23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 10.1146/annurev.astro.41.081401.155207 Annu.Rev.Astron.Astrophys.2003.41:555–97 doi:10.1146/annurev.astro.41.081401.155207 Copyright(cid:176)c 2003byAnnualReviews.Allrightsreserved E A M T NHANCED NGULAR OMENTUM RANSPORT A D IN CCRETION ISKS Steven A. Balbus g or DepartmentofAstronomy,VITA,UniversityofVirginia, Charlottesville,Virginia22901; ws. email:[email protected] e vi e m arjournals.annualrpersonal use only. pinKnnouermtyhAteeiWbnrrisceaotaccrrlocadrgscesintmtiitouianoTlcanhdctireioosefksntitkssoaenitoysu,fsripnetohuvsfyrtibaesobwuiucileraleidlntci.tpueTrsrflor,hoecMewnetsl.HasuMseDntsad,dagetenunrcdsreabttadiuinnceledohfiniuanecrsgledasosebfeihlnaiatnvyagedtuoarlaatcmroamrnarctyoiecmthpienronocwtruueegmarhfsuetdlrbiaraonentschd-t Downloaded fron 01/25/07. For suusuonnbmsstttlaaeebbnlliueenm.fltToueherfienrcecbaeelrseedanoeketnadrgitolhy,weagnnbrdeoahfdkaiKeevyeniopttrsrla.eonrOfisaup(nstowurroftafictracdotileieyofnfindtcleiyinse)tcnoirtoesMnamsiHzianeDygdbtgauenaresgb,vuuarlleaelunrnadcvteeeerldmion.caCgiythtyhbaeepnmrdsotrufiaddlioeribeescsdaetrliryne- 7. Y o vationsoftheGalacticCentersupporttheexistenceoflowluminosityaccretion,which 59R mayultimatelyproveamenabletoglobalthree-dimensionalnumericalsimulation. 55-TO 5A 1:V 3.4ER Ihatebeing“allowedfor,”asif ys. 200D OBS Iinwaenreassotrmoneoimnciacalcluelqaubaletiqouna.ntity ophAR strW —D.L.Sayers,TheDocumentsintheCase. AE o. ST Astrby v. 1.INTRODUCTION e R u. n Inrecentyears,accretiondisktransporttheoryhasdevelopedsorapidlythatany n A review is destined to be significantly dated the moment it appears in print. This willputthereaderatadisadvantage.However,itisanexhilaratingtimefordisk theorists. Thecurrenthappystateofaffairsinthiscomputationallydrivenfieldislargely duetotheswiftevolutionofthree-dimensionalmagnetohydrodynamical(MHD) codesandtheirsupportinghardware.Thesepowerfultoolsarrivewithprovident timing,coincidingwithadeepeningtheoreticalunderstandingoftheroleofmag- neticfieldsinaccretiondiskdynamics.Theresultisthataccretiondiskturbulence theoryhasgrownfromamereviscositycoefficienttoafullyquantitativescience. Inthisreview,Ifocusonwhatisnowknownoftherelationshipbetweenturbulence 0066-4146/03/0922-0555$14.00 555 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 556 BALBUS andenhancedangularmomentuminaccretiondisks,andtheresultingimplications forsomeselectedastrophysicalsystems. Theclassicalproblemwithaccretiondisksisthattheydoofcourseaccrete.How isitthatfluidelementsorbitinginacentralforcefieldlosetheirspecificangular momentum and spiral inward? One may quickly rule out ordinary particulate viscosity.Astrophysicaldisksaresimplytoobig.Tofixideas,notethatdisturbances arepropagatedbyviscousdiffusionoveradistancelonatimescaleoforderl2=”, where ” is the kinematic viscosity, or about 3£107 years forl » 1010 cm and ” D105cm2s¡1.Thisisordersofmagnitudetoolongforthetimevariabilityseen g or incompactobjectaccretiondisks. s. w Thewayaroundthisdifficultywasperceivedtobeturningthewoefullyinade- e vi quateviscositytoone’sadvantagebyappealingtotheassociatedlargeReynolds e ualry. number.This,itwasthought,wouldturndifferentialrotationintoshear-driventur- m arjournals.annpersonal use onl botsotufrlabsebhenlecteareirlgo(flgeco.eagwrl.e,ldilCnabmreayawirnnfaioonnirsnldtiatno&beitalKuirtrirflbeaousfwltef1oni9rnc5esa6thaK,baSesihlpibalteikeereusinra.anTk&nhrooeStwafuatnnicoytsniatnhepcvareto1ttfi9hhl7eeer3eww).woaTrsekhrteehobefnrroReefaedokyerdnmeooonwldnons-t oaded fro5/07. For immomSmheeednaitaruttemulrytbrvuailneeswnpceoedrtiasissanadneeeesdimreadbb.alTrerhatrissasimitsiebnneatctaflouostwheisswhsheceaerrne-dagrririoveea.ntlytuernbhualenncceedi(sacnhgaurlaacr)- wnl1/2 terizedbyahighdegreeofcorrelationbetweentheradialandazimuthalvelocity Don 0 fluctuations. This, as we shall see, has the direct effect of raising a disk’s angu- 597. RY o lar momentum flux orders of magnitude above what would be possible with an 55-TO ordinarycollisionalviscosity. 5A 1:V Notopicinfluiddynamicsismorecontentiousthantheonsetanddevelopment 4R 3.E ofturbulence,andaccretiondiskturbulencehasnotbeenanexception.Keplerian ys. 200D OBS dfoisrckessddoranmotarteicsaelmlybsltealbaibliozreartootraytisohneaalrflfloowwos,nhloarwgeevsecralloecsaalnlydosmnealple,earfse.aCtuorreionloist ophAR sharedbyclassicalplanarCouettefloworPoiseuilleflow.1YetCoriolisforcesdo strW AE noworkonthefluid;theyareinfactabsentfromtheenergyconservationequations. Astro. by ST BorewcaiuthsoeuatCpootreinotlifsrfeoerceense,rdgeybsaoteurhcaesicnetnhteerfeodrmonowfhsehtehaerrrfleutaidinnsoanplirneesaernitcieeswaittha v. e high-enoughReynoldsnumberwouldstillfindawaytotapintothissourcewhen R u. lineardisturbancesfailtodoso. n n A NopublishedlaboratoryexperimenthasshownthebreakdownofaKeplerian- likeCouetteflowprofile,buttrulydefinitivestudieshaveyettobeperformed.The onsetofnonlinearinstabilitiesthathavebeenreportedinCouetteflowexperiments aregenerallyrelatedtoverysharprotationalvelocitygradientstypicalofKelvin- Helmholtzinstabilities,notther¡1=2powerlawcharacteristicofaKeplerianprofile (Triton1988).Theissueisreceivingrenewedattention,withgroupsinSaclay,Los 1Anotherkeyfeaturethatdisksdonotsharewiththeselaboratoryflowsisthepresenceof aboundarylayerataretainingwall. 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 557 Alamos,andPrincetonlookingatReynoldsnumbersRe»105¡6,muchinexcess ofthoseavailableintheclassicalexperiments(e.g.,Coles1965). Theoretical developments have been more brisk. A theory for the onset of turbulenceinPoiseuilleflowwaselucidatedinthe1970sand1980s(Bayly,Orszag &Herbert1988).Thekeyistheexistenceofneutrallystable(orslowlydecaying) finiteamplitudedisturbances.Thesesolutionsaretime-steadybutspatiallyperiodic inthestreamwisedirection(Zahnetal.1974).Itistheseamendedflowprofilesthat findthemselvessubjecttoarapid,short-wavelengththree-dimensionalinstability, leadingtoabreakdownintoturbulence(Orszag&Patera1980,1981).Asimilar g or process appears to be at work in shear layers (Pierrehumbert & Widnall 1982, s. w Corcos & Lin 1984). It is now generally accepted that the triggering of a rapid, e evi linearthree-dimensionalinstabilityofanearlyneutrallystable,two-dimensional, ualry. finite-amplitudedisturbanceisaverygenericmodeofthebreakdownoflaminar m arjournals.annpersonal use onl fltwaonilwHtlppoionrwoitnopdtatoiguseartsbtheutahliteinesnvtcbheeeen.afrionorcnmomooupfrrleuinsnsediaberlresintaaexnritdsiiaynlmgwmoafevtearscicc(rLdeiitsgitohuntrhbdialilnsk1cse9?s7i8Tn)hawerimothtoasatitncighmaflpruaoicrd-- oaded fro5/07. For titenhraiatsstitisrcocfprrihetiyqcsuaielcnatcolydthpiserkotspr,aontrhtsieiotinfioannlittteooattuhmrebpluloiltceuandlceve,oinrnetiumctirtiayxlilnoygfstlhtaaeyberlroestaactxaiionsnnyomptrmofofiertlmrei.c.TOshtnaultsye, wnl1/2 in a low-vorticity rotational profile, in which the oscillation frequency is much 7. DoY on 0 smallerthantheshearingrate,wouldweexpectabreakdownofflowlaminainto 59R turbulence,similartowhatisseeninamixinglayer.Thisisingoodaccordwith 55-TO three-dimensionalnumericalsimulations(Balbus,Hawley&Stone1996;Hawley, 5A 1:V Balbus&Winters1999),whichfindnononlinearlocalinstabilitiesinKeplerian 4R 3.E disksbutdoindeedfindthatshearlayersandlow-vorticitydisksshowanonlinear strophys. 200WARD OBS bshyryemdarmkoddeoytrwnicanmsttoiacbtauillrirbtoyuu,lethenottwofleotvuwerr.b,TualhneednrcetehiesinnasKotoeiopfnlyeetrhtiaanntotdhaiensrkaelsy,mtbiaceyyporbnoedoaftnhooefthlhoeicgrahnleonsntolnirneaesxoair-- AE lutionavailableinsupercomputersimulations,retainssomeadvocates(Richard& o. ST Astrby Zahn1999). v. Accretiondiskshaveonecriticallyimportantattributenotsharedwiththeclass- Re icalhydrodynamicalfluids:Theyaregenerallymagnetized.Byengenderingnew u. degreesoffreedomintheirhostfluid,evenveryweakmagneticfieldscompletely n n A alterthestabilitybehaviorofastrophysicalgases,bothrotationallyandthermally (Balbus2001).Freeenergysourcesintheformofangularvelocityandtemperature gradientsbecomedirectlyavailabletodestabilizetheflow. Thecounterintuitivepointhereisthataweakmagneticfieldcanhavesucha potentinfluence.Thestabilitybehaviorofstronglymagnetizeddisksisrichand astrophysicallyinteresting(e.g.,Papaloizou&Terquem1996;Varnie`re&Tagger 2002),buttheemphasisinthisreviewisdecidelyonsubthermalmagneticfields. Ratherthandependingdirectlyonthestrengthoftheequilibriummagneticfields, weakfieldinstabilitiesdependdirectlyuponhydrodynamicpropertiesoftheun- perturbeddisk.Iftheangularvelocitydecreasesoutwardinaweaklymagnetized 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 558 BALBUS accretiondisk,whichisgenerallythecase,therotationprofileislinearlyunstable (Balbus&Hawley1991).Thisinstabilityisknownasthemagnetorotationalin- stability,orMRIforshort.Asweshallsee,thephysicsoftheMRIisverysimple. Nevertheless, a full understanding of its mathematical generality and wide ap- plicabilitywasmuchbelated,followingphenomenologicaldisktheory(Shakura & Sunyaev 1973) by nearly two decades. Knowledge of the instability itself significantly predated modern accretion disk theory (Velikhov 1959), albeit in aratherformalglobalguise. ThenumericalstudyoftheMRIdoesnotrequireunattainablegridresolutions, g or and it can be readily simulated. Both local (Hawley, Gammie & Balbus 1995; s. w Brandenburgetal.1995)andglobal(Armitage1998,Hawley2000)investigations e vi unambiguouslyshowabreakdownoflaminarKeplerianflowintowell-developed e ualry. turbulence.TheMRIistheonlyinstabilityshowntobecapableofproducingand m arjournals.annpersonal use onl sioinnuusptnteraoroinntr-oeisngsetgileoflt-nlhgaserroaedvfniischtkaaasttnaionccneglydAdssUmitsrkiescssc.savAlnaeretsieal(dobGewleadmt(feCommrViape)ce1csryra9ets9utt6iero)emn,ststhao(enGpdleraovhmceigemlehoidfedMoe&nnRsvMiIit-aieiebnnsldoe,uuetci.1mge9d.e,9tsi8ucn)ra,btlheuoes-r oaded fro5/07. For lwbeinhlicitlyeesctheaeenmucnshdcaeanrpglayebirnlaegpoKidfeltyph,leeefrruiualplntrpianrngogfieolreoefrveaemcncartieuntrsinoeinsnscgeonomtfifpalcleloyxmifitpyxlemedtae.nIlyni.fseAhsotlelrdtt,hitinhsenoaicntcusutrares-. wnl1/2 Forallthesereasons,despitethedifficultiesofcopingwithMHDturbulence,the Don 0 MRIisnowatthecenterofnumericalaccretiondiskstudies. 597. RY o Letus,however,postponeourdiscussionofmagneticmattersandturnourat- 55-TO tention first to the study of simple hydrodynamical waves in disks. These are of 5A 1:V greatpracticalinterestintheirownright,especiallyinprotoplanetarydisks.But 4R 3.E it is also the case that understanding the transport properties of waves deepens ys. 200D OBS odnroed’synuanmdeicrs,taanndditnhgatoisfotuurrbpurliemnatrtyrarnesapsoornt,fobrortehvhieywdirnogdythneammihceraen.dWmeasghnaelltothheyn- ophAR followwithadiscussionofhydrodynamicalinstability,withafocusonhowglobal strW AE instabilitycaninprincipleemergeinadifferentiallyrotatingdiskevenwhenthe Astro. by ST Rthaeytloepigichscoofntdhietionnexitssseactitsiofine.dM.Magangenteicticstirnesstsaebsilairteytahnedmmoasgtnimetipcotrutarnbutlteranncsepaorret v. e mechanisminnon-self-gravitatingdisks,providedthegasisminimallyionizedto R u. coupletothefield.Thefinaltwosectionsareapresentationofrecentnumerical n n A studiesofMHDturbulence,andasummaryfollows. 2.PRELIMINARIES 2.1.FundamentalEquations Foreaseoffuturereference,welistherethefundamentalequationsofmagneto- hydrodynamics. @‰ Cr¢(‰v)D0 (1) @t 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 559 (cid:181) ¶ (cid:181) ¶ @v B2 B ‰ C(‰v¢r)v D¡r P C ¡‰r8C ¢r B @t 8… 4… (cid:181) ¶ 1 C· r2v C r(r¢v) (2) V 3 @B Dr£(v £B¡· r£B) (3) @t B P dlnP‰¡(cid:176) org (cid:176) ¡1 dt D QC¡Q¡ (4) s. w vie Equation1ismassconservation;Equation2isthedynamicalequationofmotion; e m arjournals.annualrpersonal use only. rfiEnathazoeqdeiltumidamaatutitviioitcoeohnrcnnaotilossp3crcrs,ioeotsa(cid:176)spmsntihucpdiesroakernitidnhnwe:deenh‰umtaecdoinatsiiftaoiitcmtbhnhaespeehtmoiqeecruaqatiaarsuntnsvaidtotdi)eisn,eoxc;n8n,oassQointithtfdyCye,m,Ev(gaqoQnrtuthadi¡avoe·t)inifltBoarudenttiiephdo4sreneeviarsmesvleltienophcstcoreiothsteeeysenncp,attoPatiraprogtalipha,cteyieBnrepmestsqrhe(ieuslensoatstimstviuiosoiraetnenygs,..()nap,OTesl·thuuiVicesrt Downloaded fron 01/25/07. For isadirect@e(x‰p@Rrtevs`si)oCnorfa¢n•g‰ulRarv`mvo¡meRn4tB…u`mBcoCns(cid:181)erPvaCtio8Bn…:2¶e`‚D0; (5) 597. RY o wheree`isaunitvectorinthe`direction.Thedissipativetermshavebeendropped 55-TO because they appear only in the flux term, transporting a negligible amount of 1:5VA angularmomentum. 4R 3.E Itisalsousefultohaveathandanequationfortotalenergyconversation.This ys. 200D OBS iisntseorpmreewtehda:tlengthytoderive(Balbus&Hawley1998),buttheresultisreadily o. AstrophSTEWAR @@Et Cr¢FE D¡Q¡; (6) Astrby wheretheenergydensityE is v. e u. R E D 1‰v2C P C‰8C B2 (7) nn 2 (cid:176) ¡1 8… A andtheenergyfluxis (cid:181) ¶ 1 (cid:176)P B FE Dv 2‰v2C (cid:176) ¡1 C‰8 C 4…£(v £B): (8) Theenergydensityconsistsofkinetic,thermal,gravitational,andmagneticcom- ponents; the flux is similar with the magnetic component present as a Poynting flux. The heating term QC, an entropy source, is assumed to arise from micro- scopicdissipation,anditdoesnotexplicitlyappearinthetotalenergyequation—it simplyconvertsoneformofenergytoanother.TheradiativeQ¡term,ontheother 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 560 BALBUS hand,representsgenuinesystemicenergylossesandappearsexplicitlyinthecon- servationequation. 2.2.NonlinearFluctuations Bothwavesandturbulenceinvolvetheconceptofwell-defineddeparturesofthe flow from a smooth background. Velocity fluctuations are of particular interest becauseitispossibletoformulateanexactenergyconservationlawforthefluctu- ationsthemselves.This,inturn,explicitlyshowstheroleofdifferentialrotationas g asourceoffreeenergyforthe(correlated)turbulentfluctuationsassociatedwith or s. outwardtransportofangularmomentum. w vie Letusdefinethevelocityfluctuationuby e Downloaded from arjournals.annualrn 01/25/07. For personal use only. ˜˜atehcq(ecuiRrsaien)tititniioeosnrpnanrfaflironleorcaewtis@[email protected]¢sioraiFtbyydti,lEoeaflbunputuopDct(urEtcoouDoq¡fxamutic(cid:181)ivmaoobt‰u¡iniaonrtsuinseoRaeRtn4l˜huot)hte`n(oteeRoe¡a:qm)onueobBau`tt4tRnia:iv…oidBnane`triao¶olnyfniddmenfx˜gRooartrcio¡ttoh,tnai`Qst(iEo¡danveq:fieuprnaratoigitfioieonlden2efi)onsrwe(t1rth(igh09tayhe))t 597. RY o Here,Eu isthefluctuationenergydensity 555-ATO 1 P B2 1:V E D ‰(u2C8 )C C ; (11) 3.4ER u 2 eff (cid:176) ¡1 8… ophys. 200ARD OBS 8effisaneffectivepotentialfunction Z R AstrEW 8eff D8¡ R˜2dR; (12) o. ST Astrby andFEuistheenergyfluxofthefluctuationsthemselves: nu. Rev. FEu Du(cid:181)21‰u2C (cid:176)(cid:176)¡P1 C‰8eff¶C 4B… £(u£B): (13) n A BecauseEquation10hasbeenaveragedover`,onlyRandZcomponentsappear intheflux. Thecombination TR` D‰uRu` ¡ B4R…B` (14) is an important quantity in both turbulent and wave transport theories of accre- tiondisks.Ithasappearedoncebefore:withintheangularmomentumconserva- tion equation (Equation 5), where it emerges as a component in the flux term. Its constituents may be separately identified as Reynolds (‰uRu`) and Maxwell 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 561 (¡BRB`=4…)stresses.(Notethatbothwave-likeandturbulentdisturbancescan create tight radial–azimuthal correlations in the velocity and magnetic fields.) Thesecorrelationsevidentlyservetwoconceptuallyquitedifferentfunctions:They directlytransportangularmomentum,andasshowninEquation10,theytapinto thefreeenergysourceofdifferentialrotation.Thelatterroleisparticularlycrucial forsustainingturbulence.Withoutexternaldriving,theonlyenergysourceforthe fluctuationsisthiscouplingofthestresstothedifferentialrotation.Inastrophys- ical accretion disks that make use of this free energy source, TR` must have the samesignas¡d˜=dR,i.e.,itmustbepositive. g or s. w vie 3.HYDRODYNAMICWAVESINDISKS e oaded from arjournals.annualr5/07. For personal use only. 3.1.TCpehnootelnhysaLtirldoipnepyriecfaaunernqcuWutniaomatnivoaHengnEo:efqtisuzHteaadtDtei,doiZPsnkDdi‰nPKwD‰h(cid:176)i(cid:176)c(cid:176),hwP¡th=he‰1erepDrKes(cid:176)issau¡ar2ec1oa;nnsdtadnetn.sWityemobaeyydaefisinm(e1pa5lne) 7. DownlY on 01/2 wdrhicearelcao2oirsditnhaeteasdi(aRb;at`ic;sZo)u.nTdhespgeaesdr.oIttaitsescoinnvtehneiegnratvtiotawtioornkalinfiestladnodfaardcceynltirna-l 59R mass.Theangularvelocity˜mustbeconstantoncylinders,˜D˜(R)(Tassoul 55-TO 1978). 5A 1:V Althoughitisastandardapproximation,theassumptionofabarotropicequa- 4R ys. 2003.D OBSE ttihoenpoofssstiabtieliitsyoobfvaiobuusloyyaanntidreesaplioznastieonin.Athmeofnogrmothoefrinshteorrntcaolmgrianvgist,yitwparveecsludduees ophAR toBrunt-Va¨isa¨la¨ oscillations(Ogilvie&Lubow1999).Instandarddiskmodels, strW however,entropystratificationarisesbecauseofradiativeheatdiffusionfromtur- AE o. ST bulent heating. A linearized wave treatment of such an “equilibrium” is at best Astrby adelicatematter.Ingeneral,theverticaltemperaturestructureofaccretiondisks v. isnotwellunderstood,andthevirtueofadoptingabarotropicpressureisthatit e R allowsimportantdynamicalbehaviortoberevealed. nu. Our goal is to study how linearized wave disturbances transport energy and n A angular momentum through a Keplerian disk. To this end, we introduce small perturbationstotheequilibriumsolution,denotedas–‰; –v,etc.Theequilibrium solutionisaxisymmetric,soaperturbedflowquantityXhastheform –X D–X(R;Z)exp(im`¡i!t); (16) where m is an integer and ! is the wave frequency. For the moment, the R;Z dependenceoftheamplitudeisunrestricted.Thelinearizeddynamicalequations ofmotionare @–H ¡i!¯ –vR ¡2˜–v` D¡ @R (17) 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 562 BALBUS •2 m ¡i!¯ –v` C 2˜–vR D¡i R –H (18) @–H ¡i!¯ –v D¡ : (19) Z @Z WehaveintroducedtheDoppler-shiftedwavefrequency, !¯ D!¡m˜ (20) andwhatisknownastheepicyclicfrequency•: g ws.or •2 D4˜2C d˜2 : (21) vie dlnR e ualry. The epicyclic frequency is the rate at which a point mass in a circular motion, oaded from arjournals.ann5/07. For personal use onl 0ad(BxiisiistTsnuyknhrmnbeeoyemrwde&emnitnraaTitcisrhnedteihmnipsegatluRaienrnqabeeuyaa1lonet9fciio8geitn7s¡hss)asio.ra!tr¯eAarbbeh–i‰itn‰ytl,hiedwtgeCyroaolctidu‰i1nrvyliedtrenaeaorrvmiis¢azoc(leini‰ucld.lea–almtloveyaf)asu•Dsbn2osc0tuoqatnubisiltteeser.avTgvaehetnieroearnrgeaeqellquryauirdaiemitmaiolpenllnoietcs•a(tt22iho2>an)t wnl1/2 Don 0 andtheequationofstate(relatingdensityandenthalpyperturbations): 7. Y o –‰ 55-59TOR –HDa2 ‰ (23) 5A 3.41:ERV Thethreedynamicalequationsmaybesolvedfor–v intermsof–H: Astrophys. 200EWARD OBS –vR D 1Di ••!•¯2@@–@RH–H¡ 2˜mRm!¯ –H‚‚; (24) Astro. by ST –v` D D 2˜ @R ¡ R –H ; (25) v. i @–H u. Re –vZ D¡!¯ @Z ; (26) n An where D D•2¡!¯2: (27) UsingEquations24–26inEquation22andsimplifyingtheresults,oneobtainsthe linearwaveequationforthedisk: • (cid:181) ¶ (cid:181) ¶ 1 @ R‰ @ 1 @ @ m2‰ ¡ ‰ ¡ R@R D @R !¯2@Z @Z R2D (cid:181) ¶ ‚ 1 @ 2˜m‰ ‰ C C –HD0: (28) R!¯ @R D †2a2 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE ANGULARMOMENTUMTRANSPORTINDISKS 563 We have inserted an artificial † factor in the sound speed term, which, although formally equal to unity, will be used as an aid for sorting out asymptotic or- dersinaWKBanalysis.(Thediskisherepresumedtobecoldinthesensethat R˜(cid:192)a.) ThelocationsatwhichD D0and!¯ D0aresingularitiesofthewaveequation, althoughinthecaseoftheformerthesingularityisonlyapparent,notreal.They areknownrespectivelyasLindbladandcorotationresonances,andtheirneighbor- hoodsarezoneswherewavescouplestronglytothedisk.Theyareofimportance inthestudyoftidallydrivenwavesandarecriticaltoanunderstandingofplanetary g or migration (Goldreich & Tremaine 1979, 1980; Ward 1997). In this section, our s. w emphasis will be on freely propagating WKB waves, and we shall assume that e vi neitherDnor!¯ issmall;i.e.,thatwearenotintheneighborhoodofresonance. e ualry. m arjournals.annpersonal use onl 3.2.Tt3wi.o2.on1.s-DFoIfRimESTqeuOnaRtsiDiooEnRn2:a8DlIhWSaPvEKiRnSBgIOtWhNeaRfvEoLermAsTION A•ND GROUP‚VELOCITY We seek solu- oaded fro5/07. For –HD A(R;Z) exp iS(R†;Z) : (29) wnl1/2 Theideaisthatthephase S=† variesrapidly,andthe† factorensuresthisinthe Don 0 formallimit† !0.Wewillsolvethewaveequationtoleadingandsecondorder 7. Y o ina1=† expansion.Notethattheabsolutephaseisnotrelevanthere,andwemay 59R 55-TO assume that A, the amplitude, is real. We shall also assume that the waves are 1:5VA tightlywound,i.e.,thatbothkR andkZ (cid:192)m=R. 3.4ER Inserting Equation 29 into Equation 28, we find that the leading order 1=†2 ys. 200D OBS termsgive strophWAR !k¯2Z2 C !¯2k¡2R•2 D a12; (30) AE Astro. by ST where Rev. (kR;kZ)D(@S=@R;@S=@Z): (31) u. n ThisisthedispersionrelationforWKBdiskwaves,andthegradientsofSare,in n A essence,thewavenumbercomponents. Figure1isaplotoftheconstantfrequencycurvesinthek a,k awavenumber Z R plane.For!¯ > •,theiso-!¯ curvesareellipses;for!¯ < •,theyarehyperbolae. These two different conic sections define the two distinct wave branches, with very different transport properties. Indeed, this diagram makes evident several remarkablefeaturesofdiskwaves. Theellipticaliso-!¯ surfacescorrespondtodensitywaves,whicharerotationally modified sound waves (e.g., Goldreich & Tremaine 1979), and the hyperbolae correspond to inertial waves (Vishniac & Diamond 1989), described below. It is not difficult to show that the ellipses and hyperbolae always intersect at right 23Jul2003 20:32 AR AR194-AA41-14.tex AR194-AA41-14.sgm LaTeX2e(2002/01/18) P1:GCE 564 BALBUS g or s. w e vi e ualry. m arjournals.annpersonal use onl oaded fro5/07. For wnl1/2 Don 0 7. Y o 55-59TOR Figure 1 Contours of constant !¯ for the dispersion relation (Equation 30) of a 1:5VA Kepleriandisk.Theseformasetofconformalellipses(densitywaves)andhyperbolae 3.4ER (inertialwaves).Thevalueof!¯ alongacurveisreadoffatthepointofintersection ys. 200D OBS awriethsethpearkaRtedDb0yaoxnise;uthneitnfuomre!¯ric>al2scaanledi0s.i1nuunniittssfoofr˜1:1D<1.D!¯e<nsi2ty.wInaevretiaelllwipasvees ophAR hyperbolaeareseparatedby.066units. strW AE o. ST Astrby angles,sothatthecurvesarelikeaconformalmapping.Thepracticalrelevanceof ev. thisisthatbecausethewavegroupvelocityU isthewavenumbergradientof!¯, R u. (cid:181) ¶ nn @!¯ @!¯ A U D ; ; (32) @k @k R Z thegroupvelocitydirectionofthedensitywavesliesalongtheinertialwaveiso-!¯ curves,andthegroupvelocitydirectionoftheinertialwavesliesalongthedensity wave curves. Low frequency disturbances in disks have very different transport propertiesfromhighfrequencydisturbances,apointtowhichweshallreturnmany times. Foragivenwavevector(k ;k ),thegradienttoaniso-!¯ curvecouldpointin R Z either direction because the dispersion relation (Equation 30) does not uniquely determinethesignof!¯.Directcalculationrevealsthefollowing:
Description: