Mon.Not.R.Astron.Soc.000,1–8(2005) Printed5February2008 (MNLATEXstylefilev2.2) Enhanced Mass-to-Light Ratios in UCDs through Tidal Interaction with the Centre of the Host Galaxy M. Fellhauer1,2,3 ⋆ and P. Kroupa1,2 † 1ArgelanderInstituteforAstronomy,UniversityBonn,AufdemHu¨gel71,53121Bonn 6 2TheRhineStellar-DynamicalNetwork 0 3InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA 0 2 n 5February2008 a J 6 ABSTRACT 1 Arecentstudyofultra-compactdwarfgalaxies(UCDs)intheVirgoclusterrevealedthatsome ofthemshowfaintenvelopesandhavemeasuredmass-to-lightratiosof5andlarger,which 1 cannotbeexplainedbysimplepopulationsynthesismodels.Itisbelievedthatthisprovesthat v someof the UCDsmustpossess a darkmatter haloandmay thereforebe strippednucleiof 0 dwarfellipticalsratherthanmergedstarclustercomplexes. 3 Using an efficient N-body method we investigate if a close passage of a UCD through 3 the centralregionof the host galaxyis able to enhancethe measured mass-to-lightratio by 1 0 tidal forces leaving the satellite slightly out of virial equilibrium and thereby leading to an 6 overestimationofitsvirialmass. 0 We find this to be possible and discuss the general problem of measuring dynamical / massesforobjectsthatareprobablyinteractingwiththeirhosts. h p Keywords: galaxies:dwarfs–galaxies:interactions–galaxies:kinematicsanddynamics– - o methods:N-bodysimulations r t s a : v 1 INTRODUCTION thatonlythe’naked’nucleusremains.(III)Theycouldbeamalga- i matedyoungmassivestarclustersformedinastarclustercomplex X Haseganetal. (2005) investigated ultra-compact dwarf galaxies duringthestar-burstcausedbythetidalperturbationandpossible r (UCDs) around M87, the central galaxy of the Virgo cluster. By a disruptionofagas-richgalaxy(Fellhauer&Kroupa2002,2005). measuring the surface brightness profiles and assessing the pro- This scenario is well-established theoretically and was first pro- jectedvelocitydispersionoftheobjectstheyconcludedthatsome posedbyKroupa(1998).Itmusthavebeenprofusivelyactivedur- UCDs of their sample have mass-to-light ratios of the order 5– ingtheearlyhierarchicalstructureformationepochwhengas-rich 9. Furthermore, they find that some of the UCDs show faint en- substructuresmergedtothepresent-daymajorgalaxies. velopes.ThissupportsthenotionthattheseUCDsmaybestripped Itisstillunder debate whether theUCDs,whichfillthegap nucleiofdwarfellipticals. betweenglobularclustersanddwarfgalaxies,followthefundamen- UCDs were first discovered by Hilker (1998); talplane(effectiveradius/velocitydispersion–totalluminosity) Hilker,Infante&Richtler (1999) during a study of globular relationforglobular clustersorfordwarf galaxies(Haseganetal. clustersanddwarfgalaxiesaroundthecentralgalaxyintheFornax 2005;Evstigneeva,Gregg&Drinkwater2005).While,intheM – cluster. These objects are compact with effective radii of about V 15–25 pc and a hundred to several hundred pc in extension, and σ0-plane(seee.g.Haseganetal.2005,theirFig.7),theyliecloser theyaremassivewithmassesofafew106uptoafew107M⊙. totheglobularclusters,theirrelationseemstoratherfollowtheone ofdwarfgalaxies.Furthermoretheyoccupy exactlythespacebe- ThereareseveraltheoriesabouttheoriginofUCDs:(I)They tweendwarfellipticalsandtheirnuclei.Thisseemstopointtofor- couldbethemostluminousendofthedistributionfunctionofvery mationtheory(II).Butthesurfacebrightnessprofilesofthebright massive globular clusters (Hilkeretal. 1999; Mieskeetal. 2002; UCDsinFornaxaremuchmoreextended(i.e.largereffectiveradii) Dirschetal. 2003). (II) They could be the remnants of stripped comparedwithnucleiofdEs(DeProprisetal.2005). dwarf ellipticals (Bekki,Couch&Drinkwater 2001; Bekkietal. 2003; DeProprisetal. 2005). In this ’threshing’ scenario a nu- Onthe other hand, Marastonetal.(2004) found aninterme- cleated dwarf elliptical looses its envelope and most of its dark diate age object (W3, age 300–500 Myr) in the merger remnant matter content due to tidal interaction with the host galaxy, such galaxy NGC 7252. The mass (M = 8·107 M⊙), size (reff = 17.5 pc, and velocity dispersion of 45 kms−1) strongly suggest thisobjecttobeaUCDratherthanaglobularcluster.Theageof ⋆ [email protected] this object, which corresponds to the time elapsed since the ma- † [email protected] jorinteraction,unambiguouslyshowsthatthisobjectcannotbea 2 M. Fellhauerand P.Kroupa Table1.Tableofourinitial modelparameters. Thecolumnsdenotetheinitial massofour model (Mpl = Mini), the scale length (Plummer radius, Rpl; analytical & measured as describedinSect.3),thecharacteristiccrossingtime(Tcr),thecentralprojected(line-of-sight) velocitydispersion(σ0,p;analytical&measuredasdescribedinSect.3),andthescalingfactor (A)tocomputethevirialmass(seeEq.11). Mass[M⊙] Rpl[pc] measured Tcr[Myr] σ0,p[kms−1] measured A 107 25 23.7 3.69 15.92 16.20 1608 107 50 46.6 10.43 11.25 11.71 1565 107 100 94.6 29.50 7.96 8.43 1487 107 250 221.0 116.61 5.03 6.30 1140 108 25 25.2 1.17 50.33 50.2 1573 108 50 47.4 3.30 35.59 36.8 1558 108 100 92.8 9.33 25.16 26.9 1489 108 250 213.0 36.88 15.92 19.91 1184 strippednucleusofadwarfelliptical.Adwarfellipticalcannotbe mericalsimulationsweintendtofindoutwhichsetsoforbitsallow stripped in a time interval of only 500 Myr. Fellhauer&Kroupa anenhancedmass-to-lightratio,i.e.howclosetheUCDhastoap- (2005) showed that W3 could be the merger object of a massive proachtothecentreofitshostgalaxy,forwhichwechoosethepa- starclustercomplexwhichwasformedduringtheinteraction.The rametersofM87toaccountfortheUCDswithhighmass-to-light subsequentmergingofstarclustersformsanobjectwithproperties ratiosfoundaroundthecentralgalaxyofVirgo. similartothoseofW3.Theevolutionofthesimulatedsupercluster showsthatittransformsintoaUCDsuchasthosefoundinFornax (Hilkeretal.1999;Phillippsetal.2001),Abell1689(Mieskeetal. 2004), and Virgo (Haseganetal. 2005; Evstigneevaetal. 2005). 2 SETUP Moreover,Fellhauer&Kroupa(2005)showedthat,duetoitshigh mass, the object was able to retain an envelope of bound stars Wemodeltheparentgalaxyasananalyticalpotential becauseon which initially were expelled from the individual clusters during onesinglepassagedynamical frictionforadwarfgalaxyofmass themergerprocess.Thus,anenvelopearoundaUCDisnotaproof M 6 108 M⊙ affectstheorbittoatmost2–3percent,estimated ofitscosmological originasadwarfelliptical.Stillthepuzzleof usingChandrasekhar’sformula(Chandrasekhar1943)asdescribed high mass-to-light ratiosof some of the UCDsin Virgoremains. inPortegiesZwart&McMillan(2002).Wealsolookforonlyone Thesemass-to-lightratios(5–9)arefoundfortheUCDslyingclos- centralpassagebecauseunboundstarsdispersealongtheorbitand esttothehostgalaxy.Thissuggeststhatdeviationsfromvirialequi- arelostatsubsequentpassages.Someofthemmightstillbearound libriummayplayarole. theobjectafterthesecondorthirdcentralpassagebutdefinitelynot fordozensoforbits. Thereasoningisthatdwarfgalaxiesareonradialratherthan Asamodelfortheanalyticalpotentialwechoosetheparam- circularorbits,iftheUCDsformedasstar-clustercomplexesduring eters for M87, the central galaxy in the Virgo cluster, consisting themergingofmajorgas-richsubstructures.Thisallowsthesatel- ofaNFW-profileforthedarkhalo,aHernquistprofile(H)forthe litestopassclosetothegalacticcentre.Tidalforcesinthecentral visiblematter(stars)andacentralsuper-massiveblackhole(BH) regionofthehostgalaxyareratherstrong.Hence,thedwarfobject (McLaughlin 1999; Vesperinietal. 2003; DiMatteoetal. 2003). loosesstarsandsubsequentlydepartsfromvirialequilibrium.Some Thedensityprofileofthehostgalaxyis oftheloststars(starswhicharenolongerboundtotheobject)do notimmediatelyleavetheobjectoritsvicinitybutdisperseslowly ρtot(r) = ρNFW(r)+ρH(r) alongtheorbit.Thus,aline-of-sightvelocitydispersionmeasure- ment may be contaminated by these unbound stars which inflate = ρ0,NFWrs,NFW + MHrs,H , (1) thevelocitydispersion.Furthermore,thegravitationalshockofthe r 1+ r 2 2πr(rs,H+r)3 central passage leads to an expansion of the dwarf galaxy which (cid:16) rs,NFW(cid:17) islaterreversedagain.Butstillthisexpansion throughtidalheat- withthefollowingparameters, ingmayresultinameasurableincreaseofthecoreradiusoncethe dwarfobjectisagainoutsidethehostgalaxy.Bothoftheseeffects ρ0,NFW = 3.17·10−4M⊙/pc3, (2) mayleadtoanoverestimationofthemeasureddynamicalmassre- rs,NFW = 560kpc, (3) sultinginahighermass-to-lightratio.Theseeffectsarenotnewto MH = 8.1·1011M⊙, (4) theastronomicalcommunityandarestudiedintensivelybyvarious rs,H = 5.1kpc, (5) authors (e.g. (Kroupa 1997) for dwarf spheroidals, (Mayeretal. 2001,2002)fordwarfdiscsanddwarfspheroidalsor(Bekkietal. MBH = 3·109M⊙. (6) 2003)fordwarfellipticals).Withthispaperwewanttoextendthese Theaboveparametersdenotefromtoptobottomthecharacteristic studiesontomassive(comparedtoglobularclusters)andcompact densityandthescale-lengthoftheNFW-profile,thetotalmassand (comparedtootherdwarfgalaxies)objectslikeUCDs. thescale-lengthoftheHernquist-profileandfinallythemassofthe It isdefinitely clear that these effects must be very strong if centralsuper-massiveblackhole. anobjectcomesclosetothegalacticcentre.Butontheotherhand WemodeltheUCDasaPlummer-sphere(Plummer1911)in theseveryclosepassagesmaybehighlyunlikely.Bymeansofnu- the numerical realisation described by Aarseth,Henon&Wielen EnhancedM/L-ratiosinUCDs 3 3 RESULTS Table2.Listofminimumdistancesandthecorrespondingtangential ve- locitiesatthestartofthesimulation. Wecarriedoutaparametersurveyof76simulationscoveringdif- ferent dwarf galaxy objects and different orbits. The parameter Dmin[pc] vtan[kms−1] rangeisshowninTables1and2.Foreachparametersetonesim- 0 0.0 ulationovertwocentralpassagesiscarriedout.Forthedetermina- 50 6.0 tionofourresultswelookatthesatellitewhenitreachesapogalac- 100 10.9 ticonagainafterthefirstcentralpassage. 150 15.9 250 25.4 500 48.1 3.1 Theanalyticalmethod 1000 89.3 1500 126.0 Thesurface density profileof the satelliteis fittedby aPlummer 2000 158.9 profileoftheform r2 −2 Σ(r) = Σ0(cid:18)1+ R2 (cid:19) , (8) pl byapplyinganon-linearleast-squaresMarquardt-Levenbergalgo- rithm.Fromthisprocedure wetakethefittedPlummerradiusfor ourdeterminationofthevirialmass.ItcanbeshownthatthePlum- (1974), mer radius exactly coincides with the half-light (projected half- ρpl(r) = 43πMRp3l (cid:18)1+ Rr22 (cid:19)−5/2, (7) massF)urardthiuersmoofraePwluemdmeteerrmspihneeret.he line-of-sight velocity disper- pl pl sionprofile.Incaseswhereitispossible,i.e.theprofileisnottoo contaminated by unbound stars, weagain fitthe Plummer profile withvarying scale-lengths, Rpl,andinitialmasses,Mpl,because fortheline-of-sightvelocitydispersion, DeProprisetal.(2005)foundaPlummer-profiletofitfouroutof fiveUCDsintheFornaxclusterquitewell.Furthermore,thePlum- r2 −1/4 mer model is analytically simple and the Plummer radius is not σp(r) = σ0,p(cid:18)1+ R2 (cid:19) . (9) pl onlythescale-lengthofthemodelbutalsoitshalf-lightradius(the projectedradiusfromwithinwhichhalfofthelightoftheobjectis Theprojectedvelocitydispersion,aswellasthesurfaceden- emitted). sity,ismeasuredalongallthreeCartesiancoordinatesinlogarith- micallyspaced,concentricringscentredontheobject.Forthemea- The masses of UCDs range between several million M⊙ up toseveraltensofmillions.Sowechooseforourmodels107 and surementallstarswithinacertaindistanceRmax infrontandbe- 108M⊙asinitialmasses(Mpl =Mini).Wevarytheinitialscale- hindthecentreoftheobjectaretakenintoaccount.Theprocedure isdone along all threeCartesian axes and wetake the arithmetic lengthofourmodelstobeRpl =25,50,100and250pctodeter- mean value (i.e. a mean profile), because we do not know which minetheinfluenceoftheconcentrationoftheobjects.Thecut-off orientationourobjectshavewithrespecttotheobserver.Therefore radius(Rlim;theradiuswherewetruncatethePlummerdistribu- effects may be very strong measuring along the trajectory of the tionof our object) of allour modelswas kept constant at 500 pc object but almost not visible in the perpendicular direction. Any which is larger than the initial tidal radius. A detailed list of our randomdirectionislikelytoyieldanintermediateresult. modelparameterscanbefoundinTable1.ThePlummerspheres are modelled using 106 particles. The object is set-up and inte- ForthesurfacedensitywealwaysfitaPlummerprofileevenif theobjectiscompletelydestroyedanddoesnotfollowaPlummer gratedinisolationuntilequilibrium,asmeasuredbytheconstancy distributionatall.Butinmostofourmodelstheremainingobjectis ofthe90%Lagrangianradius,isreached(Kroupa1997). stillfairlywellrepresentedbyaPlummerprofileevenifitisonthe TheUCDmodelisthenplacedatadistanceof10kpctothe waytocompletedestruction.Incaseswherewearenotabletofit centreofthehostgalaxywithnoradialvelocity.Thismeansthatthe thevelocitydispersionprofilewithaPlummerprofile(seee.g.first effectofthecentralpassageisthemostharmfulpossiblebecause panel of Fig. 3) we take an average of all measured line-of-sight it isthe slowest possible. Thefaster the passage would be (ifthe velocitydispersionvalueswithintheinnermost10pcinprojected satellitewastostartfurtherout)thelesstidalinfluencethecentral radiustodeterminethecentralline-of-sightvelocitydispersion. passagewouldhave.NoUCDisfoundcloserthan10kpcfromthe We now determine the virial mass taking the formula from centreofitshostandthereforeitactsasaminimumapogalacticon, Haseganetal. (2005) which is based on the theoretical work of whichhasthestrongesttidaleffectpossible.Tovarytheminimum King(1966), distance (perigalacticon) we give our models different tangential velocitieswhicharelistedinTab.2.Weassumetheproblemtobe 9 ν sphericallysymmetric,soweareabletoplacethetrajectoryofour Mvir = 2πG αp Rcσ02,p, (10) model inthe x-y-planeof our simulation area without restricting theproblem. whereRcisthecoreradiusandσ0,pisthecentralvalueofthepro- jectedvelocitydispersion.Theparametersν,α,andparedepen- We use the particle-mesh code SUPERBOX to carry out the dent onthekindof Kingmodel one wantstofit.Becauseweare simulations. SUPERBOXhashigh-resolutionsub-gridswhichstay using Plummer spheres we accumulate these parameters together focusedonthecoreofthedwarfobjectwhileitismovingthrough withtheconstantsintoonesingleparameterA,whichwedetermine the host galaxy. The resolution of the innermost grid contain- fortheisolatedPlummerspherebeforewestartthesimulation, ing the core is 3 pc. For a detailed description of the code see Fellhaueretal.(2000). Mvir = ARplσ02,p, (11) 4 M. Fellhauerand P.Kroupa Figure1.Theratiobetweenvirialandboundmass(Mvir/Mb)forourob- Figure2.Parameterspaceofoursimulations;PlottedarethePlummerra- jects,measuredatt = 60Myr,thepointwheretheobjectisagainmost diusofourmodels,Rpl,againsttheclosestdistancetothecentreofthehost distanttothecentreofthehostgalaxy,againsttheclosestdistancefromthe galaxy,Dmin.CapitalD(online:red)denotesthesatellitegetscompletely centreofthehost(Dmin).Firstpanel:Objectswithinitialmassof107M⊙. dissolvedduringthefirstpassage.Smalld(online:magenta)denotessatel- Secondpanel:Objectswithinitialmassof108M⊙.Tri-pointedstars(on- liteswhichdonotsurvivethenextcentralpassage.Smallsdenotessatellites line: black) denote objects with initial Plummer radii of Rpl = 25 pc, whichsurviveandformboundobjectsevenafterthenextcentralpassage. crosses(online:red)haveRpl = 50pc,five-pointedstars(online:green) CapitalEmarkssimulationswheretheM/M-ratioisenhancedifthecentral haveRpl=100pc,andsix-pointedstars(online:blue)Rpl=250pc. valuesaredirectlymeasured.Smallemarkssimulationswhichonlyshow enhancedM/M-ratiosiftheobservationalmethodisapplied(seemaintext forexplanation). Surviving satellites withenhanced M/M-ratios areplot- wherethevaluesofthescalingfactor AcanbefoundinTable1. tedgreenonline.Finally,nmarkssimulationswhichshownoenhancement As one can see these values are lower for higher masses and in- measuredwitheithermethod(online:blue).Firstpanelisforobjectswith creaseforlargerscale-lengths.NeverthelessweusethesameAde- initialmassof107M⊙,secondpanelfor108M⊙. terminedfortheisolatedmodelforallfinalmodelsstemmingfrom thisinitialmodel,evenifthemass-lossissignificant.Thismaylead toaslightunderestimationofthefinalvirialmass. mostbacktovirialequilibriumagainiftheyarenotonthewayto OntheotherhandSUPERBOXcalculatesthenumberofbound completedissolution. particles(energybelowzero)ateachtime-step.Thereforeweknow Theresultsshowclearlythatonlyobjectswhicharenotcom- therealboundmassMb. pactand/orhavealowmasscanbeinfluencedenoughbyonecen- With these two masses we can determine a virial-mass-to- tralpassagetoenhancetheM/Mtoaccountforthehighmass-to- bound-massratio(Mvir/MborshortM/M)whichcanthenbemul- lightratiosfoundinUCDs.Butthesesatelliteswillalsonotsurvive tiplied by a ’normal’ mass-to-light ratio for a population of stars thenextcentralpassageorhavenotsurvivedthefirstoneatall. withthedeterminedageandmetallicityandwithoutdarkmatterto The best representation of real UCDs is the model with an obtainthedynamicallymeasuredM/L-ratio. initialmassof107M⊙andaninitialPlummerradiusof25pc.The ThisM/M-ratio isplotted inFig. 1, when thesatelliteshave resultsforthismodelareshownastri-pointedstarsinthefirstpanel reachedtheirapogalacticaagain.Atthispointthesatellitesareal- ofFig.1andthelowestlineinthefirstpanelofFig.2.Theresults EnhancedM/L-ratiosinUCDs 5 Figure3.Line-of-sightvelocitydispersionprofilesandtheGaussianfitvalues forthreeofoursatellites. Three-,four-andfivepointedstarsdenotethe line-of-sightvelocitydispersionvaluesmeasuredinconcentricringsaroundthesatellitealongthex-,yandz-axis,respectively.Filledsquares(online:red) arethemeanvaluesofalldirections.Opensymbols(online:magenta)ontherightdenotethecentralline-of-sightvelocitydispersionvaluesderivedwiththe observationalmethod(seeFig.5).Firstpanel:Thisobjectgetscompletelydissolvedandshowsanenhancementofthevelocitydispersionineithermethod. ButthisdestroyedsatellitecannotaccountfortheUCDsinVirgo(seeFig.4).Secondpanel:Objectwhichshowsanenhancementonlyifthecentralvelocity dispersionisderivedwiththeobservational method.Theopensymbolsdenotingtheobservationalvaluesinthex-andy-directionareclearlyabovethe ’real’centralvalue.Third:Simulationofaverymassivesatellitewhichshowsnoclearenhancementinbothmethods. Figure4.ContourplotsofthethreemodelsofFig.3intheorbitalplane(x-y-plane).Thecentreofthehostgalaxyisat0–0kpc.Theorbitoftheobject isplottedasthethick(online:green)line.Contourshavemagnitudospacing(assumedM/L = 1.0M⊙/L⊙)andtheoutermostcontourcorrespondsto 28magarcsec−2(thetwobrightestcontoursineachpanelareplottedredonline).Almostfilledblackareasdonotdenotehighsurfacebrightnessbutareas withveryfaintcontributions (atthegivenresolution thebrightness fluctuates frompixeltopixelatthelowestlevel). Firstpanel: Thisobject isclearly dissolved;itshowsnocoreanymoreandisoutofvirialequilibrium.Second:Survivingobjectwhichshowsfainttidaltailsalongtheorbitwhichenhance themeasuredvelocitydispersion.Third:Thisobjectshowsonlyafewstarswhichareunboundandspread(blackareas).Thesmallfractionofthesestars arenotabletoenhancethevelocitydispersion. show clearly that either the satellite gets completely dissolved if terminethevelocitydispersionofamarginallyresolvedobjectisto Dminiscloserthan50–100pcorshowsnodeviationinM/Matall placeaslitontheobjectandobtainaspectrum.Fromthisspectral (Fig.2). informationone chooses oneor twospectral linesandfitsatem- In Fig. 2 we distinguish the models according to their sur- platespectrumconvolvedwiththeinstrumentalline-widthfunction vival of the passage and if they show enhanced M/M-ratios. The andaGaussianvelocitydistribution.ThisGaussianvelocitydistri- panelsshowclearlythatonlydissolvedoralmostdissolvedobjects butionmeasurestheline-of-sightvelocitydispersionofthewhole showenhanced M/M-ratios.Allsurvivingobjectsshownodevia- object.Basedonassumedtheoreticalmodelsthisvalueisthencor- tionfromvirialequilibrium. rectedtothecentralline-of-sightvelocitydispersion.Inthecaseof the simple Plummer model one has to multiply the result for the wholeobjectbyafactorof1.25.Thus,thecentralvelocitydisper- 3.2 The’observational’method sionis The results in Sect. 3.1 are based on the exact knowledge of the theoretical central line-of-sight velocity dispersion. Observers on σpl = 3πGMpl, (12) theotherhanddonothavethisinformation.Theusualwaytode- 0,p r 64Rpl 6 M. Fellhauerand P.Kroupa Figure5.SamesimulationsasinFig.3.Theplotsshowthevelocitydistributionsalongthex-axis.Histogram(online:black)arethedata-points.Solidline (online:red)isthesingleGaussianfit,dottedlines(online:green)arethethreeGaussianstocorrectforfastandslowunboundparticlesinfrontandbehind theobjectandthedashedline(online:magenta)isthesumofthesethreeGaussians,whichisanexcellentreproductionofthedataandisbarelyvisible bybeingmaskedbythedata.ThethreeGaussiansalwaysfitthedatabest.WhileinthefirstpaneltheobjectisalmostdissolvedandtheGaussiansofthe unboundparticlesarestrongerthantheboundone(resultinginaM/M-ratioof20inxand5iny-direction),thesecondpanelshowsaboundobjectwith enhancedM/M-ratioduetothesmallcontributionoftheunboundparticles(M/M-ratiois2.5and2.2).Inthelastpanelthecontributionoftheunbound particlesistoolowtoenhancetheM/M-ratio(M/M=1.2inbothdirectionsandwithintheuncertaintiesofthemeasurement). while the projected velocity dispersion integrated over the whole Table3.Centralvelocity dispersionalongthex-axisderivedbydifferent Plummersphereis methods. Shown are the values of the same three simulations plotted in ∞ Figs. 3 to 5 now labelled ’dissolved’, ’enhanced’ and ’massive’, respec- 1 σpl = 2πr′Σ(r′)σ (r′)dr′, tively.Therowsshowthedifferentvaluesofthecentralvelocitydispersion. obs,p Mpl Z0 p Firstrowisthedirectmeasurementofthecentral dispersion,’single’de- notesthecentraldispersionderivedfromthefitofasingleGaussiantothe = 3πGMpl, (13) dataand’triple(c)’denotesthevalueofafitusingthreeGaussianswhere r 100Rpl thecentralone(c)isusedtocomputethevelocitydispersionofthebound sothat object. σpl 0,p = 1.25. (14) [km/s] dissolved enhanced massive σpl obs,p trueactual 10.6±3.1 9.49±0.05 35.7±0.2 σpl denotesthecentralline-of-sightvelocitydispersionandσpl single 44.6±0.3 15.90±0.30 38.4±0.1 th0e,pweighted line-of-sight velocity dispersion integrated oveorbtsh,pe triple(c) 13.3±0.1 12.35±0.04 35.3±0.3 wholeobject. AsonecanseeinFig.3itcanbeacrucialpointhowstrongly ameasurementoftheline-of-sightvelocitydispersioniscontami- thelinebecausewedonotaccountforthechangeoftheconstant natedbyunboundstars.Theobservationalvaluescanhighlyover- Awhichshouldincreaseforlowermasses.Butinanyrandomori- estimatetherealcentralvalue.Unboundstarshaveadifferentve- entationoftheobjectwithrespecttotheobservertheeffectofthe locitydistributionthantheboundones.Theyareeithertravellingin enhancedM/M-ratioshouldatleastbepartlyvisible. frontorbehindtheobject(seenalongthetrajectory;thisisshownin Summing up our results we state the following: Satellites Fig.4)andarefasterorslower.Butthevelocitydistributionofthese whichareout of virialequilibrium, i.e.inthestateofdissolution starswhicharestilllocatedinthevicinityof theobject andstem show enhanced virial masses and therefore the real mass content fromonecentralpassage,peakoneithersideoftheGaussiandistri- isoverestimated. Figure 6 shows in the first panel the M/M-ratio butionoftheboundstars,leadingtoaneffectivebroadeningofthe plotted against the ratio of final to initial bound mass of the ob- measured velocitydistribution.FittingjustasingleGaussianwill ject. The dividing dashed line separates objects which have lost thereforeleadtoanenhancedmeasuredvelocitydispersionandan morethan50percentoftheirmassduringthecentralpassageand overestimationofthecentralvelocitydispersionvalueofthesatel- arealreadydissolvedorarenotlikelytosurvivethenextpassage, lite.ThisisdemonstratedinFig.5wherethevelocitydistribution from objects which are stable for several more passages through ofallstarsisshowntogetherwiththebestfittingsingleGaussian the centre. While on the left side the derived M/M-ratios (using andthefittingcurveofatripleGaussianwhichtakestheunbound the observational method) can climb up to very high values, the starsintoaccount.Themeasuredvaluesforthecentralline-of-sight stableobjectsshowonlyslightenhancementsoftheratioifatall. velocitydispersionareshowninTable3. But in the second panel one already sees that even if the object Clearlythiseffectisstrongestintheplaneoftheorbitandis itself is in virial equilibrium (Mvir/Mb ≈ 1.0) there are satel- not visible perpendicular to it. This can be seen in Fig. 3 where liteswhichshowabroadeningofthevelocitydistributionleading thesymbolforthez−axis-valueinallthreepanelsshowsthesame toanenhancedmass-ratioifmeasuredtheobservationalway.The value as the direct measurement. Actually for strongly disturbed thirdpanelfinallyshowsanenlargementofthisareaandonefinds systems(i.e.highmass-loss)thevaluesinthez-directionarebelow M/M-ratiosoverestimatedbyuptoafactoroffive.Survivingob- EnhancedM/L-ratiosinUCDs 7 Figure6.Summaryoftheresultsderivedusingtheobservationalmethod(Sect.3.2).Mobsdenotesthevirialmassderivedbytheobservationalmethod, i.e.fittingasingleGaussiantothevelocitydistribution,Mbdenotestherealboundmassoftheobject,MiniistheinitialboundmassandMviristhevirial massderivedbytheanalyticalmethod(Sect.3.1).Measurementsalongthex-axisarethree-pointedstars(online:red),alongthey-axisarecrosses(online: green)andz-axismeasurementsarerepresentedbyfive-pointedstars(online:blue).SimulationswithinitialparameterssimilartotheUCDsinVirgoare representedbyfilledsymbols.Firstpanelshowsthederivedmass-ratioasafunctionofthefinal/initialbound-mass-ratio.Satelliteswithfinalmasseslarger than50percentoftheinitialmass(rightofthedashedline)aredeemedstableagainstimmediatetidaldestruction.Objectsleftofthedividinglineareout ofequilibriumandthereforehavetoshowenhancedM/M-ratios.Buttherearealsodatapointswhicharelargerthanoneontherightofthedividingline. SecondpanelshowsthesameresultsbutnowtheobservationalM/M-ratioisplottedagainsttheanalyticalratio.Alldata-pointsexceptthemeasurements perpendiculartotheorbitareabovethe’analytical’method(dashedlineshowsthelinewherethevaluesoftheobservationalmethodareequaltothedirect method).z−valuesarebelowthedashedlinebecausewedonotcorrecttheconstantAforobjectswithhighmass-loss.Aclumpofdata-pointsisvisible aroundMvir/Mb=1whichpointstooverestimatedmasses.Thethirdpanelfinallyisamagnificationofthisregion.Oneclearlyseesthattheobservational methodcanleadtooverestimatesofthetruemassbyafactorofuptofive.Horizontallineshowsaratioof1withdashedlinesdenotinganerrorrangeof 20percent. jectswhichshowanenhancementintheirM/M-ratio,ifmeasured wefoldourdistributionwiththeline-widthoftheobservationsof withthisobservational method,arealreadymarkedinFig.2with theVirgo-UCDsandaddnoisetomimicthesameS/N-ratioasin a small ’e’. As one can see there is a range of critical distances the observations. There is no deviation from Gaussiantity visible (D > 100 pc and D < 1 kpc) to the centre of the host galaxy anymore. whereanUCDliketheonesfoundinVirgocouldshowanoveres- timatedmass-to-lightratio. 4 DISCUSSION&CONCLUSION Wehaveshownwithourmodelsthatdwarfsatellitesaroundagiant 3.3 Observability ellipticalgalaxylikeM87canhaveanenhancedmass-to-lightratio In the previous section we claimed that with the ’observational’ duetoclosepassagestothecentreofthehostgalaxy.Whilevery method themass-to-light ratiosofUCDscould beoverestimated, closepassagesleadtothedestructionofthesatellitethereareorbits becausethevelocitydistributionisnotGaussiananymorebut’con- which allow for enough ’damage’ to the satellite to enhance the taminated’byunbound starsaroundtheobject.Inthissectionwe mass-ratio(measuredthesamewayanobserverwoulddo)without show thatthereisalmostnochanceforanobserver todetectthis completelydestroyingtheobject. ’non-Gaussianity’ofthevelocitydistribution. Theamountofdestructionislargerifthesatelliteislessmas- When measuring a spectrum of a distant object, observers siveandlessconcentrated.Butthelossofabout20percentofthe havetodealwithtwomajorshortcomings.Firstthereistheintrin- initial mass is enough to have the object surviving several more sicline-widthproducedmainlybytheinstrument.State-of-the-art closepassages andtomimicanenhanced mass-to-lightratio.For instrumentslikeUVESorFlamescanreducethisline-widthdown modelscomparabletotheUCDsinVirgoandFornaxtherangeof toabout2kms−1.ButtheobservationsoftheUCDsinVirgowere possibleminimumdistancesduringcentralpassagesisabout100to madewithaninstrumentalline-widthofabout25kms−1. 1000pc.Allpassagesclosertothecentreleadtocompletedestruc- Thesecondeffectanobserverhastotakeintoaccountisnoise tionandallpassagesfurtherawayshownomeasurableeffectatall, inthespectrum. except for a mass-loss of the order of a few per cent. We there- TakingthevelocitydistributionfromtheenhancedM/M-ratio foreconcludethattheenhancedM/L-ratiosmeasuredfortheVirgo simulationwefolditwithaGaussianofthewidthσitomimicthe UCDsbyHaseganetal.(2005)maynotbeduetodarkmatter. instrumentalline-widthanddetermineatwhichline-widththe’fea- Amoregeneralresultofourstudyisthediscrepancybetween tures’ofourdistributionarewashedout.Thishappensataninstru- the derived virial masses if one has access to the correct proper- mentalline-widthofσi = 7.5kms−1 (asshowninFig.7).Then tiesofthesatellitescomparedtothevirialmassesderivedtheway wetakethebeststate-of-the-artline-widthofσi = 2kms−1 and anobserverwouldmeasure.Whileverymassiveobjectswhichare addrandomwhitenoisetothedistributionuntilagainthe’features’ almostunaffectedbytidalforcesshowthesameresultswithinthe arealmostinvisibleagain.Thishappensalreadyatasignal-to-noise uncertaintiesonehastobecarefulifobjectsarelessmassiveand ratioof20(seeFig.7lowerleftpanel).InthefinalpanelofFig.7 aresurroundedbyacloudoftidallystrippedstars.Thesestarsare 8 M. Fellhauerand P.Kroupa measuringvelocitydispersionsoffaintanddistantobjects. Acknowledgements: MF thankfully announces financial support through DFG-grant KR1635/5-1andPPARC.WealsowanttothankM.HilkerandT. Richtlerforusefulcommentsregardinghowtomimicobservations. REFERENCES AarsethS.J.,HenonM.,WielenR.,1974,A&A,37,183 BekkiK.,CouchW.J.,DrinkwaterM.J.,2001,ApJ,552,105L Bekki K., Couch W.J., Drinkwater M.J., Shioya Y., 2003, MN- RAS,344,399 ChandrasekharS.,1943,ApJ,97,255 DeProprisR.,PhillippsS.,DrinkwaterM.J.,GreggM.D.,Jones J.B.,EvstigneevaE.,BekkiK.,2005,ApJ,623,105L DiMatteoT.,AllenS.W.,FabianA.C.,WilsonA.S.,YoungA.J., 2003,ApJ,582,133 DirschB.,RichtlerT.,GeislerD.,ForteJ.C.,BassinoL.P.,Gieren W.P.,2003,AJ,125,1908 EvstigneevaE.A.,GreggM.D.,DrinkwaterM.J.,2005,toappear intheproccedingsofIAUColloquium198,astro-ph/0504289 FellhauerM.,KroupaP.,2002,MNRAS,330,642 FellhauerM.,KroupaP.,2005,MNRAS,359,223 Fellhauer M., Kroupa P., Baumgardt H., Bien R., Boily C.M., SpurzemR.,WassmerN.,2000,NewA,5,305 Hasegan M., Jordan A., Cote P., Djorgovski S.G., Mclaughlin D.E., Blakeslee J.P., Mei S., West M.J., Peng E.W., Ferrarese L.,MilosavljevicM.,TonryJ.L.MerritD.,2005,ApJ,627,203 HilkerM.,1998,PhD-thesis,UniversityofBonn HilkerM.,InfanteL.,RichtlerT.,1999,A&AS,138,55 KingI.,1966,AJ,71,61 KroupaP.,1997,NewA,2,139 KroupaP.,1998,MNRAS,300,200 MarastonC.,BastianN.,SagliaR.P.,Kissler-PatigM.,Schweizer Figure7.Thetopleftpanelshowstheoriginalvelocitydistribution.Atthe F.,GoudfrooijP.,2004,A&A,416,467 top-right panel this distribution was folded withaGaussian ofthewidth MayerL.,GovernatoF.,ColpiM.,MooreB.,QuinnT.,Wadsley 2kms−1whichmimicsthebestintrinsicinstrumentalline-widthavailable J.,StadelJ.,LakeG.,2001,ApJ,559,754 today.ThemiddlepanelsshowthesamedistributionbutfoldedwithaGaus- MayerL.,MooreB.,QuinnT.,GovernatoF.,StadelJ.,2002,MN- sianofthewidth7.5kms−1(left)and25kms−1(right).Theleftpanel RAS,336,119 showsthetransitionwhenthenon-Gaussianfeaturesoftheoriginaldistri- McLaughlinD.E.,1999,ApJ,512,9L butionstarttodisappear.Inthebottompanelswealsoaddedwhitenoiseto thefoldeddistributiontomimicthenoiseanobserverhasinthespectrum. MieskeS.,HilkerM.,InfanteL,2002,A&A,383,823 Attheleftpanelwetookthefoldeddistributionwiththebestavailableline- MieskeS.,InfanteL.,BentezN.,CoeD.,BlakesleeJ.P.,Zekser widthagainandaddednoisetoreachaS/Nof20.Thisisagainthetransi- K., Ford H.C., Broadhurst T.J., Illingworth G.D., Hartig G.F., tionwherethefeaturesstarttodisappear.Withmorenoisethefeaturesare ClampinM.,ArdilaD.R.,BartkoF.,BouwensR.J.,BrownR.A., notvisibleanymore.Clearlywithhigherintrinsicline-widthsthefeatures Burrows C.J., Cheng E.S., Cross N.J.G., Feldman P.D., Franx disappear atlower noise-levels. Therightpanel mimics theproperties of M.,GolimowskiD.A.,GotoT.,GronwallC.,HoldenB.,Home- thespectraoftheUCDsinVirgo(Haseganetal.2005).Theretheintrinsic ier N., Kimble, R.A., Krist J.E., Lesser M.P., Martel A.R., line-widthwas25kms−1andtheS/N-ratiowas10. Menanteau F., Meurer G.R., Miley G.K., Postman M., Rosati P.,SirianniM.,SparksW.B.,TranH.D.,TsvetanovZ.I.,White R.L.,ZhengW.,2004,AJ,128,1529 PhillippsS.,DrinkwaterM.J.,GreggM.D.,JonesJ.B.,2001,ApJ, eitherfasterorslowerinthemeanbuttheirmeanvaluesarenottoo 560,201 differenttothebulkvelocityoftheboundstarstoclearlydisentan- PlummerH.C.,1911,MNRAS,71,460 glethe’populations’(populationsinthesenseofwithin,infrontor PortegiesZwartS.F.,McMillanS.L.W.,2002,ApJ,576,899 behind theobject). Especiallyifthebroadening of aspectral line VesperiniE.,ZepfS.E.,KunduA.,AshmanK.M.,2003,ApJ,593, isestimatedbyfittingthetemplatelinefoldedwithaGaussianfor 760 theinstrumentalline-widthandasingleGaussianforthevelocity distributioncanthededucedcentralvelocitydispersionbetoohigh thusleadingtoamass-to-lightratiothatistoolargebyuptoafactor often. Effectslikethishavetobegivenseriousconsiderationwhen