ebook img

Engineering Maths First-Aid Kit PDF

162 Pages·2000·1.861 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Maths First-Aid Kit

Engineering Maths First-Aid Kit We work with leading authors to develop the strongest educational materials in mathematics, bringing cutting-edge thinking and best learning practice to a global market. Under a range of well-known imprints, including Prentice Hall, we craft high quality print and electronic publications which help readers to understand and apply their content, whether studying or at work. To find out more about the complete range of our publishing please visit us on the World Wide Web at: www.pearsoneduc.com Engineering Maths First-Aid Kit Anthony Croft Pearson Education Ltd Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies around the World. Visit us on the World Wide Web at: www.pearsoneduc.com First edition 2000 (cid:1)c Pearson Education Limited 2000 The right of Anthony Croft to be identified as the author of this Work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. Permission is hereby given for the material in this publication to be reproduced for OHP transparencies and student handouts, without express permission of the Publishers, for educational purposes only. In all other cases, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P 0LP. This book may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without prior consent of the Publishers. ISBN 0130-87430-2 British Library Cataloguing-in-Publication Data A catalogue record for this book can be obtained from the British Library Library of Congress Cataloging-in-Publication Data Croft, Tony, 1957- Engineering maths first-aid kit / Anthony Croft.– 1st ed. p. cm. Includes bibliographical references and index. ISBN 0-13-087430-2 1. Mathematics. I. Title. QA37.2.C72 2000 510–dc21 99-088596 10 9 8 7 6 5 4 3 2 1 04 03 02 01 00 Typeset in Computer Modern by 56. Printed in Great Britain by Henry Ling Ltd., at the Dorset Press, Dorchester, Dorset. Contents 1. Arithmetic 1.1.1 1.1 Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 1.2 Powers and roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 1.3 Scientific notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 1.4 Factorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 1.5 The modulus of a number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 2. Algebra 2.1.1 2.1 The laws of indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 2.2 Negative and fractional powers . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 2.3 Removing brackets 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 2.4 Removing brackets 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 2.5 Factorising simple expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 2.6 Factorising quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 2.7 Simplifying fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 2.8 Addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 2.9 Multiplication and division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9.1 2.10 Rearranging formulas 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10.1 2.11 Rearranging formulas 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11.1 2.12 Solving linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12.1 2.13 Simultaneous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13.1 2.14 Quadratic equations 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14.1 2.15 Quadratic equations 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15.1 2.16 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.1 2.17 The modulus symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.17.1 2.18 Graphical solution of inequalities . . . . . . . . . . . . . . . . . . . . . . . 2.18.1 2.19 What is a logarithm? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.19.1 2.20 The laws of logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.20.1 Contents.1 copyright (cid:1)c Pearson Education Limited, 2000 2.21 Bases other than 10 and e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.21.1 2.22 Sigma notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.22.1 2.23 Partial fractions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.23.1 2.24 Partial fractions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.24.1 2.25 Partial fractions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25.1 2.26 Completing the square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.26.1 2.27 What is a surd? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.27.1 3. Functions, coordinate systems and graphs 3.1.1 3.1 What is a function? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 3.2 The graph of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 3.3 The straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 3.4 The exponential constant e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 3.5 The hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 3.6 The hyperbolic identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 3.7 The logarithm function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1 3.8 Solving equations involving logarithms and exponentials . . . . . . . . . . . 3.8.1 3.9 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.1 4. Trigonometry 4.1.1 4.1 Degrees and radians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 4.2 The trigonometrical ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 4.3 Graphs of the trigonometric functions . . . . . . . . . . . . . . . . . . . . . . 4.3.1 4.4 Trigonometrical identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 4.5 Pythagoras’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 4.6 The sine rule and cosine rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1 5. Matrices and determinants 5.1.1 5.1 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 5.2 Cramer’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 5.3 Multiplying matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 5.4 The inverse of a 2×2 matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 5.5 The inverse of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 5.6 Using the inverse matrix to solve equations . . . . . . . . . . . . . . . . . . . 5.6.1 6. Vectors 6.1.1 6.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Contents.2 copyright (cid:1)c Pearson Education Limited, 2000 6.2 The scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 6.3 The vector product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 7. Complex numbers 7.1.1 7.1 What is a complex number? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 7.2 Complex arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 7.3 The Argand diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.1 7.4 The polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 7.5 The form r(cosθ+jsinθ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 7.6 Multiplication and division in polar form . . . . . . . . . . . . . . . . . . . . 7.6.1 7.7 The exponential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.1 8. Calculus 8.1.1 8.1 Introduction to differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 8.2 Table of derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 8.3 Linearity rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 8.4 Product and quotient rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 8.5 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.1 8.6 Integration as the reverse of differentiation . . . . . . . . . . . . . . . . . . . 8.6.1 8.7 Table of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7.1 8.8 Linearity rules of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.8.1 8.9 Evaluating definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.9.1 8.10 Integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.10.1 8.11 Integration by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.11.1 8.12 Integration as summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.12.1 Contents.3 copyright (cid:1)c Pearson Education Limited, 2000 A few words from the author . . . Over the past three years I have tried to offer mathematical support to many hundreds of students in the early stages of their degree programmes in engineering. On many, many occasions I have found that gaps in mathematical knowledge impede progress both in engineering mathematics and also in some of the engineering topics that the students are studying. Sometimes these gaps arise because they have long-since forgotten basic techniques. Sometimes, for a variety of reasons, they seem to have never met certain fundamentals in their previousstudies. Whatevertheunderlyingreasons, theonlypracticalremedyistohaveavailable resources which can quickly get to the heart of the problem, which can outline a technique or formula or important results, and, importantly, which students can take away with them. This Engineering Maths First-Aid Kit is my attempt at addressing this need. I am well aware that an approach such as this is not ideal. What many students need is a prolonged and structured course in basic mathematical techniques, when all the foundations can be properly laid and there is time to practice and develop confidence. Piecemeal attempts at helping a student do not really get to the root of the underlying problem. Nevertheless I see this Kit as a realistic and practical damage-limitation exercise, which can provide sufficient sticking plaster to enable the student to continue with the other aspects of their studies which are more important to them. I have used help leaflets similar to these in the Mathematics Learning Support Centre at Lough- borough. They are particularly useful at busy times when I may have just a few minutes to try to help a student, and I would like to revise a topic briefly, and then provide a few simple practice exercises. You should realise that these leaflets are not an attempt to put together a coherent course in engineering mathematics, they are not an attempt to replace a textbook, nor are they intended to be comprehensive in their treatment of individual topics. They are what I say – elements of a First-Aid kit. I hope that some of your students find that they ease the pain! Tony Croft December 1999 References.4 copyright (cid:1)c Pearson Education Limited, 2000 ☛ ✟ 1.1 ✡ ✠ Fractions Introduction The ability to work confidently with fractions, both number fractions and algebraic fractions, is an essential skill which underpins all other algebraic processes. In this leaflet we remind you of how number fractions are simplified, added, subtracted, multiplied and divided. 1. Expressing a fraction in its simplest form p In any fraction , say, the number p at the top is called the numerator. The number q at q the bottom is called the denominator. The number q must never be zero. A fraction can always be expressed in different, yet equivalent forms. For example, the two fractions 2 and 6 1 are equivalent. They represent the same value. A fraction is expressed in its simplest form 3 by cancelling any factors which are common to both the numerator and the denominator. You need to remember that factors are numbers which are multiplied together. We note that 2 1×2 = 6 2×3 and so there is a factor of 2 which is common to both the numerator and the denominator. This common factor can be cancelled to leave the equivalent fraction 1. Cancelling is equivalent to 3 dividing the top and the bottom by the common factor. Example 12 is equivalent to 3 since 20 5 12 4×3 3 = = 20 4×5 5 Exercises 1. Express each of the following fractions in its simplest form: a) 12, b) 14, c) 3, d) 100, e) 7, f) 15, g) 3 . 16 21 6 45 9 55 24 Answers 1. a) 3, b) 2, c) 1, d) 20, e) 7, f) 3 , g) 1. 4 3 2 9 9 11 8 2. Addition and subtraction of fractions To add two fractions we first rewrite each fraction so that they both have the same denominator. This denominator is chosen to be the lowest common denominator. This is the smallest 1.1.1 copyright (cid:1)c Pearson Education Limited, 2000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.