ebook img

Enhanced Angular Momentum Transport in Accretion Disks PDF

43 Pages·2003·0.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Enhanced Angular Momentum Transport in Accretion Disks

23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 10.1146/annurev.astro.41.081401.155207 Annu.Rev.Astron.Astrophys.2003.41:555–97 doi:10.1146/annurev.astro.41.081401.155207 Copyright(cid:176)c 2003byAnnualReviews.Allrightsreserved E A M T NHANCED NGULAR OMENTUM RANSPORT A D IN CCRETION ISKS Steven A. Balbus DepartmentofAstronomy,VITA,UniversityofVirginia, Charlottesville,Virginia22901; email:[email protected] KeyWords accretion,instabilities,MHD,turbulence n Abstract Thestatusofourcurrentunderstandingofangularmomentumtrans- portinaccretiondisksisreviewed.Thelastdecadehasseenadramaticincreaseboth intherecognitionofkeyphysicalprocessesandinourabilitytocarrythroughdirect numerical simulations of turbulent flow. Magnetic fields have at once powerful and subtleinfluencesonthebehaviorof(sufficiently)ionizedgas,renderingthemdirectly unstabletofreeenergygradients.Outwardlydescreasingangularvelocityprofilesare unstable.ThebreakdownofKeplerianrotationintoMHDturbulencemaybestudiedin somenumericaldetail,andkeytransportcoefficientsmaybeevaluated.Chandraobser- vationsoftheGalacticCentersupporttheexistenceoflowluminosityaccretion,which mayultimatelyproveamenabletoglobalthree-dimensionalnumericalsimulation. Ihatebeing“allowedfor,”asif Iweresomeincalculablequantity inanastronomicalequation. —D.L.Sayers,TheDocumentsintheCase. 1.INTRODUCTION Inrecentyears,accretiondisktransporttheoryhasdevelopedsorapidlythatany review is destined to be significantly dated the moment it appears in print. This willputthereaderatadisadvantage.However,itisanexhilaratingtimefordisk theorists. Thecurrenthappystateofaffairsinthiscomputationallydrivenfieldislargely duetotheswiftevolutionofthree-dimensionalmagnetohydrodynamical(MHD) codesandtheirsupportinghardware.Thesepowerfultoolsarrivewithprovident timing,coincidingwithadeepeningtheoreticalunderstandingoftheroleofmag- neticfieldsinaccretiondiskdynamics.Theresultisthataccretiondiskturbulence theoryhasgrownfromamereviscositycoefficienttoafullyquantitativescience. Inthisreview,Ifocusonwhatisnowknownoftherelationshipbetweenturbulence 0066-4146/03/0922-0555$14.00 555 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 556 BALBUS andenhancedangularmomentuminaccretiondisks,andtheresultingimplications forsomeselectedastrophysicalsystems. Theclassicalproblemwithaccretiondisksisthattheydoofcourseaccrete.How isitthatfluidelementsorbitinginacentralforcefieldlosetheirspecificangular momentum and spiral inward? One may quickly rule out ordinary particulate viscosity.Astrophysicaldisksaresimplytoobig.Tofixideas,notethatdisturbances arepropagatedbyviscousdiffusionoveradistancelonatimescaleoforderl2=”, where ” is the kinematic viscosity, or about 3£107 years forl » 1010 cm and ” D105cm2s¡1.Thisisordersofmagnitudetoolongforthetimevariabilityseen incompactobjectaccretiondisks. Thewayaroundthisdifficultywasperceivedtobeturningthewoefullyinade- quateviscositytoone’sadvantagebyappealingtotheassociatedlargeReynolds number.This,itwasthought,wouldturndifferentialrotationintoshear-driventur- bulence(e.g.,Crawford&Kraft1956,Shakura&Sunyaev1973).Thebreakdown ofshearflowlaminaintoturbulencehasbeenknownsincetheworkofReynolds tobetriggeredbynonlinearflowinstabilities.Thefactthattherewerenodemon- strablelocallinearinstabilitiesforaKeplerianrotationprofilewasthereforenot immediatelyviewedasanembarrassmenttothisscenario. Shearturbulenceisadesirabletraitinaflowwheregreatlyenhanced(angular) momentumtransportisneeded.Thisisbecauseshear-driventurbulenceischarac- terizedbyahighdegreeofcorrelationbetweentheradialandazimuthalvelocity fluctuations. This, as we shall see, has the direct effect of raising a disk’s angu- lar momentum flux orders of magnitude above what would be possible with an ordinarycollisionalviscosity. Notopicinfluiddynamicsismorecontentiousthantheonsetanddevelopment ofturbulence,andaccretiondiskturbulencehasnotbeenanexception.Keplerian disksdonotresemblelaboratoryshearflows,howeverlocallyonepeers.Coriolis forcesdramaticallystabilizerotationalflowonlargescalesandsmall,afeaturenot sharedbyclassicalplanarCouettefloworPoiseuilleflow.1YetCoriolisforcesdo noworkonthefluid;theyareinfactabsentfromtheenergyconservationequations. Becauseapotentfreeenergysourceintheformofshearretainsapresencewith orwithoutCoriolisforces,debatehascenteredonwhetherfluidnonlinearitiesata high-enoughReynoldsnumberwouldstillfindawaytotapintothissourcewhen lineardisturbancesfailtodoso. NopublishedlaboratoryexperimenthasshownthebreakdownofaKeplerian- likeCouetteflowprofile,buttrulydefinitivestudieshaveyettobeperformed.The onsetofnonlinearinstabilitiesthathavebeenreportedinCouetteflowexperiments aregenerallyrelatedtoverysharprotationalvelocitygradientstypicalofKelvin- Helmholtzinstabilities,notther¡1=2powerlawcharacteristicofaKeplerianprofile (Triton1988).Theissueisreceivingrenewedattention,withgroupsinSaclay,Los 1Anotherkeyfeaturethatdisksdonotsharewiththeselaboratoryflowsisthepresenceof aboundarylayerataretainingwall. 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 557 Alamos,andPrincetonlookingatReynoldsnumbersRe»105¡6,muchinexcess ofthoseavailableintheclassicalexperiments(e.g.,Coles1965). Theoretical developments have been more brisk. A theory for the onset of turbulenceinPoiseuilleflowwaselucidatedinthe1970sand1980s(Bayly,Orszag &Herbert1988).Thekeyistheexistenceofneutrallystable(orslowlydecaying) finiteamplitudedisturbances.Thesesolutionsaretime-steadybutspatiallyperiodic inthestreamwisedirection(Zahnetal.1974).Itistheseamendedflowprofilesthat findthemselvessubjecttoarapid,short-wavelengththree-dimensionalinstability, leadingtoabreakdownintoturbulence(Orszag&Patera1980,1981).Asimilar process appears to be at work in shear layers (Pierrehumbert & Widnall 1982, Corcos & Lin 1984). It is now generally accepted that the triggering of a rapid, linearthree-dimensionalinstabilityofanearlyneutrallystable,two-dimensional, finite-amplitudedisturbanceisaverygenericmodeofthebreakdownoflaminar flowintoturbulence. Howdoesthisbearonourunderstandingofaccretiondisks?Themostimpor- tantpointisthatevenincompressibleaxisymmetricdisturbancesinarotatingfluid willpropagateintheformoflinearinertialwaves(Lighthill1978)withacharac- teristicfrequencyproportionaltothelocalvorticityoftherotationprofile.Thus, in astrophysical disks, the finite amplitude, neutrally stable axisymmetric state thatiscriticaltothetransitiontoturbulenceinmixinglayerscannotform.Only in a low-vorticity rotational profile, in which the oscillation frequency is much smallerthantheshearingrate,wouldweexpectabreakdownofflowlaminainto turbulence,similartowhatisseeninamixinglayer.Thisisingoodaccordwith three-dimensionalnumericalsimulations(Balbus,Hawley&Stone1996;Hawley, Balbus&Winters1999),whichfindnononlinearlocalinstabilitiesinKeplerian disksbutdoindeedfindthatshearlayersandlow-vorticitydisksshowanonlinear breakdowntoturbulentflow.Thereisasofyetnoanalyticproofoflocalnonaxi- symmetricstability,however,andthenotionthattheremaybeanothernonlinear hydrodynamicalroutetoturbulenceinKepleriandisks,beyondthehighestreso- lutionavailableinsupercomputersimulations,retainssomeadvocates(Richard& Zahn1999). Accretiondiskshaveonecriticallyimportantattributenotsharedwiththeclass- icalhydrodynamicalfluids:Theyaregenerallymagnetized.Byengenderingnew degreesoffreedomintheirhostfluid,evenveryweakmagneticfieldscompletely alterthestabilitybehaviorofastrophysicalgases,bothrotationallyandthermally (Balbus2001).Freeenergysourcesintheformofangularvelocityandtemperature gradientsbecomedirectlyavailabletodestabilizetheflow. Thecounterintuitivepointhereisthataweakmagneticfieldcanhavesucha potentinfluence.Thestabilitybehaviorofstronglymagnetizeddisksisrichand astrophysicallyinteresting(e.g.,Papaloizou&Terquem1996;Varnie`re&Tagger 2002),buttheemphasisinthisreviewisdecidelyonsubthermalmagneticfields. Ratherthandependingdirectlyonthestrengthoftheequilibriummagneticfields, weakfieldinstabilitiesdependdirectlyuponhydrodynamicpropertiesoftheun- perturbeddisk.Iftheangularvelocitydecreasesoutwardinaweaklymagnetized 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 558 BALBUS accretiondisk,whichisgenerallythecase,therotationprofileislinearlyunstable (Balbus&Hawley1991).Thisinstabilityisknownasthemagnetorotationalin- stability,orMRIforshort.Asweshallsee,thephysicsoftheMRIisverysimple. Nevertheless, a full understanding of its mathematical generality and wide ap- plicabilitywasmuchbelated,followingphenomenologicaldisktheory(Shakura & Sunyaev 1973) by nearly two decades. Knowledge of the instability itself significantly predated modern accretion disk theory (Velikhov 1959), albeit in aratherformalglobalguise. ThenumericalstudyoftheMRIdoesnotrequireunattainablegridresolutions, and it can be readily simulated. Both local (Hawley, Gammie & Balbus 1995; Brandenburgetal.1995)andglobal(Armitage1998,Hawley2000)investigations unambiguouslyshowabreakdownoflaminarKeplerianflowintowell-developed turbulence.TheMRIistheonlyinstabilityshowntobecapableofproducingand sustainingtheenhancedstressneededforaccretiontoproceedonviabletimescales innon-self-gravitatingdisks.Atlowtemperaturesandhighdensities,e.g.,inthe outerregionsofcataclysmicvariable(CV)systems(Gammie&Menou1998),or inprotostellardisksonAUscales(Gammie1996),thelevelofMRI-inducedturbu- lencecanchangerapidly,eruptingoreventurningoffcompletely.Allthisoccurs whiletheunderlyingKeplerianprofileremainsessentiallyfixed.Inshort,theinsta- bilityseemscapableofthefullrangeofaccretioncomplexitymanifestedinnature. Forallthesereasons,despitethedifficultiesofcopingwithMHDturbulence,the MRIisnowatthecenterofnumericalaccretiondiskstudies. Letus,however,postponeourdiscussionofmagneticmattersandturnourat- tention first to the study of simple hydrodynamical waves in disks. These are of greatpracticalinterestintheirownright,especiallyinprotoplanetarydisks.But it is also the case that understanding the transport properties of waves deepens one’s understanding of turbulent transport, both hydrodynamic and magnetohy- drodynamic,andthatisourprimaryreasonforreviewingthemhere.Weshallthen followwithadiscussionofhydrodynamicalinstability,withafocusonhowglobal instabilitycaninprincipleemergeinadifferentiallyrotatingdiskevenwhenthe Rayleighconditionissatisfied.Magneticinstabilityandmagneticturbulenceare thetopicsofthenextsection.Magneticstressesarethemostimportanttransport mechanisminnon-self-gravitatingdisks,providedthegasisminimallyionizedto coupletothefield.Thefinaltwosectionsareapresentationofrecentnumerical studiesofMHDturbulence,andasummaryfollows. 2.PRELIMINARIES 2.1.FundamentalEquations Foreaseoffuturereference,welistherethefundamentalequationsofmagneto- hydrodynamics. @‰ Cr¢(‰v)D0 (1) @t 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 559 (cid:181) ¶ (cid:181) ¶ @v B2 B ‰ C(‰v¢r)v D¡r P C ¡‰r8C ¢r B @t 8… 4… (cid:181) ¶ 1 C· r2v C r(r¢v) (2) V 3 @B Dr£(v £B¡· r£B) (3) @t B P dlnP‰¡(cid:176) D QC¡Q¡ (4) (cid:176) ¡1 dt Equation1ismassconservation;Equation2isthedynamicalequationofmotion; Equation3istheinductionequation;andEquation4istheentropyequation.Our notationisstandard:‰isthemassdensity,vthefluidvelocity,Pthepressure(plus radiationpressurewhenimportant),8thegravitationalpotential, Bthemagnetic fieldvector,(cid:176) istheadiabaticindex, QC (Q¡)representheatgains(losses),· V themicroscopickinematicshearviscosity,and· themicroscopicresistivity.The B azimuthalcomponentoftheequationofmotiondeservesseparatemention,asit isadirectexpressionofangularmomentumconservation: • (cid:181) ¶ ‚ @(‰@Rtv`) Cr¢ ‰Rv`v ¡ R4B…`BC P C 8B…2 e` D0; (5) wheree`isaunitvectorinthe`direction.Thedissipativetermshavebeendropped because they appear only in the flux term, transporting a negligible amount of angularmomentum. Itisalsousefultohaveathandanequationfortotalenergyconversation.This issomewhatlengthytoderive(Balbus&Hawley1998),buttheresultisreadily interpreted: @E @t Cr¢FE D¡Q¡; (6) wheretheenergydensityE is 1 P B2 E D ‰v2C C‰8C (7) 2 (cid:176) ¡1 8… andtheenergyfluxis (cid:181) ¶ 1 (cid:176)P B FE Dv 2‰v2C (cid:176) ¡1 C‰8 C 4…£(v £B): (8) Theenergydensityconsistsofkinetic,thermal,gravitational,andmagneticcom- ponents; the flux is similar with the magnetic component present as a Poynting flux. The heating term QC, an entropy source, is assumed to arise from micro- scopicdissipation,anditdoesnotexplicitlyappearinthetotalenergyequation—it simplyconvertsoneformofenergytoanother.TheradiativeQ¡term,ontheother 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 560 BALBUS hand,representsgenuinesystemicenergylossesandappearsexplicitlyinthecon- servationequation. 2.2.NonlinearFluctuations Bothwavesandturbulenceinvolvetheconceptofwell-defineddeparturesofthe flow from a smooth background. Velocity fluctuations are of particular interest becauseitispossibletoformulateanexactenergyconservationlawforthefluctu- ationsthemselves.This,inturn,explicitlyshowstheroleofdifferentialrotationas asourceoffreeenergyforthe(correlated)turbulentfluctuationsassociatedwith outwardtransportofangularmomentum. Letusdefinethevelocityfluctuationuby uDv ¡ R˜(R)e`: (9) ˜isinprinciplearbitrary,butofcoursethemotivationforthisdefinitionisthat ˜(R)isareasonablygoodapproximationtoanunderlyingrotationprofileforthe accretionflow.Itispossibletocombinetheequationofmotion(Equation2)with theinternalentropyequation(Equation4)toobtainanexact,` averagedenergy equationfortheuvelocityfluctuationsalone: (cid:181) ¶ @@Etu Cr¢FEu D¡ ‰uRu` ¡ B4R…B` dd˜R ¡Q¡: (10) Here,E isthefluctuationenergydensity u 1 P B2 E D ‰(u2C8 )C C ; (11) u 2 eff (cid:176) ¡1 8… 8 isaneffectivepotentialfunction eff Z R 8 D8¡ R˜2dR; (12) eff andFEuistheenergyfluxofthefluctuationsthemselves: (cid:181) ¶ 1 (cid:176)P B FEu Du 2‰u2C (cid:176) ¡1 C‰8eff C 4… £(u£B): (13) BecauseEquation10hasbeenaveragedover`,onlyRandZcomponentsappear intheflux. Thecombination TR` D‰uRu` ¡ B4R…B` (14) is an important quantity in both turbulent and wave transport theories of accre- tiondisks.Ithasappearedoncebefore:withintheangularmomentumconserva- tion equation (Equation 5), where it emerges as a component in the flux term. Its constituents may be separately identified as Reynolds (‰uRu`) and Maxwell 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 561 (¡BRB`=4…)stresses.(Notethatbothwave-likeandturbulentdisturbancescan create tight radial–azimuthal correlations in the velocity and magnetic fields.) Thesecorrelationsevidentlyservetwoconceptuallyquitedifferentfunctions:They directlytransportangularmomentum,andasshowninEquation10,theytapinto thefreeenergysourceofdifferentialrotation.Thelatterroleisparticularlycrucial forsustainingturbulence.Withoutexternaldriving,theonlyenergysourceforthe fluctuationsisthiscouplingofthestresstothedifferentialrotation.Inastrophys- ical accretion disks that make use of this free energy source, TR` must have the samesignas¡d˜=dR,i.e.,itmustbepositive. 3.HYDRODYNAMICWAVESINDISKS 3.1.TheLinearWaveEquation Consideranunmagnetizeddiskinwhichthepressureanddensityobeyasimple polytropicequationofstate, P D K‰(cid:176),whereKisaconstant.Wemaydefinean enthalpyfunctionH: Z dP (cid:176)P=‰ a2 HD D D ; (15) ‰ (cid:176) ¡1 (cid:176) ¡1 wherea2 istheadiabaticsoundspeed.Itisconvenienttoworkinstandardcylin- dricalcoordinates(R;`;Z).Thegasrotatesinthegravitationalfieldofacentral mass.Theangularvelocity˜mustbeconstantoncylinders,˜D˜(R)(Tassoul 1978). Althoughitisastandardapproximation,theassumptionofabarotropicequa- tionofstateisobviouslyanidealization.Amongothershortcomings,itprecludes the possibility of a buoyant response in the form of internal gravity waves due toBrunt-Va¨isa¨la¨ oscillations(Ogilvie&Lubow1999).Instandarddiskmodels, however,entropystratificationarisesbecauseofradiativeheatdiffusionfromtur- bulent heating. A linearized wave treatment of such an “equilibrium” is at best adelicatematter.Ingeneral,theverticaltemperaturestructureofaccretiondisks isnotwellunderstood,andthevirtueofadoptingabarotropicpressureisthatit allowsimportantdynamicalbehaviortoberevealed. Our goal is to study how linearized wave disturbances transport energy and angular momentum through a Keplerian disk. To this end, we introduce small perturbationstotheequilibriumsolution,denotedas–‰; –v,etc.Theequilibrium solutionisaxisymmetric,soaperturbedflowquantityXhastheform –X D–X(R;Z)exp(im`¡i!t); (16) where m is an integer and ! is the wave frequency. For the moment, the R;Z dependenceoftheamplitudeisunrestricted.Thelinearizeddynamicalequations ofmotionare @–H ¡i!¯ –vR ¡2˜–v` D¡ @R (17) 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 562 BALBUS •2 m ¡i!¯ –v` C 2˜–vR D¡i R –H (18) @–H ¡i!¯ –v D¡ : (19) Z @Z WehaveintroducedtheDoppler-shiftedwavefrequency, !¯ D!¡m˜ (20) andwhatisknownastheepicyclicfrequency•: d˜2 •2 D4˜2C : (21) dlnR The epicyclic frequency is the rate at which a point mass in a circular motion, disturbedintheplaneofitsorbit,wouldoscillateaboutitsaverageradiallocation (Binney & Tremaine 1987). A negative value of •2 quite generally implies that axisymmetricdisturbancesarehydrodynamicallyunstable.Therequirement•2 > 0isknownastheRayleighstabilitycriterion. Theremainingequationsarethelinearizedmassconservationequation –‰ 1 ¡i!¯ C r¢(‰–v)D0 (22) ‰ ‰ andtheequationofstate(relatingdensityandenthalpyperturbations): –‰ –HDa2 (23) ‰ Thethreedynamicalequationsmaybesolvedfor–v intermsof–H: • ‚ i @–H 2˜m –v D !¯ ¡ –H ; (24) R D @R R • ‚ 1 •2 @–H m!¯ –v` D D 2˜ @R ¡ R –H ; (25) i @–H –v D¡ ; (26) Z !¯ @Z where D D•2¡!¯2: (27) UsingEquations24–26inEquation22andsimplifyingtheresults,oneobtainsthe linearwaveequationforthedisk: • (cid:181) ¶ (cid:181) ¶ 1 @ R‰ @ 1 @ @ m2‰ ¡ ‰ ¡ R@R D @R !¯2@Z @Z R2D (cid:181) ¶ ‚ 1 @ 2˜m‰ ‰ C C –HD0: (28) R!¯ @R D †2a2 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 563 We have inserted an artificial † factor in the sound speed term, which, although formally equal to unity, will be used as an aid for sorting out asymptotic or- dersinaWKBanalysis.(Thediskisherepresumedtobecoldinthesensethat R˜(cid:192)a.) ThelocationsatwhichD D0and!¯ D0aresingularitiesofthewaveequation, althoughinthecaseoftheformerthesingularityisonlyapparent,notreal.They areknownrespectivelyasLindbladandcorotationresonances,andtheirneighbor- hoodsarezoneswherewavescouplestronglytothedisk.Theyareofimportance inthestudyoftidallydrivenwavesandarecriticaltoanunderstandingofplanetary migration (Goldreich & Tremaine 1979, 1980; Ward 1997). In this section, our emphasis will be on freely propagating WKB waves, and we shall assume that neitherDnor!¯ issmall;i.e.,thatwearenotintheneighborhoodofresonance. 3.2.Two-DimensionalWKBWaves 3.2.1. FIRST ORDER: DISPERSION RELATION AND GROUP VELOCITY We seek solu- tionsofEquation28havingtheform • ‚ iS(R;Z) –HD A(R;Z) exp : (29) † Theideaisthatthephase S=† variesrapidly,andthe† factorensuresthisinthe formallimit† !0.Wewillsolvethewaveequationtoleadingandsecondorder ina1=† expansion.Notethattheabsolutephaseisnotrelevanthere,andwemay assume that A, the amplitude, is real. We shall also assume that the waves are tightlywound,i.e.,thatbothk andk (cid:192)m=R. R Z Inserting Equation 29 into Equation 28, we find that the leading order 1=†2 termsgive k2 k2 1 Z C R D ; (30) !¯2 !¯2¡•2 a2 where (k ;k )D(@S=@R;@S=@Z): (31) R Z ThisisthedispersionrelationforWKBdiskwaves,andthegradientsofSare,in essence,thewavenumbercomponents. Figure1isaplotoftheconstantfrequencycurvesinthek a,k awavenumber Z R plane.For!¯ > •,theiso-!¯ curvesareellipses;for!¯ < •,theyarehyperbolae. These two different conic sections define the two distinct wave branches, with very different transport properties. Indeed, this diagram makes evident several remarkablefeaturesofdiskwaves. Theellipticaliso-!¯ surfacescorrespondtodensitywaves,whicharerotationally modified sound waves (e.g., Goldreich & Tremaine 1979), and the hyperbolae correspond to inertial waves (Vishniac & Diamond 1989), described below. It is not difficult to show that the ellipses and hyperbolae always intersect at right 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 564 BALBUS Figure 1 Contours of constant !¯ for the dispersion relation (Equation 30) of a Kepleriandisk.Theseformasetofconformalellipses(densitywaves)andhyperbolae (inertialwaves).Thevalueof!¯ alongacurveisreadoffatthepointofintersection withthek D0axis;thenumericalscaleisinunitsof˜D1.Densitywaveellipses R are separated by one unit for !¯ > 2 and 0.1 units for 1:1 < !¯ < 2. Inertial wave hyperbolaeareseparatedby.066units. angles,sothatthecurvesarelikeaconformalmapping.Thepracticalrelevanceof thisisthatbecausethewavegroupvelocityU isthewavenumbergradientof!¯, (cid:181) ¶ @!¯ @!¯ U D ; ; (32) @k @k R Z thegroupvelocitydirectionofthedensitywavesliesalongtheinertialwaveiso-!¯ curves,andthegroupvelocitydirectionoftheinertialwavesliesalongthedensity wave curves. Low frequency disturbances in disks have very different transport propertiesfromhighfrequencydisturbances,apointtowhichweshallreturnmany times. Foragivenwavevector(k ;k ),thegradienttoaniso-!¯ curvecouldpointin R Z either direction because the dispersion relation (Equation 30) does not uniquely determinethesignof!¯.Directcalculationrevealsthefollowing:

Description:
s Abstract The status of our current understanding of angular momentum trans- and enhanced angular momentum in accretion disks, and the resulting
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.