ebook img

ENHANCED AUTOMATIC IDENTIFICATION OF ARRHYTHMIA IN PDF

84 Pages·2014·2.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ENHANCED AUTOMATIC IDENTIFICATION OF ARRHYTHMIA IN

ENHANCED AUTOMATIC IDENTIFICATION OF ARRHYTHMIA IN ELECTROCARDIOGRAM (ECG) SIGNALS BASED ON FRACTAL FEATURES AND SVM TECHNIQUE. By Maram Hasan Al-Alfi Supervisor Dr. Rashiq Marie This Thesis Was Submitted in Partial Fulfillment of the Requirements for the Master Degree in Computer Science Faculty of Scientific Research and Graduate Studies Zarqa University Zarqa, Jordan April, 2014 i ii iii ACKNOWLEDGMENTS Thanks Allah , thanks so much because I would not have been able to complete this thesis without His aid and support. I would like to express my deepest appreciation to my advisor, Dr. Rashiq Marie for his leadership, support,and attention to details. I have enjoyed the aid and support of my mother who instilled in me confidence and a drive for pursuing my MSc. degree. Finally I would like to thank the staff members of the Department of Computer Science at Zarqa University for their continuous aids. iv TABLE OF CONTENTS Contents List of Tables ................................................................................................................ v List of Figures............................................................................................................... vi List of Acronyms...........................................................................................................viii List of Publications ........................................................................................................ix Abstract in Arabic...........................................................................................................x Abstract in English........................................................................................................xii Chapter 1: Introduction ........................................................................................…...1 1.1 Overview ............................................................................................................1 1.2 Problem Definition..............................................................................................2 1.3 Thesis Contribution ............................................................................................2 1.4 Thesis Organization.............................................................................................3 Chapter 2: Literature Review and Related Work..................................................... 4 2.1 Introduction...................................................................................................... 4 2.2 Related Work.....................................................................................................4 2.3 Taxonomy and research definition....................................................................6 Chapter 3: Electrocardiogram (ECG) Biosignals and Fractal Geometry...….........8 3.1 Overview .............................................................................................................8 3.2 Properties of ECG Signals..................................................................................11 3.3 Normal cardiac Electrocardiogram versus Abnormal .......................................13 3.4 Fractal features .................................................................................................18 3.5 Explanation of Fractal Geometry and Fractal Dimensions ……….………...20 3.5.1 Calculating Fractal Dimensions………………………..…………............22 v 3.5.2 Examples of Deterministic Fractals ………………………..…….........24 3.5.3 Fractals and Fractal Geometry applications ………………..……..........26 3.6 Fractal Features Extraction From ECG Signals..............................................28 3.6.1 Time Domain Methods of Estimating FD.................................................28 Chapter 4: ECG Feature Extracting using (PSM) and Classification with (SVM)………………………..………………………………………………….........32 4.1 Introduction ...............................................................................................................................32 4.2 Feature Extraction Using Power Spectrum Method(PSM)...................................,…32 4.2.1 PSM Methodology Algorithm............................................................................37 4.3 Arrhythmia Classification based on SVM.......................................................................38 4.3.1 Multiclass SVM……………....................................................................,..........41 4.3.2 Application of OAA SVM Using Fractal Features in ECG Arrhythmia diagnosis……………………………………………………………....…………………………….…42 Chapter 5: Experimental Evaluation.........................................................................................44 5.1 Dataset Description...............................................................................................................44 5.2 Experimental Results………………............................................................................ 47 5.2.1 Fractal features Extraction..................................................................................... 47 5.2.2 Classification with SVM........................................................................................ 51 Chapter 6: Conclusion and Future Work……………………………………………............53 6.1 Conclusion……………………………………………….……………….……………….…53 6.2 Future work………………….……………..……………………………………...........……54 References……………………………………………………………………………….…...…..….....55 Appendices……………………………………………………………………………..…..……..........59 Appendix A: Matlab Code ...................................................................................................................59 vi L T IST OF ABLES Table Title Page Table 1 Description of the Used Dataset 45 Table 2 The Estimated FD Values for Normal Sinus Rhythm Signals 48 Table 3 The Estimated FD Values for Ventricular Premature 49 Arrhythmia Signals Table 4 The Estimated FD Values for Atrial Premature Arrhythmia 49 Signals Table 5 The Estimated FD Values for Right Bundle Branch Block 49 Arrhythmia Signals Table 6 The Estimated FD Values for Left Bundle Branch Block 49 Arrhythmia Signals Table 7 Distinct Range of FD Values for Sample ECG Signals Using 50 PSM Table 8 Ranges of FD Values for Sample ECG Signal Using Katz’s 50 Method Table 9 Ranges of FD Values for Sample ECG Signal Using 50 Higuchi’s Method Table 10 Ranges of FD Values for Sample ECG Signal Using Hurst’s 50 Method Table 11 Average of the Estimated FD Values 50 Table 12 Number of Training and Testing Beats Used 52 Table 13 Class Percentage Accuracy Achieved on the Testing PSM – FD 52 Values with a Total Number of 122 PSM - FD Training Values vii L F IST OF IGURES Figure Title Page Figure 1 Propagation of the depolarization wave in the heart muscle 9 Figure 2 Typical shape of ECG signal and its essential waves 12 Figure 3 A Normal sinus rhythm 13 Figure 4 Premature Ventricular 14 Figure 5 Atrial Premature 15 Figure.6 Right bundle-branch block 16 Figure 7 Left bundle-branch block 17 Figure 8 Fern Leaf 19 Figure 9 Classical geometry objects 19 Figure 10 Fractal Curves 19 Figure 11 Demonstration of fractal dimensions with Euclidean line segments 20 Figure 12 Demonstration of fractal dimensions with Euclidean planes 22 Figure 13 The Koch Curve 24 Figure 14 The Sierpinski Triangle 25 Figure 15 (left) Normal Sinus Rhythm ECG signal of size 1024, (right) Zoom in version of Normal Sinus Rhythm ECG signal of size 512 35 (left) Atrial Premature Arrhythmia ECG signal of Figure 16 size 1024, (right) Zoom in version of Atrial Premature Arrhythmia ECG signal of size 512 35 Measured power spectrum of Normal Sinus Figure 17 Rhythm ECG signal (left-to-right and top-to-bottom) for window size 1024; 512; 256; 128 36 Figure 18 Measured power spectrum of Atrial Premature 36 ECG signal (left-to-right and top-to-bottom) for window size - viii 1024; 512; 256; 128 Figure 19 38 Estimate the Fourier Dimension q of ECG Signal Figure 20 SVM Model 39 Figure 21 Hyper Plane 40 Figure 22 SVM method using fractal features for ECG Arrhythmia 43 diagnosis Figure 23 (A),(B) ECG signals of Normal Rhythm 45 Figure 24 (A), (B) ECG signals of a Premature Ventricular Arrhythmia 45 Figure 25 (A),(B) ECG signals of a Atrial Premature Arrhythmia 46 Figure 26 (A),(B) ECG signals of Right Bundle-Branch Block Arrhythmia 46 Figure 27 (A),(B) ECG signals of Left Bundle-Branch Block Arrhythmia 46 ix LIST OF ACRONYMS AA Average Accuracy AF Atrial Fibrillation AFIB Atrial Fibrillation beat AP Atrial premature beat BII Heart Block ECG Electro Cardio Gram FD Fractal Dimension FFT Fast Fourier Transform HRV Heart Variability Beat LBBB Left Bundle Branch Block PDF probability distribution function Poly Polynomial PSDF Power Spectral Density Function PSM Power Spectrum Method PSM Power Spectrum Method PVC Ventricular premature beat RBBB Right Bundle Branch Block RBF Radial Basis Function RS Rescaled Range Method RSF Random Scaling Fractal SVM Support Vector Machine SVT Supraventricular tachycardia x

Description:
cardiac arrhythmia disease , as it can be used by a specialist doctor to diagnose various types of this cost procedures for the diagnosis of cardiac disorders and is very relevant for their .. This is easily diagnosed by noting that the three.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.