ebook img

enhanced angular momentum transport in accretion disks PDF

45 Pages·2007·0.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview enhanced angular momentum transport in accretion disks

23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 10.1146/annurev.astro.41.081401.155207 Annu.Rev.Astron.Astrophys.2003.41:555–97 doi:10.1146/annurev.astro.41.081401.155207 Copyright(cid:176)c 2003byAnnualReviews.Allrightsreserved E A M T NHANCED NGULAR OMENTUM RANSPORT A D IN CCRETION ISKS Steven A. Balbus g or DepartmentofAstronomy,VITA,UniversityofVirginia, Charlottesville,Virginia22901; ws. email:[email protected] e vi e m arjournals.annualrpersonal use only. pinKnnouermtyhAteeiWbnrrisceaotaccrrlocadrgscesintmtiitouianoTlcanhdctireioosefksntitkssoaenitoysu,fsripnetohuvsfyrtibaesobwuiucileraleidlntci.tpueTrsrflor,hoecMewnetsl.HasuMseDntsad,dagetenunrcdsreabttadiuinnceledohfiniuanecrsgledasosebfeihlnaiatnvyagedtuoarlaatcmroamrnarctyoiecmthpienronocwtruueegmarhfsuetdlrbiaraonentschd-t Downloaded fron 01/25/07. For suusuonnbmsstttlaaeebbnlliueenm.fltToueherfienrcecbaeelrseedanoeketnadrgitolhy,weagnnbrdeoahfdkaiKeevyeniopttrsrla.eonrOfisaup(nstowurroftafictracdotileieyofnfindtcleiyinse)tcnoirtoesMnamsiHzianeDygdbtgauenaresgb,vuuarlleaelunrnadcvteeeerldmion.caCgiythtyhbaeepnmrdsotrufiaddlioeribeescsdaetrliryne- 7. Y o vationsoftheGalacticCentersupporttheexistenceoflowluminosityaccretion,which 59R mayultimatelyproveamenabletoglobalthree-dimensionalnumericalsimulation. 55-TO 5A 1:V 3.4ER Ihatebeing“allowedfor,”asif ys. 200D OBS Iinwaenreassotrmoneoimnciacalcluelqaubaletiqouna.ntity ophAR strW —D.L.Sayers,TheDocumentsintheCase. AE o. ST Astrby v. 1.INTRODUCTION e R u. n Inrecentyears,accretiondisktransporttheoryhasdevelopedsorapidlythatany n A review is destined to be significantly dated the moment it appears in print. This willputthereaderatadisadvantage.However,itisanexhilaratingtimefordisk theorists. Thecurrenthappystateofaffairsinthiscomputationallydrivenfieldislargely duetotheswiftevolutionofthree-dimensionalmagnetohydrodynamical(MHD) codesandtheirsupportinghardware.Thesepowerfultoolsarrivewithprovident timing,coincidingwithadeepeningtheoreticalunderstandingoftheroleofmag- neticfieldsinaccretiondiskdynamics.Theresultisthataccretiondiskturbulence theoryhasgrownfromamereviscositycoefficienttoafullyquantitativescience. Inthisreview,Ifocusonwhatisnowknownoftherelationshipbetweenturbulence 0066-4146/03/0922-0555$14.00 555 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 556 BALBUS andenhancedangularmomentuminaccretiondisks,andtheresultingimplications forsomeselectedastrophysicalsystems. Theclassicalproblemwithaccretiondisksisthattheydoofcourseaccrete.How isitthatfluidelementsorbitinginacentralforcefieldlosetheirspecificangular momentum and spiral inward? One may quickly rule out ordinary particulate viscosity.Astrophysicaldisksaresimplytoobig.Tofixideas,notethatdisturbances arepropagatedbyviscousdiffusionoveradistancelonatimescaleoforderl2=”, where ” is the kinematic viscosity, or about 3£107 years forl » 1010 cm and ” D105cm2s¡1.Thisisordersofmagnitudetoolongforthetimevariabilityseen g or incompactobjectaccretiondisks. s. w Thewayaroundthisdifficultywasperceivedtobeturningthewoefullyinade- e vi quateviscositytoone’sadvantagebyappealingtotheassociatedlargeReynolds e ualry. number.This,itwasthought,wouldturndifferentialrotationintoshear-driventur- m arjournals.annpersonal use onl botsotufrlabsebhenlecteareirlgo(flgeco.eagwrl.e,ldilCnabmreayawirnnfaioonnirsnldtiatno&beitalKuirtrirflbeaousfwltef1oni9rnc5esa6thaK,baSesihlpibalteikeereusinra.anTk&nhrooeStwafuatnnicoytsniatnhepcvareto1ttfi9hhl7eeer3eww).woaTrsekhrteehobefnrroReefaedokyerdnmeooonwldnons-t oaded fro5/07. For immomSmheeednaitaruttemulrytbrvuailneeswnpceoedrtiasissanadneeeesdimreadbb.alTrerhatrissasimitsiebnneatctaflouostwheisswhsheceaerrne-dagrririoveea.ntlytuernbhualenncceedi(sacnhgaurlaacr)- wnl1/2 terizedbyahighdegreeofcorrelationbetweentheradialandazimuthalvelocity Don 0 fluctuations. This, as we shall see, has the direct effect of raising a disk’s angu- 597. RY o lar momentum flux orders of magnitude above what would be possible with an 55-TO ordinarycollisionalviscosity. 5A 1:V Notopicinfluiddynamicsismorecontentiousthantheonsetanddevelopment 4R 3.E ofturbulence,andaccretiondiskturbulencehasnotbeenanexception.Keplerian ys. 200D OBS dfoisrckessddoranmotarteicsaelmlybsltealbaibliozreartootraytisohneaalrflfloowwos,nhloarwgeevsecralloecsaalnlydosmnealple,earfse.aCtuorreionloist ophAR sharedbyclassicalplanarCouettefloworPoiseuilleflow.1YetCoriolisforcesdo strW AE noworkonthefluid;theyareinfactabsentfromtheenergyconservationequations. Astro. by ST BorewcaiuthsoeuatCpootreinotlifsrfeoerceense,rdgeybsaoteurhcaesicnetnhteerfeodrmonowfhsehtehaerrrfleutaidinnsoanplirneesaernitcieeswaittha v. e high-enoughReynoldsnumberwouldstillfindawaytotapintothissourcewhen R u. lineardisturbancesfailtodoso. n n A NopublishedlaboratoryexperimenthasshownthebreakdownofaKeplerian- likeCouetteflowprofile,buttrulydefinitivestudieshaveyettobeperformed.The onsetofnonlinearinstabilitiesthathavebeenreportedinCouetteflowexperiments aregenerallyrelatedtoverysharprotationalvelocitygradientstypicalofKelvin- Helmholtzinstabilities,notther¡1=2powerlawcharacteristicofaKeplerianprofile (Triton1988).Theissueisreceivingrenewedattention,withgroupsinSaclay,Los 1Anotherkeyfeaturethatdisksdonotsharewiththeselaboratoryflowsisthepresenceof aboundarylayerataretainingwall. 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 557 Alamos,andPrincetonlookingatReynoldsnumbersRe»105¡6,muchinexcess ofthoseavailableintheclassicalexperiments(e.g.,Coles1965). Theoretical developments have been more brisk. A theory for the onset of turbulenceinPoiseuilleflowwaselucidatedinthe1970sand1980s(Bayly,Orszag &Herbert1988).Thekeyistheexistenceofneutrallystable(orslowlydecaying) finiteamplitudedisturbances.Thesesolutionsaretime-steadybutspatiallyperiodic inthestreamwisedirection(Zahnetal.1974).Itistheseamendedflowprofilesthat findthemselvessubjecttoarapid,short-wavelengththree-dimensionalinstability, leadingtoabreakdownintoturbulence(Orszag&Patera1980,1981).Asimilar g or process appears to be at work in shear layers (Pierrehumbert & Widnall 1982, s. w Corcos & Lin 1984). It is now generally accepted that the triggering of a rapid, e evi linearthree-dimensionalinstabilityofanearlyneutrallystable,two-dimensional, ualry. finite-amplitudedisturbanceisaverygenericmodeofthebreakdownoflaminar m arjournals.annpersonal use onl fltwaonilwHtlppoionrwoitnopdtatoiguseartsbtheutahliteinesnvtcbheeeen.afrionorcnmomooupfrrleuinsnsediaberlresintaaexnritdsiiaynlmgwmoafevtearscicc(rLdeiitsgitohuntrhbdialilnsk1cse9?s7i8Tn)hawerimothtoasatitncighmaflpruaoicrd-- oaded fro5/07. For titenhraiatsstitisrcocfprrihetiyqcsuaielcnatcolydthpiserkotspr,aontrhtsieiotinfioannlittteooattuhmrebpluloiltceuandlceve,oinrnetiumctirtiayxlilnoygfstlhtaaeyberlroestaactxaiionsnnyomptrmofofiertlmrei.c.TOshtnaultsye, wnl1/2 in a low-vorticity rotational profile, in which the oscillation frequency is much 7. DoY on 0 smallerthantheshearingrate,wouldweexpectabreakdownofflowlaminainto 59R turbulence,similartowhatisseeninamixinglayer.Thisisingoodaccordwith 55-TO three-dimensionalnumericalsimulations(Balbus,Hawley&Stone1996;Hawley, 5A 1:V Balbus&Winters1999),whichfindnononlinearlocalinstabilitiesinKeplerian 4R 3.E disksbutdoindeedfindthatshearlayersandlow-vorticitydisksshowanonlinear strophys. 200WARD OBS bshyryemdarmkoddeoytrwnicanmsttoiacbtauillrirbtoyuu,lethenottwofleotvuwerr.b,TualhneednrcetehiesinnasKotoeiopfnlyeetrhtiaanntotdhaiensrkaelsy,mtbiaceyyporbnoedoaftnhooefthlhoeicgrahnleonsntolnirneaesxoair-- AE lutionavailableinsupercomputersimulations,retainssomeadvocates(Richard& o. ST Astrby Zahn1999). v. Accretiondiskshaveonecriticallyimportantattributenotsharedwiththeclass- Re icalhydrodynamicalfluids:Theyaregenerallymagnetized.Byengenderingnew u. degreesoffreedomintheirhostfluid,evenveryweakmagneticfieldscompletely n n A alterthestabilitybehaviorofastrophysicalgases,bothrotationallyandthermally (Balbus2001).Freeenergysourcesintheformofangularvelocityandtemperature gradientsbecomedirectlyavailabletodestabilizetheflow. Thecounterintuitivepointhereisthataweakmagneticfieldcanhavesucha potentinfluence.Thestabilitybehaviorofstronglymagnetizeddisksisrichand astrophysicallyinteresting(e.g.,Papaloizou&Terquem1996;Varnie`re&Tagger 2002),buttheemphasisinthisreviewisdecidelyonsubthermalmagneticfields. Ratherthandependingdirectlyonthestrengthoftheequilibriummagneticfields, weakfieldinstabilitiesdependdirectlyuponhydrodynamicpropertiesoftheun- perturbeddisk.Iftheangularvelocitydecreasesoutwardinaweaklymagnetized 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 558 BALBUS accretiondisk,whichisgenerallythecase,therotationprofileislinearlyunstable (Balbus&Hawley1991).Thisinstabilityisknownasthemagnetorotationalin- stability,orMRIforshort.Asweshallsee,thephysicsoftheMRIisverysimple. Nevertheless, a full understanding of its mathematical generality and wide ap- plicabilitywasmuchbelated,followingphenomenologicaldisktheory(Shakura & Sunyaev 1973) by nearly two decades. Knowledge of the instability itself significantly predated modern accretion disk theory (Velikhov 1959), albeit in aratherformalglobalguise. ThenumericalstudyoftheMRIdoesnotrequireunattainablegridresolutions, g or and it can be readily simulated. Both local (Hawley, Gammie & Balbus 1995; s. w Brandenburgetal.1995)andglobal(Armitage1998,Hawley2000)investigations e vi unambiguouslyshowabreakdownoflaminarKeplerianflowintowell-developed e ualry. turbulence.TheMRIistheonlyinstabilityshowntobecapableofproducingand m arjournals.annpersonal use onl sioinnuusptnteraoroinntr-oeisngsetgileoflt-nlhgaserroaedvfniischtkaaasttnaionccneglydAdssUmitsrkiescssc.savAlnaeretsieal(dobGewleadmt(feCommrViape)ce1csryra9ets9utt6iero)emn,ststhao(enGpdleraovhmceigemlehoidfedMoe&nnRsvMiIit-aieiebnnsldoe,uuetci.1mge9d.e,9tsi8ucn)ra,btlheuoes-r oaded fro5/07. For lwbeinhlicitlyeesctheaeenmucnshdcaeanrpglayebirnlaegpoKidfeltyph,leeefrruiualplntrpianrngogfieolreoefrveaemcncartieuntrsinoeinsnscgeonomtfifpalcleloyxmifitpyxlemedtae.nIlyni.fseAhsotlelrdtt,hitinhsenoaicntcusutrares-. wnl1/2 Forallthesereasons,despitethedifficultiesofcopingwithMHDturbulence,the Don 0 MRIisnowatthecenterofnumericalaccretiondiskstudies. 597. RY o Letus,however,postponeourdiscussionofmagneticmattersandturnourat- 55-TO tention first to the study of simple hydrodynamical waves in disks. These are of 5A 1:V greatpracticalinterestintheirownright,especiallyinprotoplanetarydisks.But 4R 3.E it is also the case that understanding the transport properties of waves deepens ys. 200D OBS odnroed’synuanmdeicrs,taanndditnhgatoisfotuurrbpurliemnatrtyrarnesapsoornt,fobrortehvhieywdirnogdythneammihceraen.dWmeasghnaelltothheyn- ophAR followwithadiscussionofhydrodynamicalinstability,withafocusonhowglobal strW AE instabilitycaninprincipleemergeinadifferentiallyrotatingdiskevenwhenthe Astro. by ST Rthaeytloepigichscoofntdhietionnexitssseactitsiofine.dM.Magangenteicticstirnesstsaebsilairteytahnedmmoasgtnimetipcotrutarnbutlteranncsepaorret v. e mechanisminnon-self-gravitatingdisks,providedthegasisminimallyionizedto R u. coupletothefield.Thefinaltwosectionsareapresentationofrecentnumerical n n A studiesofMHDturbulence,andasummaryfollows. 2.PRELIMINARIES 2.1.FundamentalEquations Foreaseoffuturereference,welistherethefundamentalequationsofmagneto- hydrodynamics. @‰ Cr¢(‰v)D0 (1) @t 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 559 (cid:181) ¶ (cid:181) ¶ @v B2 B ‰ C(‰v¢r)v D¡r P C ¡‰r8C ¢r B @t 8… 4… (cid:181) ¶ 1 C· r2v C r(r¢v) (2) V 3 @B Dr£(v £B¡· r£B) (3) @t B P dlnP‰¡(cid:176) org (cid:176) ¡1 dt D QC¡Q¡ (4) s. w vie Equation1ismassconservation;Equation2isthedynamicalequationofmotion; e m arjournals.annualrpersonal use only. rfiEnathazoeqdeiltumidamaatutitviioitcoeohnrcnnaotilossp3crcrs,ioeotsa(cid:176)spmsntihucpdiesroakernitidnhnwe:deenh‰umtaecdoinatsiiftaoiitcmtbhnhaespeehtmoiqeecruaqatiaarsuntnsvaidtotdi)eisn,eoxc;n8n,oassQointithtfdyCye,m,Ev(gaqoQnrtuthadi¡avoe·t)inifltBoarudenttiiephdo4sreneeviarsmesvleltienophcstcoreiothsteeeysenncp,attoPatiraprogtalipha,cteyieBnrepmestsqrhe(ieuslensoatstimstviuiosoiraetnenygs,..()nap,OTesl·thuuiVicesrt Downloaded fron 01/25/07. For isadirect@e(x‰p@Rrtevs`si)oCnorfa¢n•g‰ulRarv`mvo¡meRn4tB…u`mBcoCns(cid:181)erPvaCtio8Bn…:2¶e`‚D0; (5) 597. RY o wheree`isaunitvectorinthe`direction.Thedissipativetermshavebeendropped 55-TO because they appear only in the flux term, transporting a negligible amount of 1:5VA angularmomentum. 4R 3.E Itisalsousefultohaveathandanequationfortotalenergyconversation.This ys. 200D OBS iisntseorpmreewtehda:tlengthytoderive(Balbus&Hawley1998),buttheresultisreadily o. AstrophSTEWAR @@Et Cr¢FE D¡Q¡; (6) Astrby wheretheenergydensityE is v. e u. R E D 1‰v2C P C‰8C B2 (7) nn 2 (cid:176) ¡1 8… A andtheenergyfluxis (cid:181) ¶ 1 (cid:176)P B FE Dv 2‰v2C (cid:176) ¡1 C‰8 C 4…£(v £B): (8) Theenergydensityconsistsofkinetic,thermal,gravitational,andmagneticcom- ponents; the flux is similar with the magnetic component present as a Poynting flux. The heating term QC, an entropy source, is assumed to arise from micro- scopicdissipation,anditdoesnotexplicitlyappearinthetotalenergyequation—it simplyconvertsoneformofenergytoanother.TheradiativeQ¡term,ontheother 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 560 BALBUS hand,representsgenuinesystemicenergylossesandappearsexplicitlyinthecon- servationequation. 2.2.NonlinearFluctuations Bothwavesandturbulenceinvolvetheconceptofwell-defineddeparturesofthe flow from a smooth background. Velocity fluctuations are of particular interest becauseitispossibletoformulateanexactenergyconservationlawforthefluctu- ationsthemselves.This,inturn,explicitlyshowstheroleofdifferentialrotationas g asourceoffreeenergyforthe(correlated)turbulentfluctuationsassociatedwith or s. outwardtransportofangularmomentum. w vie Letusdefinethevelocityfluctuationuby e Downloaded from arjournals.annualrn 01/25/07. For personal use only. ˜˜atehcq(ecuiRrsaien)tititniioeosnrpnanrfaflironleorcaewtis@[email protected]¢sioraiFtbyydti,lEoeaflbunputuopDct(urEtcoouDoq¡fxamutic(cid:181)ivmaoobt‰u¡iniaonrtsuinseoRaeRtn4l˜huot)hte`n(oteeRoe¡a:qm)onueobBau`tt4tRnia:iv…oidBnane`triao¶olnyfniddmenfx˜gRooartrcio¡ttoh,tnai`Qst(iEo¡danveq:fieuprnaratoigitfioieonlden2efi)onsrwe(t1rth(igh09tayhe))t 597. RY o Here,Eu isthefluctuationenergydensity 555-ATO 1 P B2 1:V E D ‰(u2C8 )C C ; (11) 3.4ER u 2 eff (cid:176) ¡1 8… ophys. 200ARD OBS 8effisaneffectivepotentialfunction Z R AstrEW 8eff D8¡ R˜2dR; (12) o. ST Astrby andFEuistheenergyfluxofthefluctuationsthemselves: nu. Rev. FEu Du(cid:181)21‰u2C (cid:176)(cid:176)¡P1 C‰8eff¶C 4B… £(u£B): (13) n A BecauseEquation10hasbeenaveragedover`,onlyRandZcomponentsappear intheflux. Thecombination TR` D‰uRu` ¡ B4R…B` (14) is an important quantity in both turbulent and wave transport theories of accre- tiondisks.Ithasappearedoncebefore:withintheangularmomentumconserva- tion equation (Equation 5), where it emerges as a component in the flux term. Its constituents may be separately identified as Reynolds (‰uRu`) and Maxwell 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 561 (¡BRB`=4…)stresses.(Notethatbothwave-likeandturbulentdisturbancescan create tight radial–azimuthal correlations in the velocity and magnetic fields.) Thesecorrelationsevidentlyservetwoconceptuallyquitedifferentfunctions:They directlytransportangularmomentum,andasshowninEquation10,theytapinto thefreeenergysourceofdifferentialrotation.Thelatterroleisparticularlycrucial forsustainingturbulence.Withoutexternaldriving,theonlyenergysourceforthe fluctuationsisthiscouplingofthestresstothedifferentialrotation.Inastrophys- ical accretion disks that make use of this free energy source, TR` must have the samesignas¡d˜=dR,i.e.,itmustbepositive. g or s. w vie 3.HYDRODYNAMICWAVESINDISKS e oaded from arjournals.annualr5/07. For personal use only. 3.1.TCpehnootelnhysaLtirldoipnepyriecfaaunernqcuWutniaomatnivoaHengnEo:efqtisuzHteaadtDtei,doiZPsnkDdi‰nPKwD‰h(cid:176)i(cid:176)c(cid:176),hwP¡th=he‰1erepDrKes(cid:176)issau¡ar2ec1oa;nnsdtadnetn.sWityemobaeyydaefisinm(e1pa5lne) 7. DownlY on 01/2 wdrhicearelcao2oirsditnhaeteasdi(aRb;at`ic;sZo)u.nTdhespgeaesdr.oIttaitsescoinnvtehneiegnratvtiotawtioornkalinfiestladnodfaardcceynltirna-l 59R mass.Theangularvelocity˜mustbeconstantoncylinders,˜D˜(R)(Tassoul 55-TO 1978). 5A 1:V Althoughitisastandardapproximation,theassumptionofabarotropicequa- 4R ys. 2003.D OBSE ttihoenpoofssstiabtieliitsyoobfvaiobuusloyyaanntidreesaplioznastieonin.Athmeofnogrmothoefrinshteorrntcaolmgrianvgist,yitwparveecsludduees ophAR toBrunt-Va¨isa¨la¨ oscillations(Ogilvie&Lubow1999).Instandarddiskmodels, strW however,entropystratificationarisesbecauseofradiativeheatdiffusionfromtur- AE o. ST bulent heating. A linearized wave treatment of such an “equilibrium” is at best Astrby adelicatematter.Ingeneral,theverticaltemperaturestructureofaccretiondisks v. isnotwellunderstood,andthevirtueofadoptingabarotropicpressureisthatit e R allowsimportantdynamicalbehaviortoberevealed. nu. Our goal is to study how linearized wave disturbances transport energy and n A angular momentum through a Keplerian disk. To this end, we introduce small perturbationstotheequilibriumsolution,denotedas–‰; –v,etc.Theequilibrium solutionisaxisymmetric,soaperturbedflowquantityXhastheform –X D–X(R;Z)exp(im`¡i!t); (16) where m is an integer and ! is the wave frequency. For the moment, the R;Z dependenceoftheamplitudeisunrestricted.Thelinearizeddynamicalequations ofmotionare @–H ¡i!¯ –vR ¡2˜–v` D¡ @R (17) 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 562 BALBUS •2 m ¡i!¯ –v` C 2˜–vR D¡i R –H (18) @–H ¡i!¯ –v D¡ : (19) Z @Z WehaveintroducedtheDoppler-shiftedwavefrequency, !¯ D!¡m˜ (20) andwhatisknownastheepicyclicfrequency•: g ws.or •2 D4˜2C d˜2 : (21) vie dlnR e ualry. The epicyclic frequency is the rate at which a point mass in a circular motion, oaded from arjournals.ann5/07. For personal use onl 0ad(BxiisiistTsnuyknhrmnbeeoyemrwde&emnitnraaTitcisrhnedteihmnipsegatluRaienrnqabeeuyaa1lonet9fciio8geitn7s¡hss)asio.ra!tr¯eAarbbeh–i‰itn‰ytl,hiedwtgeCyroaolctidu‰i1nrvyliedtrenaeaorrvmiis¢azoc(leini‰ucld.lea–almtloveyaf)asu•Dsbn2osc0tuoqatnubisiltteeser.avTgvaehetnieroearnrgeaeqellquryauirdaiemitmaiolpenllnoietcs•a(tt22iho2>an)t wnl1/2 Don 0 andtheequationofstate(relatingdensityandenthalpyperturbations): 7. Y o –‰ 55-59TOR –HDa2 ‰ (23) 5A 3.41:ERV Thethreedynamicalequationsmaybesolvedfor–v intermsof–H: Astrophys. 200EWARD OBS –vR D 1Di ••!•¯2@@–@RH–H¡ 2˜mRm!¯ –H‚‚; (24) Astro. by ST –v` D D 2˜ @R ¡ R –H ; (25) v. i @–H u. Re –vZ D¡!¯ @Z ; (26) n An where D D•2¡!¯2: (27) UsingEquations24–26inEquation22andsimplifyingtheresults,oneobtainsthe linearwaveequationforthedisk: • (cid:181) ¶ (cid:181) ¶ 1 @ R‰ @ 1 @ @ m2‰ ¡ ‰ ¡ R@R D @R !¯2@Z @Z R2D (cid:181) ¶ ‚ 1 @ 2˜m‰ ‰ C C –HD0: (28) R!¯ @R D †2a2 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 563 We have inserted an artificial † factor in the sound speed term, which, although formally equal to unity, will be used as an aid for sorting out asymptotic or- dersinaWKBanalysis.(Thediskisherepresumedtobecoldinthesensethat R˜(cid:192)a.) ThelocationsatwhichD D0and!¯ D0aresingularitiesofthewaveequation, althoughinthecaseoftheformerthesingularityisonlyapparent,notreal.They areknownrespectivelyasLindbladandcorotationresonances,andtheirneighbor- hoodsarezoneswherewavescouplestronglytothedisk.Theyareofimportance inthestudyoftidallydrivenwavesandarecriticaltoanunderstandingofplanetary g or migration (Goldreich & Tremaine 1979, 1980; Ward 1997). In this section, our s. w emphasis will be on freely propagating WKB waves, and we shall assume that e vi neitherDnor!¯ issmall;i.e.,thatwearenotintheneighborhoodofresonance. e ualry. m arjournals.annpersonal use onl 3.2.Tt3wi.o2.on1.s-DFoIfRimESTqeuOnaRtsiDiooEnRn2:a8DlIhWSaPvEKiRnSBgIOtWhNeaRfvEoLermAsTION A•ND GROUP‚VELOCITY We seek solu- oaded fro5/07. For –HD A(R;Z) exp iS(R†;Z) : (29) wnl1/2 Theideaisthatthephase S=† variesrapidly,andthe† factorensuresthisinthe Don 0 formallimit† !0.Wewillsolvethewaveequationtoleadingandsecondorder 7. Y o ina1=† expansion.Notethattheabsolutephaseisnotrelevanthere,andwemay 59R 55-TO assume that A, the amplitude, is real. We shall also assume that the waves are 1:5VA tightlywound,i.e.,thatbothkR andkZ (cid:192)m=R. 3.4ER Inserting Equation 29 into Equation 28, we find that the leading order 1=†2 ys. 200D OBS termsgive strophWAR !k¯2Z2 C !¯2k¡2R•2 D a12; (30) AE Astro. by ST where Rev. (kR;kZ)D(@S=@R;@S=@Z): (31) u. n ThisisthedispersionrelationforWKBdiskwaves,andthegradientsofSare,in n A essence,thewavenumbercomponents. Figure1isaplotoftheconstantfrequencycurvesinthek a,k awavenumber Z R plane.For!¯ > •,theiso-!¯ curvesareellipses;for!¯ < •,theyarehyperbolae. These two different conic sections define the two distinct wave branches, with very different transport properties. Indeed, this diagram makes evident several remarkablefeaturesofdiskwaves. Theellipticaliso-!¯ surfacescorrespondtodensitywaves,whicharerotationally modified sound waves (e.g., Goldreich & Tremaine 1979), and the hyperbolae correspond to inertial waves (Vishniac & Diamond 1989), described below. It is not difficult to show that the ellipses and hyperbolae always intersect at right 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 564 BALBUS g or s. w e vi e ualry. m arjournals.annpersonal use onl oaded fro5/07. For wnl1/2 Don 0 7. Y o 55-59TOR Figure 1 Contours of constant !¯ for the dispersion relation (Equation 30) of a 1:5VA Kepleriandisk.Theseformasetofconformalellipses(densitywaves)andhyperbolae 3.4ER (inertialwaves).Thevalueof!¯ alongacurveisreadoffatthepointofintersection ys. 200D OBS awriethsethpearkaRtedDb0yaoxnise;uthneitnfuomre!¯ric>al2scaanledi0s.i1nuunniittssfoofr˜1:1D<1.D!¯e<nsi2ty.wInaevretiaelllwipasvees ophAR hyperbolaeareseparatedby.066units. strW AE o. ST Astrby angles,sothatthecurvesarelikeaconformalmapping.Thepracticalrelevanceof ev. thisisthatbecausethewavegroupvelocityU isthewavenumbergradientof!¯, R u. (cid:181) ¶ nn @!¯ @!¯ A U D ; ; (32) @k @k R Z thegroupvelocitydirectionofthedensitywavesliesalongtheinertialwaveiso-!¯ curves,andthegroupvelocitydirectionoftheinertialwavesliesalongthedensity wave curves. Low frequency disturbances in disks have very different transport propertiesfromhighfrequencydisturbances,apointtowhichweshallreturnmany times. Foragivenwavevector(k ;k ),thegradienttoaniso-!¯ curvecouldpointin R Z either direction because the dispersion relation (Equation 30) does not uniquely determinethesignof!¯.Directcalculationrevealsthefollowing:

Description:
may ultimately prove amenable to global three-dimensional numerical simulation. I hate being “allowed for,” as if. I were some incalculable a boundary layer at a retaining wall. Annu. Rev. Astro. Astrophys. The stability behavior of strongly magnetized disks is rich and astrophysically intere
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.