Enhancement of the antioxidant content of elderberry (Sambucus nigra) fruit by pulsed ultraviolet light followed by spray drying of the elderberry juice Ramesh Murugesan Department of Bioresource Engineering Faculty of Agricultural & Environmental Sciences McGill University Ste Anne de Bellevue, Quebec, Canada June 2010 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Master of Science © Ramesh Murugesan 2010 ABSTRACT RAMESH MURUGESAN M.Sc. (Bioresource Engineering) Enhancement of the antioxidant content of elderberry (Sambucus nigra) fruit by pulsed ultraviolet light followed by spray drying of the elderberry juice Atoms or groups of atoms with unpaired numbers of electrons are called free radicals with the potential to damage cells by reacting with cell components and these damages may lead to diseases such as cancer and accelerate the aging process. Fruits and vegetables contain a variety of antioxidant compounds and these antioxidants are important free radical scavengers. Elderberries (Sambucus nigra) are gaining attention since many researchers have demonstrated their high polyphenols and anthocyanin content and their bioavailable antioxidant properties. Pulsed light treatments are mainly used for disinfection purposes. Considerable research has been done to enhance the nutritional value of fruits using continuous UV light; however the application of pulsed UV light technology in functional development in foods is in its budding stage. The changes in total phenolic compounds in elderberry (Sambucus nigra) treated with various pulsed ultraviolet rays (UV) were investigated. Four pulsed UV durations (i.e. 5, 10, 20, 30 seconds) at three energy dosages (i.e. 0.45, 0.6, 1.1 J/cm2/pulse) were considered for this research. The highest increment in total phenolics, around 50%, was found with 1.1J/cm2/pulse for a 10 seconds treatment. Even though most of the treatments indicated an increase in total polyphenols, some treatments resulted in a decrease in phenolics when compared to the control. Spray drying of elderberry juice was investigated with varying air inlet temperature and feed flow rate. These operating parameters were optimized in terms of total phenolic content retention, color and recovery percentage of spray dried powder. The inlet temperature of 80°C with feed flow rate of 180 mL/hr gave better phenolic content retention but lower recovery of the powder i.e. less than 50%. To increase the recovery percentage, the elderberry juice was spray dried with five different wall materials, namely gum acacia, maltodextrin, soya protein powder, soya milk powder and isolated soya protein. Wall materials were evaluated in terms of ii total phenolic content retention, color of the powder and recovery percentage. The gum acacia and maltodextrin gave better results and higher recovery percentage with more than 70% powder recovery. In the storage stability evaluation, gum acacia turned out to be the best wall material with high phenolic content retention and low degradation in powder color. iii RÉSUMÉ Ramesh Murugesan M.Sc. (Génie des bioressources) Amélioration de la teneur en antioxydants de baies de sureau (Sambucus nigra) par traitement ultraviolet et atomisation du jus de sureau Les atomes ou groupes d'atomes avec un nombre impair d'électrons sont appelés des radicaux libres qui ont un fort potentiel dommageable sur les cellules et ces dommages peuvent conduire à de nombreuses maladies comme le cancer et peuvent accélérer le processus de vieillissement. Les fruits et les légumes contiennent une variété de composés antioxydants et ces antioxydants sont d’importants piégeurs de radicaux libres. La baie de sureau (Sambucus nigra) attire l'attention des chercheurs de par sa forte propriété antioxydante. Les traitements pulsés à la lumière UV sont principalement utilisés pour des fins de désinfection. De la recherche a été menée par plusieurs pour l’utilisation des rayons UV en continu pour l’amélioration de la valeur nutritive de fruits, cependant l’utilisation d’un traitement pulsé UV pour le développement fonctionnel des aliments n’en est qu’à ses débuts. La concentration en polyphénols de baies de sureau (Sambucus nigra) traitées par différents rayons ultraviolets pulsés (UV) a été étudiée. Quatre durées de traitement UV pulsé (soit 5, 10, 20, 30 secondes) à trois doses d'énergie (soit 0,45, 0,6, 1,1 J/cm2/pulse) ont été considérées. La plus forte augmentation du nombre de composés phénoliques totaux, soit environ 50%, a été notée avec un traitement de 1.1 J/cm2/pulse pendant 10 secondes. Même si la plupart des traitements ont indiqué une augmentation en polyphénols totaux, certains traitements ont amené une diminution des composés phénoliques par rapport au contrôle. Le séchage par atomisation a été étudié à différentes températures et débit d'alimentation pour le jus de baie de sureau. Ces paramètres de séchage ont été optimisés en fonction de la conservation des phénols totaux, de la couleur et du pourcentage de récupération de la poudre. La température d'entrée de 80 ° C avec un débit d'alimentation de 180 mL/h furent sélectionnés pour leur meilleure rétention des composés phénoliques, iv cependant la récupération de la poudre était inférieure à 50%. Pour augmenter le pourcentage de récupération de la baie de sureau, le jus a été séché par atomisation avec cinq différents matériaux d’enrobage, soit gomme acacia, maltodextrine, poudre de protéines de soja, poudre de lait de soja et protéines de soja isolées. Les matériaux d’enrobage ont été évalués en fonction de la conservation des contenus en phénols totaux, la couleur de la poudre et le pourcentage de récupération de la poudre. La gomme acacia et la maltodextrine ont donné de meilleurs résultats et les plus hauts pourcentages de récupération de la poudre à plus de 70%. Lors de l’étude de la stabilité des poudres, la gomme acacia s’est avérée offrir la meilleure protection pour les polyphénols du sureau. v ACKNOWLEDGMENTS It gives a lot of pleasure and pride to work under the supervision of Dr. Valérie Orsat. Her intelligence, support and guidance played a vital role in completing this study. Her advice and guidance in my personnel concerns are admirable. I am grateful to her for giving me this opportunity. My special thanks to Dr. G. S. Vijaya Raghavan for his encouragement and professional guidance, both in the academic and personal segments of my period of study. I am obliged to Mr. Yvan Gariépy and Dr. Darwin Lyew for all the technical assistance and guidance in every part of this work. I am grateful to them for their help and support in different stages of this study. I am grateful to the Gariépy Orchard and Family Farm in Franklin, QC, Canada for allowing us to harvest the elderberry straight from their fields. I appreciate the help of Dr. Michael Ngadi in giving access to the deep freezer. I am grateful to Dr. Mark Lefsrud for allowing access to the freeze‐dryer for the analytical preparations in this study. My hearty thanks to my mother Mrs. Usha Murugesan for her constant moral and financial support during my studies. Bunch of thanks to my wife, Ms. Selvakumari Arunachalam for her moral support and encouragement during my studies at McGill. I extend my gratitude to all my friends who helped making my stay comfortable and gave me good moral support. vi CONTRIBUTIONS OF THE AUTHORS This study was performed by the candidate and supervised by Dr. Valérie Orsat of the Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste‐Anne‐de‐ Bellevue, Canada. The entire research work was done in Dr. Valérie Orsat’s laboratory, Department of Bioresource Engineering McGill University. The authorships for the papers from this research work are as follows, 1) Spray drying for the production of nutraceutical ingredients – a review Ramesh Murugesan and Valérie Orsat 2) Enhancement of antioxidant content of Elderberry (Sambucus nigra) by pulsed Ultraviolet light Ramesh Murugesan and Valérie Orsat 3) Spray drying of Elderberry (Sambucus nigra) juice with gum acacia, soya protein powder, soya milk powder, maltodextrin and isolated soya protein Ramesh Murugesan and Valérie Orsat vii TABLE OF CONTENTS CHAPTER – I GENERAL INTRODUCTION .......................................................................................... 1 1.1 Introduction ..................................................................................................... 1 1.2 Hypothesis ........................................................................................................ 4 1.3 Objectives ......................................................................................................... 5 CHAPTER II LITERATURE REVIEW .................................................................................................. 6 2.1 Berry fruits ....................................................................................................... 6 2.1.1 Berry antioxidants ......................................................................................... 7 2.1.1.1 Berry phenolics ........................................................................................... 7 2.1.1.2 Berry anthocyanins ..................................................................................... 7 2.1.1.3 Vitamin C in berries .................................................................................... 8 2.1.2 Wild berries ................................................................................................... 9 2.1.3 Elderberry (Sambucus nigra) ........................................................................ 10 2.1.3.1 Use of elderberry for medicinal purpose…………………………………………………12 2.2 Plant stresses……………………………………………………………………………………………….13 2.2.1 Effect of abiotic stresses on various fruits and vegetables ........................... 14 2.3 Ultraviolet light .............................................................................................. 15 2.3.1 Sources of UV light ...................................................................................... 16 2.3.2 Applications of UV light ............................................................................... 17 2.3.2.1 Disinfection .............................................................................................. 17 2.3.2.1.1 Surface disinfection ............................................................................... 17 2.3.2.1.2 Fluid disinfection (Liquid & Air) .............................................................. 18 viii 2.3.2.1.2.1 Liquid disinfection ............................................................................... 18 2.3.2.1.2.2 Air disinfection .................................................................................... 18 2.3.2.2 Ultraviolet radiation in decontamination of foods .................................... 18 2.3.2.3 UV treatment for fruits and vegetables..................................................... 19 2.3.2.4 UV treatment for fruits and vegetables to enhance nutritional value ....... 20 2.4 Pulsed light technology ................................................................................... 22 2.4.1 Principle of pulsed light ............................................................................... 22 2.4.2 Pulsed light in microbial inactivation of Foods ............................................. 23 2.4.3 Pulsed ultraviolet verses continuous UV in microbial inactivation ............... 24 2.4.4 Pulsed light treatment and food quality ...................................................... 24 2.5 Spray drying ................................................................................................... 25 2.6 Applications of spray drying in nutraceuticals ................................................. 27 2.6.1 Vitamins ...................................................................................................... 27 2.6.2 Minerals ...................................................................................................... 31 2.6.3 Antioxidants ‐ colors .................................................................................... 32 2.6.4 Flavours ....................................................................................................... 34 2.6.5 Essential fatty acids ..................................................................................... 38 CHAPTER III Enhancement of antioxidant content of Elderberry (Sambucus nigra) fruit by pulsed Ultraviolet light ............................................................................................ 40 3.1 Abstract .......................................................................................................... 40 3.2 Introduction ................................................................................................... 40 3.3 Materials and methods ................................................................................... 43 3.3.1 Reagents and standards ............................................................................... 43 ix 3.3.2 Sample preparation ..................................................................................... 43 3.3.3 Pulsed UV light system ................................................................................ 43 3.3.4 Determination of polyphenolic content ....................................................... 45 3.3.5 Statistical analysis ........................................................................................ 46 3.4 Results and discussion .................................................................................... 46 3.5 Summary and conclusion ................................................................................ 52 3.6 References ...................................................................................................... 53 CHAPTER IV Spray drying of elderberry (Sambucus nigra) juice with different wall materials ..... 60 4.1 Abstract .......................................................................................................... 60 4.2 Introduction ................................................................................................... 60 4.3 Materials and methods ................................................................................... 63 4.3.1 Elderberry juice preparation ........................................................................ 63 4.3.2 Reagents and standards ............................................................................... 63 4.3.3 Wall materials ............................................................................................. 63 4.3.4 Spray drying equipment .............................................................................. 63 4.3.5 Total phenolic content (TPC) determination ................................................ 64 4.3.6 Color measurement ..................................................................................... 64 4.3.7 Mass recovery percentage determination ................................................... 64 4.3.8 Actual phenol content (APC) determination ................................................ 65 4.3.9 Statistical analysis ........................................................................................ 65 4.3.10 Storage studies .......................................................................................... 65 4.4 Results and discussion .................................................................................... 66 x
Description: