ebook img

Engineering Mathematics: Volume - 2 PDF

601 Pages·2012·46.527 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Mathematics: Volume - 2

Engineering Mathematics-II E. Rukmangadachari Professor of Mathematics, Department of Humanities and Sciences, Malla Reddy Engineering College, Secunderabad (cid:38)(cid:82)(cid:83)(cid:92)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:139)(cid:3)(cid:21)(cid:19)(cid:20)(cid:21)(cid:3)(cid:39)(cid:82)(cid:85)(cid:79)(cid:76)(cid:81)(cid:74)(cid:3)(cid:46)(cid:76)(cid:81)(cid:71)(cid:72)(cid:85)(cid:86)(cid:79)(cid:72)(cid:92)(cid:3)(cid:11)(cid:44)(cid:81)(cid:71)(cid:76)(cid:68)(cid:12)(cid:3)(cid:51)(cid:89)(cid:87)(cid:17)(cid:3)(cid:47)(cid:87)(cid:71)(cid:17) (cid:47)(cid:76)(cid:70)(cid:72)(cid:81)(cid:86)(cid:72)(cid:72)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:51)(cid:72)(cid:68)(cid:85)(cid:86)(cid:82)(cid:81)(cid:3)(cid:40)(cid:71)(cid:88)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:3)(cid:54)(cid:82)(cid:88)(cid:87)(cid:75)(cid:3)(cid:36)(cid:86)(cid:76)(cid:68) (cid:49)(cid:82)(cid:3)(cid:83)(cid:68)(cid:85)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:72)(cid:37)(cid:82)(cid:82)(cid:78)(cid:3)(cid:80)(cid:68)(cid:92)(cid:3)(cid:69)(cid:72)(cid:3)(cid:88)(cid:86)(cid:72)(cid:71)(cid:3)(cid:82)(cid:85)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:82)(cid:71)(cid:88)(cid:70)(cid:72)(cid:71)(cid:3)(cid:76)(cid:81)(cid:3)(cid:68)(cid:81)(cid:92)(cid:3)(cid:80)(cid:68)(cid:81)(cid:81)(cid:72)(cid:85)(cid:3)(cid:90)(cid:75)(cid:68)(cid:87)(cid:86)(cid:82)(cid:72)(cid:89)(cid:72)(cid:85)(cid:3)(cid:90)(cid:76)(cid:87)(cid:75)(cid:82)(cid:88)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:86)(cid:75)(cid:72)(cid:85)(cid:182)(cid:86)(cid:3)(cid:83)(cid:85)(cid:76)(cid:82)(cid:85)(cid:3)(cid:90)(cid:85)(cid:76)(cid:87)(cid:87)(cid:72)(cid:81)(cid:3) (cid:70)(cid:82)(cid:81)(cid:86)(cid:72)(cid:81)(cid:87)(cid:17) (cid:55)(cid:75)(cid:76)(cid:86)(cid:3)(cid:72)(cid:37)(cid:82)(cid:82)(cid:78)(cid:3)(cid:80)(cid:68)(cid:92)(cid:3)(cid:82)(cid:85)(cid:3)(cid:80)(cid:68)(cid:92)(cid:3)(cid:81)(cid:82)(cid:87)(cid:3)(cid:76)(cid:81)(cid:70)(cid:79)(cid:88)(cid:71)(cid:72)(cid:3)(cid:68)(cid:79)(cid:79)(cid:3)(cid:68)(cid:86)(cid:86)(cid:72)(cid:87)(cid:86)(cid:3)(cid:87)(cid:75)(cid:68)(cid:87)(cid:3)(cid:90)(cid:72)(cid:85)(cid:72)(cid:3)(cid:83)(cid:68)(cid:85)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:3)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:82)(cid:81)(cid:17)(cid:3)(cid:55)(cid:75)(cid:72)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:86)(cid:75)(cid:72)(cid:85)(cid:3)(cid:85)(cid:72)(cid:86)(cid:72)(cid:85)(cid:89)(cid:72)(cid:86)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:87)(cid:82)(cid:3) (cid:85)(cid:72)(cid:80)(cid:82)(cid:89)(cid:72)(cid:3)(cid:68)(cid:81)(cid:92)(cid:3)(cid:80)(cid:68)(cid:87)(cid:72)(cid:85)(cid:76)(cid:68)(cid:79)(cid:3)(cid:83)(cid:85)(cid:72)(cid:86)(cid:72)(cid:81)(cid:87)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:72)(cid:37)(cid:82)(cid:82)(cid:78)(cid:3)(cid:68)(cid:87)(cid:3)(cid:68)(cid:81)(cid:92)(cid:3)(cid:87)(cid:76)(cid:80)(cid:72)(cid:17) (cid:44)(cid:54)(cid:37)(cid:49)(cid:3)(cid:28)(cid:26)(cid:27)(cid:27)(cid:20)(cid:22)(cid:20)(cid:26)(cid:27)(cid:23)(cid:28)(cid:24)(cid:21) (cid:72)(cid:44)(cid:54)(cid:37)(cid:49)(cid:3)(cid:28)(cid:26)(cid:27)(cid:28)(cid:22)(cid:22)(cid:21)(cid:24)(cid:19)(cid:28)(cid:27)(cid:24)(cid:25) (cid:43)(cid:72)(cid:68)(cid:71)(cid:3)(cid:50)(cid:73)(cid:73)(cid:76)(cid:70)(cid:72)(cid:29)(cid:3)(cid:36)(cid:16)(cid:27)(cid:11)(cid:36)(cid:12)(cid:15)(cid:3)(cid:54)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85)(cid:3)(cid:25)(cid:21)(cid:15)(cid:3)(cid:46)(cid:81)(cid:82)(cid:90)(cid:79)(cid:72)(cid:71)(cid:74)(cid:72)(cid:3)(cid:37)(cid:82)(cid:88)(cid:79)(cid:72)(cid:89)(cid:68)(cid:85)(cid:71)(cid:15)(cid:3)(cid:26)(cid:87)(cid:75)(cid:3)(cid:41)(cid:79)(cid:82)(cid:82)(cid:85)(cid:15)(cid:3)(cid:49)(cid:50)(cid:44)(cid:39)(cid:36)(cid:3)(cid:21)(cid:19)(cid:20)(cid:3)(cid:22)(cid:19)(cid:28)(cid:15)(cid:3)(cid:44)(cid:81)(cid:71)(cid:76)(cid:68) (cid:53)(cid:72)(cid:74)(cid:76)(cid:86)(cid:87)(cid:72)(cid:85)(cid:72)(cid:71)(cid:3)(cid:50)(cid:73)(cid:73)(cid:76)(cid:70)(cid:72)(cid:29)(cid:3)(cid:20)(cid:20)(cid:3)(cid:47)(cid:82)(cid:70)(cid:68)(cid:79)(cid:3)(cid:54)(cid:75)(cid:82)(cid:83)(cid:83)(cid:76)(cid:81)(cid:74)(cid:3)(cid:38)(cid:72)(cid:81)(cid:87)(cid:85)(cid:72)(cid:15)(cid:3)(cid:51)(cid:68)(cid:81)(cid:70)(cid:75)(cid:86)(cid:75)(cid:72)(cid:72)(cid:79)(cid:3)(cid:51)(cid:68)(cid:85)(cid:78)(cid:15)(cid:3)(cid:49)(cid:72)(cid:90)(cid:3)(cid:39)(cid:72)(cid:79)(cid:75)(cid:76)(cid:3)(cid:20)(cid:20)(cid:19)(cid:3)(cid:19)(cid:20)(cid:26)(cid:15)(cid:3)(cid:44)(cid:81)(cid:71)(cid:76)(cid:68) To My Beloved Parents Enikapati Krishnamachari, Rajamma, Ademma About the Author E. Rukmangadachari is former head of Computer Science and Engineering as well as Humanities and Sciences at Malla Reddy Engineering College, Secunderabad. Earlier, he was a reader in mathematics (PG course) at Government College, Rajahmundry. He is an M.A. from Osmania University, Hyderabad, and an M.Phil. and Ph.D. degree holder from Sri. Venkateswara University, Tirupathi. A recent recipient of the Andhra Pradesh State Meritorius Teacher’s award in 1981, Professor Rukmangadachari has published over 40 research papers in national and international journals. With a rich repertoire of over 45 years’ experience in teaching mathematics to undergraduate, postgraduate and engineering students, he is currently the vice president of the Andhra Pradesh Society of Mathematical Sciences, Hyderabad. An ace planner with fi ne managerial skills, he was the organizing secretary for the conduct of the 17th Congress of the Andhra Pradesh Society for Mathematical Sciences, Hyderabad. Contents About the Author iv 3 Solution of Algebraic Preface ix and Transcendental Equations 3.1 Introduction to Numerical 1 E igenvalues Methods 3-1 and Eigenvectors 3.2 Errors and their Computation 3-1 1.1 Introduction 1-1 3.3 Formulas for Errors 3-2 1.2 Linear Transformation 1-1 3.4 Mathematical Pre-requisites 3-3 1.3 Characteristic Value Problem 1-1 3.5 Solution of Algebraic Exercise 1.1 1-6 and Transcendental Equations 3-4 1.4 Properties of Eigenvalues 3.6 Direct Methods of Solution 3-4 and Eigenvectors 1-7 3.7 Numerical Methods of Solution 1.5 Cayley–Hamilton Theorem 1-9 of Equations of the Form f (x) = 0 3-5 Exercise 1.2 1-12 Exercise 3.1 3-20 1.6 Reduction of a Square Matrix to Diagonal Form 1-14 4 Interpolation 1.7 Powers of a Square Matrix A— Finding of Modal Matrix P 4.1 Introduction 4-1 and Inverse Matrix A−1 1-18 4.2 Interpolation with Equal Intervals 4-2 Exercise 1.3 1-24 4.3 Symbolic Relations and Separation of Symbols 4-4 Exercise 4.1 4-8 2 Quadratic Forms 4.4 Interpolation 4-8 2.1 Introduction 2-1 4.5 I nterpolation Formulas 2.2 Quadratic Forms 2-1 for Equal Intervals 4-9 2.3 Canonical Form (or) Exercise 4.2 4-13 Sum of the Squares Form 2-3 4.6 Interpolation with Unequal 2.4 Nature of Real Quadratic Forms 2-3 Intervals 4-14 2.5 Reduction of a Quadratic Form 4.7 Properties Satisfi ed by Δ′ 4-15 to Canonical Form 2-5 4.8 Divided Difference 2.6 Sylvestor’s Law of Inertia 2-6 Interpolation Formula 4-16 2.7 Methods of Reduction 4.9 Inverse Interpolation Using of a Quadratic Form Lagrange’s Interpolation to a Canonical Form 2-6 Formula 4-17 2 .8 Singular Value Decomposition 4 .10 C entral Difference of a Matrix 2-9 Formulas 4-21 Exercise 2.1 2-16 Exercise 4.3 4-26 vi Contents 5 Curve Fitting 8.5 Dirichlet’s Conditions for Fourier Series Expansion of a Function 8-4 5.1 Introduction 5-1 8.6 Fourier Series Expansions: 5.2 Curve Fitting by the Method Even/Odd Functions 8-5 of Least Squares 5-2 8.7 Simply-Defined and Multiply- 5.3 C urvilinear (or Nonlinear) (Piecewise) Defined Functions 8-7 Regression 5-8 Exercise 8.1 8-18 5.4 C urve Fitting by a Sum 8.8 Change of Interval: Fourier Series of Exponentials 5-10 in Interval (a , a + 2l ) 8-19 5.5 Weighted Least Squares Exercise 8.2 8-23 Approximation 5-13 8.9 Fourier Series Expansions of Even Exercise 5.1 5-14 and Odd Functions in (−l, l ) 8-24 Exercise 8.3 8-26 6 N umerical Differentiation 8.10 Half-Range Fourier Sine/Cosine and Integration Series: Odd and Even Periodic Continuations 8-26 6.1 Introduction 6-1 Exercise 8.4 8-33 6.2 Errors in Numerical Differentiation 6-6 6.3 Maximum and Minimum 8.11 Root Mean Square (RMS) Values of a Tabulated Function 6-7 Value of a Function 8-34 Exercise 6.1 6-8 Exercise 8.5 8-36 6.4 Numerical Integration: Introduction 6-8 Exercise 6.2 6-21 9 Fourier Integral Transforms 6.5 Cubic Splines 6-21 6 .6 Gaussian Integration 6-27 9.1 Introduction 9-1 Exercise 6.3 6-31 9.2 Integral Transforms 9-1 9.3 Fourier Integral Theorem 9-1 7 N umerical Solution of Ordinary 9.4 Fourier Integral in Complex Form 9-2 Differential Equations 9.5 Fourier Transform of f (x) 9-3 7.1 Introduction 7-1 9.6 Finite Fourier Sine Transform 7.2 Methods of Solution 7-1 and Finite Fourier Cosine 7.3 Predictor–Corrector Methods 7-17 Transform (FFCT) 9-4 Exercise 7.1 7-21 9.7 Convolution Theorem for Fourier Transforms 9-5 8. Fourier Series 9.8 Properties of Fourier Transform 9-6 8.1 Introduction 8-1 Exercise 9.1 9-15 8.2 Periodic Functions, Properties 8-1 9.9 Parseval’s Identity for Fourier 8.3 Classifi able Functions—Even Transforms 9-16 and Odd Functions 8-2 9 .10 Parseval’s Identities for 8.4 Fourier Series, Fourier Fourier Sine and Cosine Coeffi cients and Euler’s Transforms 9-17 Formulae in (a , a +2p ) 8-3 Exercise 9.2 9-18 Contents vii 10 Partial Differential 11 Z-Transforms and Solution Equations of Difference Equations 10.1 Introduction 10-1 1 1.1 Introduction 11-1 10.2 Order, Linearity 1 1.2 Z-Transform: Definition 11-1 and Homogeneity of a 11.3 Z-Transforms of Some Standard Partial Differential Equation 10-1 Functions (Special Sequences) 11-4 10.3 Origin of Partial Differential 1 1.4 Recurrence Formula for the Sequence Equation 10-2 of a Power of Natural Numbers 11-5 10.4 Formation of Partial Differential 11.5 Properties of Z-Transforms 11-6 Equation by Elimination of Two Exercise 11.1 11-11 Arbitrary Constants 10-3 11.6 Inverse Z-Transform 11-11 Exercise 10.1 10-4 Exercise 11.2 11-16 10.5 Formation of Partial Differential 11.7 Application of Z-Transforms: Equations by Elimination Solution of a Difference of Arbitrary Functions 10-5 Equations by Z-Transform 11-17 Exercise 10.2 10-7 11.8 Method for Solving a Linear 10.6 Classification of First-Order Difference Equation with Partial Differential Equations 10-7 Constant Coeffi cients 11-18 10.7 Classifi cation of Solutions Exercise 11.3 11-21 of First-Order Partial Differential Equation 10-8 12 Special Functions 10.8 Equations Solvable by Direct 1 2.1 Introduction 12-1 Integration 10-9 1 2.2 Gamma Function 12-1 Exercise 10.3 10-10 1 2.3 R ecurrence Relation or 10.9 Quasi-Linear Equations Reduction Formula 12-1 of First Order 10-11 1 2.4 Various Integral Forms 10.10 Solution of Linear, Semi-Linear of Gamma Function 12-3 and Quasi-Linear Equations 10-11 Exercise 12.1 12-6 Exercise 10.4 10-17 1 2.5 Beta Function 12-6 10.11 Nonlinear Equations of First Order 10-18 1 2.6 Various Integral Forms of Beta Function 12-7 Exercise 10.5 10-22 1 2.7 Relation Between Beta 1 0.12 E uler’s Method of Separation and Gamma Functions 12-10 of Variables 10-23 1 2.8 Multiplication Formula 12-10 Exercise 10.6 10-25 1 2.9 L egendre’s Duplication Formula 12-11 1 0.13 C lassifi cation of Second-Order Partial Differential Equations 10-25 Exercise 12.2 12-16 Exercise 10.7 10-33 12.10 L egendre Functions 12-16 Exercise 10.8 10-42 Exercise 12.3 12-30 1 0.14 T wo-dimensional Wave 1 2.11 Bessel Functions 12-31 Equation 10-46 Exercise 12.4 12-42 Exercise 10.9 10-49 Exercise 12.5 12-50 viii Contents 13 Functions of a Complex 1 6.8 Laurent’s Series 16-9 Variable 1 6.9 Higher Derivatives of Analytic Functions 16-18 1 3.1 Introduction 13-1 Exercise 16.1 16-19 1 3.2 Complex Numbers–Complex Plane 13-1 17 Calculus of Residues Exercise 13.1 13-3 1 7.1 Evaluation of Real Integrals 17-1 Exercise 13.2 13-19 Exercise 17.1 17-7 1 3.3 L aplace’s Equation: Harmonic Exercise 17.2 17-14 and Conjugate Harmonic Functions 13-19 Exercise 17.3 17-35 Exercise 13.3 13-26 18 Argument Principle 14 Elementary Functions and Rouche’s Theorem 1 4.1 Introduction 14-1 18.1 Introduction 18-1 1 4.2 Elementary Functions 1 8.2 Meromorphic Function 18-1 of a Complex Variable 14-1 1 8.3 Argument Principle Exercise 14.1 14-16 (Repeated Single Pole/Zero) 18-1 1 8.4 G eneralised Argument Theorem 18-2 15 Complex Integration 1 8.5 Rouche’s Theorem 18-3 1 5.1 Introduction 15-1 1 8.6 Liouville Theorem 18-4 1 5.2 Basic Concepts 15-1 1 8.7 Fundamental Theorem of Algebra 18-4 1 5.3 Complex Line Integral 15-2 1 8.8 Maximum Modulus Theorem for Analytic Functions 18-4 1 5.4 Cauchy–Goursat Theorem 15-13 Exercise 18.1 18-9 1 5.5 C auchy’s Theorem for Multiply- Connected Domain 15-14 1 5.6 Cauchy’s Integral Formula (C.I.F.) 19 Conformal Mapping or Cauchy’s Formula Theorem 15-22 1 9.1 Introduction 19-1 1 5.7 Morera’s Theorem (Converse 1 9.2 C onformal Mapping: of Cauchy’s Theorem) 15-23 Conditions for Conformality 19-2 1 5.8 Cauchy’s Inequality 15-23 1 9.3 Conformal Mapping by Exercise 15.1 15-31 Elementary Functions 19-3 1 9.4 Some Special Transformations 19-6 16 Complex Power Series 1 9.5 Bilinear or Mobius or Linear Fractional Transformations 19-17 1 6.1 Introduction 16-1 1 9.6 Fixed Points of the Transformation 1 6.2 Sequences and Series 16-1 az+b 1 6.3 Power Series 16-2 w= 19-18 cz+d 1 6.4 Series of Complex Functions 16-2 Exercise 19.1 19-26 1 6.5 U niform Convergence of a Series of Functions 16-2 Question Bank Q-1 1 6.6 Weierstrass’s M-Test 16-3 1 6.7 Taylor’s Theorem (Taylor Series) 16-3 Index I-1 Preface I am pleased to present this edition of Engineering Mathematics-II to the fi rst year B.Tech. students. The topics have been dealt with in a coherent manner, supported by illustrations for better comprehension. Each chapter is replete with examples and exercises, along with solutions and hints, wherever necessary. The book also has a question bank, with numerous Multiple Choice Questions, Fill in the Blanks, and Match the Following and True or False statements, thus providing the student with an abundant repository of exam specifi c problems. Suggestions for the improvement of the book are welcome and will be gratefully acknowledged. Acknowledgements I express my deep sense of gratitude to Sri. Ch. Malla Reddy, Chairman, and Sri. Ch. Mahender Reddy, Secretary, Malla Reddy Group of Institutions (MGRI), whose patronage has given me the opportunity to write a book. I am thankful to Prof. Madan Mohan, Director (Academics) and Col. G. Ram Reddy, Director (Administration), MRGI; and Dr R. K. Murthy, Principal, Malla Reddy Engineering College, Secunderabad, for their kindness, guidance and encouragement. E. Rukmangadachari

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.