23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 10.1146/annurev.astro.41.081401.155207 Annu.Rev.Astron.Astrophys.2003.41:555–97 doi:10.1146/annurev.astro.41.081401.155207 Copyright(cid:176)c 2003byAnnualReviews.Allrightsreserved E A M T NHANCED NGULAR OMENTUM RANSPORT A D IN CCRETION ISKS Steven A. Balbus DepartmentofAstronomy,VITA,UniversityofVirginia, Charlottesville,Virginia22901; email:[email protected] KeyWords accretion,instabilities,MHD,turbulence n Abstract Thestatusofourcurrentunderstandingofangularmomentumtrans- portinaccretiondisksisreviewed.Thelastdecadehasseenadramaticincreaseboth intherecognitionofkeyphysicalprocessesandinourabilitytocarrythroughdirect numerical simulations of turbulent flow. Magnetic fields have at once powerful and subtleinfluencesonthebehaviorof(sufficiently)ionizedgas,renderingthemdirectly unstabletofreeenergygradients.Outwardlydescreasingangularvelocityprofilesare unstable.ThebreakdownofKeplerianrotationintoMHDturbulencemaybestudiedin somenumericaldetail,andkeytransportcoefficientsmaybeevaluated.Chandraobser- vationsoftheGalacticCentersupporttheexistenceoflowluminosityaccretion,which mayultimatelyproveamenabletoglobalthree-dimensionalnumericalsimulation. Ihatebeing“allowedfor,”asif Iweresomeincalculablequantity inanastronomicalequation. —D.L.Sayers,TheDocumentsintheCase. 1.INTRODUCTION Inrecentyears,accretiondisktransporttheoryhasdevelopedsorapidlythatany review is destined to be significantly dated the moment it appears in print. This willputthereaderatadisadvantage.However,itisanexhilaratingtimefordisk theorists. Thecurrenthappystateofaffairsinthiscomputationallydrivenfieldislargely duetotheswiftevolutionofthree-dimensionalmagnetohydrodynamical(MHD) codesandtheirsupportinghardware.Thesepowerfultoolsarrivewithprovident timing,coincidingwithadeepeningtheoreticalunderstandingoftheroleofmag- neticfieldsinaccretiondiskdynamics.Theresultisthataccretiondiskturbulence theoryhasgrownfromamereviscositycoefficienttoafullyquantitativescience. Inthisreview,Ifocusonwhatisnowknownoftherelationshipbetweenturbulence 0066-4146/03/0922-0555$14.00 555 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 556 BALBUS andenhancedangularmomentuminaccretiondisks,andtheresultingimplications forsomeselectedastrophysicalsystems. Theclassicalproblemwithaccretiondisksisthattheydoofcourseaccrete.How isitthatfluidelementsorbitinginacentralforcefieldlosetheirspecificangular momentum and spiral inward? One may quickly rule out ordinary particulate viscosity.Astrophysicaldisksaresimplytoobig.Tofixideas,notethatdisturbances arepropagatedbyviscousdiffusionoveradistancelonatimescaleoforderl2=”, where ” is the kinematic viscosity, or about 3£107 years forl » 1010 cm and ” D105cm2s¡1.Thisisordersofmagnitudetoolongforthetimevariabilityseen incompactobjectaccretiondisks. Thewayaroundthisdifficultywasperceivedtobeturningthewoefullyinade- quateviscositytoone’sadvantagebyappealingtotheassociatedlargeReynolds number.This,itwasthought,wouldturndifferentialrotationintoshear-driventur- bulence(e.g.,Crawford&Kraft1956,Shakura&Sunyaev1973).Thebreakdown ofshearflowlaminaintoturbulencehasbeenknownsincetheworkofReynolds tobetriggeredbynonlinearflowinstabilities.Thefactthattherewerenodemon- strablelocallinearinstabilitiesforaKeplerianrotationprofilewasthereforenot immediatelyviewedasanembarrassmenttothisscenario. Shearturbulenceisadesirabletraitinaflowwheregreatlyenhanced(angular) momentumtransportisneeded.Thisisbecauseshear-driventurbulenceischarac- terizedbyahighdegreeofcorrelationbetweentheradialandazimuthalvelocity fluctuations. This, as we shall see, has the direct effect of raising a disk’s angu- lar momentum flux orders of magnitude above what would be possible with an ordinarycollisionalviscosity. Notopicinfluiddynamicsismorecontentiousthantheonsetanddevelopment ofturbulence,andaccretiondiskturbulencehasnotbeenanexception.Keplerian disksdonotresemblelaboratoryshearflows,howeverlocallyonepeers.Coriolis forcesdramaticallystabilizerotationalflowonlargescalesandsmall,afeaturenot sharedbyclassicalplanarCouettefloworPoiseuilleflow.1YetCoriolisforcesdo noworkonthefluid;theyareinfactabsentfromtheenergyconservationequations. Becauseapotentfreeenergysourceintheformofshearretainsapresencewith orwithoutCoriolisforces,debatehascenteredonwhetherfluidnonlinearitiesata high-enoughReynoldsnumberwouldstillfindawaytotapintothissourcewhen lineardisturbancesfailtodoso. NopublishedlaboratoryexperimenthasshownthebreakdownofaKeplerian- likeCouetteflowprofile,buttrulydefinitivestudieshaveyettobeperformed.The onsetofnonlinearinstabilitiesthathavebeenreportedinCouetteflowexperiments aregenerallyrelatedtoverysharprotationalvelocitygradientstypicalofKelvin- Helmholtzinstabilities,notther¡1=2powerlawcharacteristicofaKeplerianprofile (Triton1988).Theissueisreceivingrenewedattention,withgroupsinSaclay,Los 1Anotherkeyfeaturethatdisksdonotsharewiththeselaboratoryflowsisthepresenceof aboundarylayerataretainingwall. 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 557 Alamos,andPrincetonlookingatReynoldsnumbersRe»105¡6,muchinexcess ofthoseavailableintheclassicalexperiments(e.g.,Coles1965). Theoretical developments have been more brisk. A theory for the onset of turbulenceinPoiseuilleflowwaselucidatedinthe1970sand1980s(Bayly,Orszag &Herbert1988).Thekeyistheexistenceofneutrallystable(orslowlydecaying) finiteamplitudedisturbances.Thesesolutionsaretime-steadybutspatiallyperiodic inthestreamwisedirection(Zahnetal.1974).Itistheseamendedflowprofilesthat findthemselvessubjecttoarapid,short-wavelengththree-dimensionalinstability, leadingtoabreakdownintoturbulence(Orszag&Patera1980,1981).Asimilar process appears to be at work in shear layers (Pierrehumbert & Widnall 1982, Corcos & Lin 1984). It is now generally accepted that the triggering of a rapid, linearthree-dimensionalinstabilityofanearlyneutrallystable,two-dimensional, finite-amplitudedisturbanceisaverygenericmodeofthebreakdownoflaminar flowintoturbulence. Howdoesthisbearonourunderstandingofaccretiondisks?Themostimpor- tantpointisthatevenincompressibleaxisymmetricdisturbancesinarotatingfluid willpropagateintheformoflinearinertialwaves(Lighthill1978)withacharac- teristicfrequencyproportionaltothelocalvorticityoftherotationprofile.Thus, in astrophysical disks, the finite amplitude, neutrally stable axisymmetric state thatiscriticaltothetransitiontoturbulenceinmixinglayerscannotform.Only in a low-vorticity rotational profile, in which the oscillation frequency is much smallerthantheshearingrate,wouldweexpectabreakdownofflowlaminainto turbulence,similartowhatisseeninamixinglayer.Thisisingoodaccordwith three-dimensionalnumericalsimulations(Balbus,Hawley&Stone1996;Hawley, Balbus&Winters1999),whichfindnononlinearlocalinstabilitiesinKeplerian disksbutdoindeedfindthatshearlayersandlow-vorticitydisksshowanonlinear breakdowntoturbulentflow.Thereisasofyetnoanalyticproofoflocalnonaxi- symmetricstability,however,andthenotionthattheremaybeanothernonlinear hydrodynamicalroutetoturbulenceinKepleriandisks,beyondthehighestreso- lutionavailableinsupercomputersimulations,retainssomeadvocates(Richard& Zahn1999). Accretiondiskshaveonecriticallyimportantattributenotsharedwiththeclass- icalhydrodynamicalfluids:Theyaregenerallymagnetized.Byengenderingnew degreesoffreedomintheirhostfluid,evenveryweakmagneticfieldscompletely alterthestabilitybehaviorofastrophysicalgases,bothrotationallyandthermally (Balbus2001).Freeenergysourcesintheformofangularvelocityandtemperature gradientsbecomedirectlyavailabletodestabilizetheflow. Thecounterintuitivepointhereisthataweakmagneticfieldcanhavesucha potentinfluence.Thestabilitybehaviorofstronglymagnetizeddisksisrichand astrophysicallyinteresting(e.g.,Papaloizou&Terquem1996;Varnie`re&Tagger 2002),buttheemphasisinthisreviewisdecidelyonsubthermalmagneticfields. Ratherthandependingdirectlyonthestrengthoftheequilibriummagneticfields, weakfieldinstabilitiesdependdirectlyuponhydrodynamicpropertiesoftheun- perturbeddisk.Iftheangularvelocitydecreasesoutwardinaweaklymagnetized 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 558 BALBUS accretiondisk,whichisgenerallythecase,therotationprofileislinearlyunstable (Balbus&Hawley1991).Thisinstabilityisknownasthemagnetorotationalin- stability,orMRIforshort.Asweshallsee,thephysicsoftheMRIisverysimple. Nevertheless, a full understanding of its mathematical generality and wide ap- plicabilitywasmuchbelated,followingphenomenologicaldisktheory(Shakura & Sunyaev 1973) by nearly two decades. Knowledge of the instability itself significantly predated modern accretion disk theory (Velikhov 1959), albeit in aratherformalglobalguise. ThenumericalstudyoftheMRIdoesnotrequireunattainablegridresolutions, and it can be readily simulated. Both local (Hawley, Gammie & Balbus 1995; Brandenburgetal.1995)andglobal(Armitage1998,Hawley2000)investigations unambiguouslyshowabreakdownoflaminarKeplerianflowintowell-developed turbulence.TheMRIistheonlyinstabilityshowntobecapableofproducingand sustainingtheenhancedstressneededforaccretiontoproceedonviabletimescales innon-self-gravitatingdisks.Atlowtemperaturesandhighdensities,e.g.,inthe outerregionsofcataclysmicvariable(CV)systems(Gammie&Menou1998),or inprotostellardisksonAUscales(Gammie1996),thelevelofMRI-inducedturbu- lencecanchangerapidly,eruptingoreventurningoffcompletely.Allthisoccurs whiletheunderlyingKeplerianprofileremainsessentiallyfixed.Inshort,theinsta- bilityseemscapableofthefullrangeofaccretioncomplexitymanifestedinnature. Forallthesereasons,despitethedifficultiesofcopingwithMHDturbulence,the MRIisnowatthecenterofnumericalaccretiondiskstudies. Letus,however,postponeourdiscussionofmagneticmattersandturnourat- tention first to the study of simple hydrodynamical waves in disks. These are of greatpracticalinterestintheirownright,especiallyinprotoplanetarydisks.But it is also the case that understanding the transport properties of waves deepens one’s understanding of turbulent transport, both hydrodynamic and magnetohy- drodynamic,andthatisourprimaryreasonforreviewingthemhere.Weshallthen followwithadiscussionofhydrodynamicalinstability,withafocusonhowglobal instabilitycaninprincipleemergeinadifferentiallyrotatingdiskevenwhenthe Rayleighconditionissatisfied.Magneticinstabilityandmagneticturbulenceare thetopicsofthenextsection.Magneticstressesarethemostimportanttransport mechanisminnon-self-gravitatingdisks,providedthegasisminimallyionizedto coupletothefield.Thefinaltwosectionsareapresentationofrecentnumerical studiesofMHDturbulence,andasummaryfollows. 2.PRELIMINARIES 2.1.FundamentalEquations Foreaseoffuturereference,welistherethefundamentalequationsofmagneto- hydrodynamics. @‰ Cr¢(‰v)D0 (1) @t 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 559 (cid:181) ¶ (cid:181) ¶ @v B2 B ‰ C(‰v¢r)v D¡r P C ¡‰r8C ¢r B @t 8… 4… (cid:181) ¶ 1 C· r2v C r(r¢v) (2) V 3 @B Dr£(v £B¡· r£B) (3) @t B P dlnP‰¡(cid:176) D QC¡Q¡ (4) (cid:176) ¡1 dt Equation1ismassconservation;Equation2isthedynamicalequationofmotion; Equation3istheinductionequation;andEquation4istheentropyequation.Our notationisstandard:‰isthemassdensity,vthefluidvelocity,Pthepressure(plus radiationpressurewhenimportant),8thegravitationalpotential, Bthemagnetic fieldvector,(cid:176) istheadiabaticindex, QC (Q¡)representheatgains(losses),· V themicroscopickinematicshearviscosity,and· themicroscopicresistivity.The B azimuthalcomponentoftheequationofmotiondeservesseparatemention,asit isadirectexpressionofangularmomentumconservation: • (cid:181) ¶ ‚ @(‰@Rtv`) Cr¢ ‰Rv`v ¡ R4B…`BC P C 8B…2 e` D0; (5) wheree`isaunitvectorinthe`direction.Thedissipativetermshavebeendropped because they appear only in the flux term, transporting a negligible amount of angularmomentum. Itisalsousefultohaveathandanequationfortotalenergyconversation.This issomewhatlengthytoderive(Balbus&Hawley1998),buttheresultisreadily interpreted: @E @t Cr¢FE D¡Q¡; (6) wheretheenergydensityE is 1 P B2 E D ‰v2C C‰8C (7) 2 (cid:176) ¡1 8… andtheenergyfluxis (cid:181) ¶ 1 (cid:176)P B FE Dv 2‰v2C (cid:176) ¡1 C‰8 C 4…£(v £B): (8) Theenergydensityconsistsofkinetic,thermal,gravitational,andmagneticcom- ponents; the flux is similar with the magnetic component present as a Poynting flux. The heating term QC, an entropy source, is assumed to arise from micro- scopicdissipation,anditdoesnotexplicitlyappearinthetotalenergyequation—it simplyconvertsoneformofenergytoanother.TheradiativeQ¡term,ontheother 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 560 BALBUS hand,representsgenuinesystemicenergylossesandappearsexplicitlyinthecon- servationequation. 2.2.NonlinearFluctuations Bothwavesandturbulenceinvolvetheconceptofwell-defineddeparturesofthe flow from a smooth background. Velocity fluctuations are of particular interest becauseitispossibletoformulateanexactenergyconservationlawforthefluctu- ationsthemselves.This,inturn,explicitlyshowstheroleofdifferentialrotationas asourceoffreeenergyforthe(correlated)turbulentfluctuationsassociatedwith outwardtransportofangularmomentum. Letusdefinethevelocityfluctuationuby uDv ¡ R˜(R)e`: (9) ˜isinprinciplearbitrary,butofcoursethemotivationforthisdefinitionisthat ˜(R)isareasonablygoodapproximationtoanunderlyingrotationprofileforthe accretionflow.Itispossibletocombinetheequationofmotion(Equation2)with theinternalentropyequation(Equation4)toobtainanexact,` averagedenergy equationfortheuvelocityfluctuationsalone: (cid:181) ¶ @@Etu Cr¢FEu D¡ ‰uRu` ¡ B4R…B` dd˜R ¡Q¡: (10) Here,E isthefluctuationenergydensity u 1 P B2 E D ‰(u2C8 )C C ; (11) u 2 eff (cid:176) ¡1 8… 8 isaneffectivepotentialfunction eff Z R 8 D8¡ R˜2dR; (12) eff andFEuistheenergyfluxofthefluctuationsthemselves: (cid:181) ¶ 1 (cid:176)P B FEu Du 2‰u2C (cid:176) ¡1 C‰8eff C 4… £(u£B): (13) BecauseEquation10hasbeenaveragedover`,onlyRandZcomponentsappear intheflux. Thecombination TR` D‰uRu` ¡ B4R…B` (14) is an important quantity in both turbulent and wave transport theories of accre- tiondisks.Ithasappearedoncebefore:withintheangularmomentumconserva- tion equation (Equation 5), where it emerges as a component in the flux term. Its constituents may be separately identified as Reynolds (‰uRu`) and Maxwell 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 561 (¡BRB`=4…)stresses.(Notethatbothwave-likeandturbulentdisturbancescan create tight radial–azimuthal correlations in the velocity and magnetic fields.) Thesecorrelationsevidentlyservetwoconceptuallyquitedifferentfunctions:They directlytransportangularmomentum,andasshowninEquation10,theytapinto thefreeenergysourceofdifferentialrotation.Thelatterroleisparticularlycrucial forsustainingturbulence.Withoutexternaldriving,theonlyenergysourceforthe fluctuationsisthiscouplingofthestresstothedifferentialrotation.Inastrophys- ical accretion disks that make use of this free energy source, TR` must have the samesignas¡d˜=dR,i.e.,itmustbepositive. 3.HYDRODYNAMICWAVESINDISKS 3.1.TheLinearWaveEquation Consideranunmagnetizeddiskinwhichthepressureanddensityobeyasimple polytropicequationofstate, P D K‰(cid:176),whereKisaconstant.Wemaydefinean enthalpyfunctionH: Z dP (cid:176)P=‰ a2 HD D D ; (15) ‰ (cid:176) ¡1 (cid:176) ¡1 wherea2 istheadiabaticsoundspeed.Itisconvenienttoworkinstandardcylin- dricalcoordinates(R;`;Z).Thegasrotatesinthegravitationalfieldofacentral mass.Theangularvelocity˜mustbeconstantoncylinders,˜D˜(R)(Tassoul 1978). Althoughitisastandardapproximation,theassumptionofabarotropicequa- tionofstateisobviouslyanidealization.Amongothershortcomings,itprecludes the possibility of a buoyant response in the form of internal gravity waves due toBrunt-Va¨isa¨la¨ oscillations(Ogilvie&Lubow1999).Instandarddiskmodels, however,entropystratificationarisesbecauseofradiativeheatdiffusionfromtur- bulent heating. A linearized wave treatment of such an “equilibrium” is at best adelicatematter.Ingeneral,theverticaltemperaturestructureofaccretiondisks isnotwellunderstood,andthevirtueofadoptingabarotropicpressureisthatit allowsimportantdynamicalbehaviortoberevealed. Our goal is to study how linearized wave disturbances transport energy and angular momentum through a Keplerian disk. To this end, we introduce small perturbationstotheequilibriumsolution,denotedas–‰; –v,etc.Theequilibrium solutionisaxisymmetric,soaperturbedflowquantityXhastheform –X D–X(R;Z)exp(im`¡i!t); (16) where m is an integer and ! is the wave frequency. For the moment, the R;Z dependenceoftheamplitudeisunrestricted.Thelinearizeddynamicalequations ofmotionare @–H ¡i!¯ –vR ¡2˜–v` D¡ @R (17) 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 562 BALBUS •2 m ¡i!¯ –v` C 2˜–vR D¡i R –H (18) @–H ¡i!¯ –v D¡ : (19) Z @Z WehaveintroducedtheDoppler-shiftedwavefrequency, !¯ D!¡m˜ (20) andwhatisknownastheepicyclicfrequency•: d˜2 •2 D4˜2C : (21) dlnR The epicyclic frequency is the rate at which a point mass in a circular motion, disturbedintheplaneofitsorbit,wouldoscillateaboutitsaverageradiallocation (Binney & Tremaine 1987). A negative value of •2 quite generally implies that axisymmetricdisturbancesarehydrodynamicallyunstable.Therequirement•2 > 0isknownastheRayleighstabilitycriterion. Theremainingequationsarethelinearizedmassconservationequation –‰ 1 ¡i!¯ C r¢(‰–v)D0 (22) ‰ ‰ andtheequationofstate(relatingdensityandenthalpyperturbations): –‰ –HDa2 (23) ‰ Thethreedynamicalequationsmaybesolvedfor–v intermsof–H: • ‚ i @–H 2˜m –v D !¯ ¡ –H ; (24) R D @R R • ‚ 1 •2 @–H m!¯ –v` D D 2˜ @R ¡ R –H ; (25) i @–H –v D¡ ; (26) Z !¯ @Z where D D•2¡!¯2: (27) UsingEquations24–26inEquation22andsimplifyingtheresults,oneobtainsthe linearwaveequationforthedisk: • (cid:181) ¶ (cid:181) ¶ 1 @ R‰ @ 1 @ @ m2‰ ¡ ‰ ¡ R@R D @R !¯2@Z @Z R2D (cid:181) ¶ ‚ 1 @ 2˜m‰ ‰ C C –HD0: (28) R!¯ @R D †2a2 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 563 We have inserted an artificial † factor in the sound speed term, which, although formally equal to unity, will be used as an aid for sorting out asymptotic or- dersinaWKBanalysis.(Thediskisherepresumedtobecoldinthesensethat R˜(cid:192)a.) ThelocationsatwhichD D0and!¯ D0aresingularitiesofthewaveequation, althoughinthecaseoftheformerthesingularityisonlyapparent,notreal.They areknownrespectivelyasLindbladandcorotationresonances,andtheirneighbor- hoodsarezoneswherewavescouplestronglytothedisk.Theyareofimportance inthestudyoftidallydrivenwavesandarecriticaltoanunderstandingofplanetary migration (Goldreich & Tremaine 1979, 1980; Ward 1997). In this section, our emphasis will be on freely propagating WKB waves, and we shall assume that neitherDnor!¯ issmall;i.e.,thatwearenotintheneighborhoodofresonance. 3.2.Two-DimensionalWKBWaves 3.2.1. FIRST ORDER: DISPERSION RELATION AND GROUP VELOCITY We seek solu- tionsofEquation28havingtheform • ‚ iS(R;Z) –HD A(R;Z) exp : (29) † Theideaisthatthephase S=† variesrapidly,andthe† factorensuresthisinthe formallimit† !0.Wewillsolvethewaveequationtoleadingandsecondorder ina1=† expansion.Notethattheabsolutephaseisnotrelevanthere,andwemay assume that A, the amplitude, is real. We shall also assume that the waves are tightlywound,i.e.,thatbothk andk (cid:192)m=R. R Z Inserting Equation 29 into Equation 28, we find that the leading order 1=†2 termsgive k2 k2 1 Z C R D ; (30) !¯2 !¯2¡•2 a2 where (k ;k )D(@S=@R;@S=@Z): (31) R Z ThisisthedispersionrelationforWKBdiskwaves,andthegradientsofSare,in essence,thewavenumbercomponents. Figure1isaplotoftheconstantfrequencycurvesinthek a,k awavenumber Z R plane.For!¯ > •,theiso-!¯ curvesareellipses;for!¯ < •,theyarehyperbolae. These two different conic sections define the two distinct wave branches, with very different transport properties. Indeed, this diagram makes evident several remarkablefeaturesofdiskwaves. Theellipticaliso-!¯ surfacescorrespondtodensitywaves,whicharerotationally modified sound waves (e.g., Goldreich & Tremaine 1979), and the hyperbolae correspond to inertial waves (Vishniac & Diamond 1989), described below. It is not difficult to show that the ellipses and hyperbolae always intersect at right 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 564 BALBUS Figure 1 Contours of constant !¯ for the dispersion relation (Equation 30) of a Kepleriandisk.Theseformasetofconformalellipses(densitywaves)andhyperbolae (inertialwaves).Thevalueof!¯ alongacurveisreadoffatthepointofintersection withthek D0axis;thenumericalscaleisinunitsof˜D1.Densitywaveellipses R are separated by one unit for !¯ > 2 and 0.1 units for 1:1 < !¯ < 2. Inertial wave hyperbolaeareseparatedby.066units. angles,sothatthecurvesarelikeaconformalmapping.Thepracticalrelevanceof thisisthatbecausethewavegroupvelocityU isthewavenumbergradientof!¯, (cid:181) ¶ @!¯ @!¯ U D ; ; (32) @k @k R Z thegroupvelocitydirectionofthedensitywavesliesalongtheinertialwaveiso-!¯ curves,andthegroupvelocitydirectionoftheinertialwavesliesalongthedensity wave curves. Low frequency disturbances in disks have very different transport propertiesfromhighfrequencydisturbances,apointtowhichweshallreturnmany times. Foragivenwavevector(k ;k ),thegradienttoaniso-!¯ curvecouldpointin R Z either direction because the dispersion relation (Equation 30) does not uniquely determinethesignof!¯.Directcalculationrevealsthefollowing:
Description: