We only consider forHˆ treatingthecoherentdriving,E ,asaperturbative low laser intensities, and study quantum correlations far eff L parameter[23]. fromthepumpingregimeinwhichQEsaturationbecomes Asweareinterestedinintensitycorrelations,wecanre- relevant. Figure 2 plots g(2)(0) as a function of the laser strictourperturbativetreatmentofEquation(3)tosecond detuningforanemptyplasmoniccavity(blackdash-dotted orderandtruncatetheHilbertspaceattheleveloftwoexci- line)andensemblesofdifferentnumberofemitters(color tations. Thisway,analyticalexpressionsforthescattered solidlines). TheparametersmodellingthesingleSPmode intensityandtheintensitycorrelationscanbeobtained. In are: ω = 3eV,γ = 0.1eVandµ = 19e·nm[5]. SP SP SP thefollowing,forsimplicity,wealsoassumethattheplas- Our calculations yield g(2)(0) = 1, as expected from the monicnear-field,E ,isparalleltothelaserfield,E (as, SP inherent bosonic character. The QE parameters are: SP L forexample,inparticle-on-mirrorcavities[15]). Moreover, ω = 3 eV, γr = 6 µeV (µ = 1 e·nm), and QE QE QE weonlyconsidertheoptimumconfigurationforstrongcou- γnr = 15 meV. These values correspond to low quan- QE pling, in which µ is aligned with E . The scattering tumyieldQEs,accountingfortheemissionquenchingthat QE SP intensity,I = (cid:104)E−E+(cid:105),isgivenwithinfirst-orderpertur- takesplaceindenseensembles[3,12]. Forcomparison,the D D correlationspectraforQEswithγnr = 0arealsoshown bationtheoryas QE (color dashed lines). In all cases, photon statistics is sub- (cid:12)(cid:12)η∆˜ +∆˜ /ηN −2λ(cid:12)(cid:12)2 Poissonian (g(2)(0) < 1), but the degree of antibunching I = (ηNµ Ω )2(cid:12) SP QE (cid:12) , (4) decreasesrapidlywiththeensemblesize. AsN increases, SP SP (cid:12)(cid:12) ∆˜SP∆˜QE−Nλ2 (cid:12)(cid:12) thesystembosonizesandthequantumcharacterofthescat- tered light is lost (note that g(2)(0) = 0.96 for N = 50). whereη = µQE/µSP = ΩQE/ΩSP,∆˜SP = ∆SP−iγSP/2 Neglectingnonradiativedampingonlyleadstoanextremely and∆˜QE = ∆QE−i(γQnrE+NγQrE)/2. Usingsecond-order narrowLorentzian-likeprofile,whichsuppressesantibunch- perturbation theory, the correlation function, g(2)(0), can ingexactlyatzerodetuning. Notethattheg(2)(0)behaviour beexpressedas g(2)(0) = (cid:12)(cid:12)(cid:12)(cid:12)1− 1 (cid:32) η∆˜SP−λ (cid:33)2 (∆˜QE+iNγQrE/2)[∆˜QE∆˜SP+(∆˜SP−λ/η)2−Nλ2] (cid:12)(cid:12)(cid:12)(cid:12)2. (cid:12) N η∆˜ +∆˜ /ηN −2λ (∆˜ +iγr /2)[∆˜ ∆˜ +∆˜2 −Nλ2]−2∆˜ (N −1)λ2(cid:12) (cid:12) SP QE QE QE QE SP SP SP (cid:12) (5) Note that Equation (5) yields g(2)(0) = (1 − 1/N)2 at λ = 0 and η → ∞, which recovers the flat correlation 3 FIG.3. ScatteringintensityI (a -d )andzero-delaysecond-ordercorrelationfunctiong(2)(0)(a -d )versuslaserfrequencyand 1 1 2 2 singleemittercooperativityforvariousQE-SPsystems.Intheupper(lower)panelsdotted(dashed)linesplotthePEPfrequencies(half frequencies)intheone-excitation(two-excitation)manifold. spectrainFigure2forlow-quality-factorQEensembles. bunchedemissiontakesplaceatlargercouplingstrengths Figure3rendersthefar-fieldintensity(toprow)andcor- andwithinbroaderspectraldomainsforallN. Remarkably, relations (bottom row) for a nanocavity filled with four there are spectral windows in which strong antibunching different QE ensembles: N = 1 (a), 5 (b), 25 (c) and 50 (g(2)(0) ≈ 0) takes place even for N = 50, whereas the (d). The horizontal and vertical axes correspond to laser emission from the uncoupled QE ensemble is essentially frequencyandQE-SPcouplingstrength,respectively. The classical(seeFigure2). ThisisthemainresultofthisLetter, latterisexpressedthroughthesingle-emittercooperativity, namelythatincomparisontotheuncoupledsubsystems,col- C = 2λ2/γ γ , with upper limit C = 2 (λ = 0.03 lectiveplasmonicstrongcouplingcansignificantlyenhance QE SP eV),wellbelowthecollectiveultra-strongcouplingregime. photoncorrelationsinmesoscopicPEPsystems. WerestrictourattentiontoQE-SPresonantcouplingand Bytakingadvantageofouranalyticalapproach,wecan consider the same parameters as in Figure 2. Although gainphysicalinsightintotheresultsshowninFigure3. The the quantitative results shown in Figure 3 depend on the intensitymapspresenttwoscatteringmaxima,whoseori- specificsofthesystem,wehavecheckedthatourfindings ginliesatthedenominatorofEquation(4). Itsvanishing andtheirfundamentalimplicationsremainvalidforawide conditionyieldsanalyticalexpressionsforthedispersionof rangeofrealisticconfigurations. thelower(LP)andupper(UP)PEPsinthefirstrung(one- Thecomplexg(2)(0)patternsinFigure3(a2)-(d2)reveal excitationmanifold)oftheTavis-Cummingsladd√er. These thatbothphotonbunchingandantibunchingtakeplacein PEPfrequencies,whichnaturallyincorporatethe N scal- the strong coupling regime. These panels also show that ingcharacteristicofcollectivestrongcoupling,areplotted themainquantumstatisticalfeaturesemergingatthesingle- in dotted lines in all top panels. Note that the intensity emitterlevel(whichareinqualitativeagreementwithrecent maximaoverlapwiththePEPdispersionbandsexceptfor experimental reports on semiconductor cavities [24, 25]) N = 1 and C (cid:46) 0.5. This region, also perceptible for aremostlyretainedasN increases. UptoN ∼ 25,photon N = 5atlowerC,fallswithintheweakcouplingregime, emissionisantibunchedwithinanarrowfrequencywindow whereFano-likeinterferencesbetweenSPandQEemission located at C (cid:46) 1, which implies that the single-emitter givesrisetosharpscatteringdips[26]. AsN increases,the cooperativitycanbeconsideredasthekeyparameterdeter- contrastbetweenUP(brighter)andLP(darker)scattering miningphotoncorrelationsinensemblescontainingupto peaksincreases. ByintroducingthePEPfrequenciesinthe severaltensofQEs. NotethatforverylargeN,antibunch- numerator of Equation (4), the origin of this asymmetry ingisalsoobservedforlargerC-values. Ontheotherhand, becomesclear. NeglectingQEandSPdamping,weobtain 4 √ I ∝ (1∓ Nη)2, wheretheupper(lower)signmustbe used for LP (UP). Thus, QE and SP dipole moments are antiparallelalongtheLPdispersion,whichdiminishesI as N approaches1/η2. Inasimilarwayasinthescatteredintensity,wecanex- pect that the vanishing of the denominator in the second term of Equation (5) could give rise to nonclassical light. At N = 1, the resonant frequencies emerging from this condition are equal to half the energies of the LP (upper sign)andUP(lowersign)inthesecondrungoftheJaynes- Cummings ladder [27]. For N > 1, the same condition leadstoacubicequation,asitaccountsfortheemergence ofthemiddlePEPsinthetwo-excitationmanifold(whose realhalf-frequencyisequaltoω ). Moreover,notice QE/SP the presence of the numerator of Equation (4) in the de- nominatorofthefirstfactorinEquation(5). Asdiscussed √ FIG.4.Maximum(top)andminimum(bottom)correlationfunc- above, thistermacquirestheform(1− Nη)attheLP tionasafunctionoftheQEensemblesizeforseveralvaluesofthe band. Therefore,wecaninferthatthedarkercharacterof singleemittercooperativity.Theinsetintheupperpanelshowthe LPsalsomakesthemmoresuitableforphotoncorrelations. mapofphotonpositive(yellow)andnegative(violet)correlations PEP half-frequencies in the two-excitation manifold are asafunctionofN andC. plotted in dashed lines in Figure 3(a )-(d ). The regions 2 2 of strong photon correlations do not occur exactly at one ofthepolaritonenergies,butslightlyabovetheLPdisper- ishesandreachesaminimumvalue,whichcorrespondsto sion. Thisindicatesthatphotoncorrelations,i.e.,significant thelowestg(2)(0)achievableforagivenN andanyC (or deviationsfromg(2)(0) = 1,donotoriginatefromtransi- viceversa). Itcanbeproventhatthisminimumcoincides tionsalongasinglePEPladder,butfromtheinterferencein withasharpdipinthepopulationoftheplasmonstate(writ- theemissioninvolvingdifferenthybridstates. Thisunder- tenasalinearcombinationofPEPs)inthetwo-excitation linesthecrucialrolethatstrongcouplingplays: Whileeach manifold. Inthelimitofvanishingη (whichisagoodap- PEPbyitselfisquasi-bosonic,thehybridizationachieved proximation for our problem at small N), this condition throughstrongcouplingnotonlymanifestsintheirmixed simplifiestoC = γQE+γSP (cid:39) 1. Figure4(bottom)shows 2γSP 2 light-mattercharacter,butalsoensuresthecoexistenceof thisminimumdevelopingwithincreasingcooperativityat multiple PEP modes separated by the Rabi splitting. It N ∼ 10 and reaching g(2)(0) = 0 at C = 0.5. Remark- is only the interference between the emission from these ably,thiszeroing(2)(0)shiftstolargerN forhighercoop- different but closely related modes that leads to strongly erativity,yieldingstrongphotonantibunchingatensemble nonclassicallightemission. sizesaslargeas100QEs. Therefore,asanticipatedinFig- Inordertoobtainageneralviewonthedegreeofbunch- ure3(d ),plasmonicstrongcouplingleadstotheemergence 2 ingandantibunchingattainablethroughQE-SPcoupling, ofquantumnonlinearitiesinlargeexcitonicsystems,which we evaluate Equation (5) at its spectral maxima and min- wouldpresentg(2)(0) (cid:39) 1whentheyarenotcoupledtothe ima. Figure 4 explore these extreme g(2)(0) values as a plasmonicnanocavity. functionofcooperativityandnumberofemitters. Theinset Toconclude,wehaveinvestigatedthecomplexphoton renders overlapping maps for Max[g(2)(0)] (yellow) and statisticsphenomenologythatemergesfromthestrongcou- Min[g(2)(0)](violet), andthetopandbottompanelsplot plingofamesoscopicensembleofquantumemittersand cutsofthesemapsforvariousC-values. Wecanidentify a single plasmon mode supported by a generic nanocav- threedomainsaccordingtothestatisticsofthescatteredpho- ity. We have presented an analytical method describing tons. ForsmallQEensemblesandlargeC, onlypositive the optical response of these systems under low-intensity correlationstakeplace,asinFigure3(a )-(c )forC > 1. In coherentillumination. Ourapproachprovidesinsightsinto 2 2 thisregime,Max[g(2)(0)]growswithincreasingcoupling therolethatboththeplasmon-exciton-polaritonladderand strengthanddevelopsamaximumatN ∼ 10forallC. For itstuningthroughthesingleemittercooperativityplayin very large N, a second domain is apparent. In this limit, the emission of strongly correlated (bunched and/or anti- PEPsbosonizeasthe1/N factorinEquation(5)governs bunched)light. Finally,ourresultsdemonstratetherobust- g(2)(0),yieldingmaximaandminimaapproaching1mono- ness of these compound systems against bosonization ef- tonicallyasthenumberofQEsincreases. Bothbunchedand fects,predictingstrongintensitycorrelationsatconsiderable antibunchedemissiontakesplace(withindifferentspectral ensemble sizes. Our theoretical findings demonstrate the windows)atintermediateN andC. Inthisthirddomain, feasibilityandestablishexperimentalguidelinestowardsthe positivecorrelationsdecaymonotonicallywithN,whereas realisationofnanoscalenonclassicallightsourcesoperating negative correlations are enhanced. Min[g(2)(0)] dimin- beyondthesingle-emitterlevel. 5 This work has been funded by the European Research [11] J.FeistandF.J.García-VidalPhys.Rev.Lett.114,196402 CouncilunderGrantAgreementERC-2011-AdG290981, (2015). the EU Seventh Framework Programme (FP7-PEOPLE- [12] M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. 2013-CIG-630996andFP7-PEOPLE-2013-CIG-618229), Feist,S.R.-K.Rodriguez,F.J.García-Vidal,andJ.Gómez- Rivas,Optica4,31(2017). and the Spanish MINECO under contracts MAT2014- [13] M.S.Tame, K.R.McEnery, S.K.Özdemir, J.Lee, S.A. 53432-C5-5-RandFIS2015-64951-R,aswellasthrough Maier,andM.S.Kim,Nat.Physics9,329(2013). the“MaríadeMaeztu”programmeforUnitsofExcellence [14] T.HolsteinandH.Primakoff,Phys.Rev.58,1098(1940). inR&D(MDM-2014-0377). [15] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman,E.Rosta,A.Demetriadou,P.Fox,O.Hess,andJ. J.Baumberg,Nature535,127(2016). [16] K.Santhosh,O.Bitton,L.Chuntonov,andG.Haran,Nat. Comm.7,11823(2016). ∗ [email protected] [17] R.-Q. Li, D. Hernangómez-Pérez, F. J. García-Vidal, and † [email protected] A.I.Fernández-Domínguez,Phys.Rev.Lett.117,107401 [1] P. Törmä and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2016). (2015). [18] M.TavisandF.W.Cummings,Phys.Rev.170,379(1968). [2] J.Bellessa,C.Bonnand,J.C.Plenet,andJ.Mugnier,Phys. [19] F.Miftasani,andP.Machnikowski,Phys.Rev.B93,075311 Rev.Lett.93,036404(2004). (2016). [3] T.Schwartz,J.A.Hutchison,C.Genet,andT.W.Ebbesen, [20] A. Auffeves, D. Gerace, S. Portolan, A. Drezet, and M. Phys.Rev.Lett.106,196405(2011). FrançaSantos,NewJ.Phys.13,093020(2011). [4] A.González-Tudela,P.A.Huidobro,L.Martín-Moreno,C. [21] A.N.Poddubny,M.M.Glazov,andN.S.Averkiev,Phys. Tejedor,andF.J.García-Vidal,Phys.Rev.Lett.110,126801 Rev.B82,205330(2010). (2013). [22] P.M.VisserandG.Nienhuis,Phys.Rev.A52,4727(1995). [5] A. Delga, J. Feist, J. Bravo-Abad, and F. J. García-Vidal, [23] R.J.Brecha,P.R.Rice,andM.Xiao,Phys.Rev.A59,2392 Phys.Rev.Lett.112,253601(2014). (1999). [6] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. [24] K.Müller,A.Rundquist,K.A.Fisher,T.Sarmiento,K.G. Käll,andT.Shegai,Phys.Rev.Lett.114,157401(2015). Lagoudakis,Y.A.Kelaita,C.Sánchez-Muñoz,E.delValle, [7] F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández- F.P.Laussy,andJ.Vucˇovic´,Phys.Rev.Lett.114,233601 Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. (2015). Tarantini,M.Cuscuna,F.DellaSala,G.Gigli,andD.San- [25] A.Faraon,I.Fushman,D.Englund,N.Stoltz,P.Petroff,and vitto,ACSNano9,9691(2015). J.Vucˇovic´,Nat.Phys.8,859(2008). [8] J.A.Hutchison,T.Schwartz,C.Genet,E.Devaux,andT.W. [26] A.Ridolfo,O.DiStefano,N.Fina,R.Saija,andS.Savasta, Ebbesen,Angew.Chem.124,1624(2012). Phys.Rev.Lett.105,263601(2010). [9] J.Galego,F.J.García-Vidal,andJ.Feist,Phys.Rev.X5, [27] F.P.Laussy,E.delValle,M.Schrapp,A.Laucht,andJ.J. 041022(2015). Finley,J.Nanophot.6,061803(2012). [10] E.Orgiu,J.George,J.A.Hutchison,E.Devaux,J.F.Dayen, [28] A.Kubanek,A.Ourjoumtsev,I.Schuster,M.Koch,P.W.H. B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Pinkse,K.Murr,andG.Rempe,Phys.Rev.Lett.101203602 Genes,G.Pupillo,P.Samorì,andT.W.Ebbesen,Nat.Mate- (2008). rials14,1123(2015).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.