ebook img

Engineering Mathematics. A Foundation for Electronic, Electrical, Communications and Systems Engineers PDF

1017 Pages·2017·5.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Mathematics. A Foundation for Electronic, Electrical, Communications and Systems Engineers

Fifth Edition Engineering Mathematics A Foundation for Electronic, Electrical, Communications and Systems Engineers Anthony Croft LoughboroughUniversity Robert Davison Martin Hargreaves CharteredPhysicist James Flint LoughboroughUniversity PEARSONEDUCATIONLIMITED EdinburghGate HarlowCM202JE UnitedKingdom Tel:+44(0)1279623623 Web:www.pearson.com/uk FirsteditionpublishedundertheAddison-Wesleyimprint1992(print) SecondeditionpublishedundertheAddison-Wesleyimprint1996(print) ThirdeditionpublishedunderthePrenticeHallimprint2001(print) Fourtheditionpublished2013(printandelectronic) Fiftheditionpublished2017(printandelectronic) ©Addison-WesleyPublishersLimited1992,1996(print) ©PearsonEducationLimited2001(print) ©PearsonEducationLimited2013,2017(printandelectronic) PearsonEducationisnotresponsibleforthecontentofthird-partyinternetsites. ISBN:978-1-292-14665-2(print) 978-1-292-14667-6(PDF) 978-1-292-14666-9(ePub) BritishLibraryCataloguing-in-PublicationData AcataloguerecordfortheprinteditionisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Names:Croft,Tony,1957–author. Title:Engineeringmathematics:afoundationforelectronic,electrical, communicationsandsystemsengineers/AnthonyCroft,Loughborough University,RobertDavison,DeMontfortUniversity,MartinHargreaves, DeMontfortUniversity,JamesFlint,LoughboroughUniversity. Description:Fifthedition.|Harlow,England;NewYork:Pearson,2017.k Revisededitionof:Engineeringmathematics:afoundationforelectronic, electrical,communications,andsystemsengineers/AnthonyCroft,Robert Davison,MartinHargreaves.3rdediton.2001.|Includesindex. Identifiers:LCCN2017011081|ISBN9781292146652(Print)|ISBN9781292146676 (PDF)|ISBN9781292146669(ePub) Subjects:LCSH:Engineeringmathematics.|Electrical engineering–Mathematics.|Electronics–Mathematics. Classification:LCCTA330.C762017|DDC510–dc23 LCrecordavailableathttps://lccn.loc.gov/2017011081 AcatalogrecordfortheprinteditionisavailablefromtheLibraryofCongress Printeditiontypesetin10/12TimesRomanbyiEnerzigerAptara®,Ltd. PrintedinSlovakiabyNeografia NOTETHATANYPAGECROSSREFERENCESREFERTOTHEPRINTEDITION Contents Preface xvii Acknowledgements xix Chapter 1 Review of algebraic techniques 1 1.1 Introduction 1 1.2 Lawsofindices 2 1.3 Numberbases 11 1.4 Polynomialequations 20 1.5 Algebraicfractions 26 1.6 Solutionofinequalities 33 1.7 Partialfractions 39 1.8 Summationnotation 46 Reviewexercises1 50 Chapter 2 Engineering functions 54 2.1 Introduction 54 2.2 Numbersandintervals 55 2.3 Basicconceptsoffunctions 56 2.4 Reviewofsomecommonengineeringfunctionsandtechniques 70 Reviewexercises2 113 Chapter 3 The trigonometric functions 115 3.1 Introduction 115 3.2 Degreesandradians 116 3.3 Thetrigonometricratios 116 3.4 Thesine,cosineandtangentfunctions 120 3.5 Thesincxfunction 123 3.6 Trigonometricidentities 125 3.7 Modellingwavesusingsint andcost 131 3.8 Trigonometricequations 144 Reviewexercises3 150 Chapter 4 Coordinate systems 154 4.1 Introduction 154 4.2 Cartesiancoordinatesystem–twodimensions 154 4.3 Cartesiancoordinatesystem–threedimensions 157 4.4 Polarcoordinates 159 4.5 Somesimplepolarcurves 163 4.6 Cylindricalpolarcoordinates 166 4.7 Sphericalpolarcoordinates 170 Reviewexercises4 173 Chapter 5 Discrete mathematics 175 5.1 Introduction 175 5.2 Settheory 175 5.3 Logic 183 5.4 Booleanalgebra 185 Reviewexercises5 197 Chapter 6 Sequences and series 200 6.1 Introduction 200 6.2 Sequences 201 6.3 Series 209 6.4 Thebinomialtheorem 214 6.5 Powerseries 218 6.6 Sequencesarisingfromtheiterativesolution ofnon-linearequations 219 Reviewexercises6 222 Chapter 7 Vectors 224 7.1 Introduction 224 7.2 Vectorsandscalars:basicconcepts 224 7.3 Cartesiancomponents 232 7.4 Scalarfieldsandvectorfields 240 7.5 Thescalarproduct 241 7.6 Thevectorproduct 246 7.7 Vectorsofndimensions 253 Reviewexercises7 255 Chapter 8 Matrix algebra 257 8.1 Introduction 257 8.2 Basicdefinitions 258 8.3 Addition,subtractionandmultiplication 259 8.4 Usingmatricesinthetranslationandrotationofvectors 267 8.5 Somespecialmatrices 271 8.6 Theinverseofa2×2matrix 274 8.7 Determinants 278 8.8 Theinverseofa3×3matrix 281 8.9 Applicationtothesolutionofsimultaneousequations 283 8.10 Gaussianelimination 286 8.11 Eigenvaluesandeigenvectors 294 8.12 Analysisofelectricalnetworks 307 8.13 Iterativetechniquesforthesolutionofsimultaneousequations 312 8.14 Computersolutionsofmatrixproblems 319 Reviewexercises8 321 Chapter 9 Complex numbers 324 9.1 Introduction 324 9.2 Complexnumbers 325 9.3 Operationswithcomplexnumbers 328 9.4 Graphicalrepresentationofcomplexnumbers 332 9.5 Polarformofacomplexnumber 333 9.6 Vectorsandcomplexnumbers 336 9.7 Theexponentialformofacomplexnumber 337 9.8 Phasors 340 9.9 DeMoivre’stheorem 344 9.10 Lociandregionsofthecomplexplane 351 Reviewexercises9 354 Chapter 10 Differentiation 356 10.1 Introduction 356 10.2 Graphicalapproachtodifferentiation 357 10.3 Limitsandcontinuity 358 10.4 Rateofchangeataspecificpoint 362 10.5 Rateofchangeatageneralpoint 364 10.6 Existenceofderivatives 370 10.7 Commonderivatives 372 10.8 Differentiationasalinearoperator 375 Reviewexercises10 385 Chapter 11 Techniques of differentiation 386 11.1 Introduction 386 11.2 Rulesofdifferentiation 386 11.3 Parametric,implicitandlogarithmicdifferentiation 393 11.4 Higherderivatives 400 Reviewexercises11 404 Chapter 12 Applications of differentiation 406 12.1 Introduction 406 12.2 Maximumpointsandminimumpoints 406 12.3 Pointsofinflexion 415 12.4 TheNewton–Raphsonmethodforsolvingequations 418 12.5 Differentiationofvectors 423 Reviewexercises12 427 Chapter 13 Integration 428 13.1 Introduction 428 13.2 Elementaryintegration 429 13.3 Definiteandindefiniteintegrals 442 Reviewexercises13 453 Chapter 14 Techniques of integration 457 14.1 Introduction 457 14.2 Integrationbyparts 457 14.3 Integrationbysubstitution 463 14.4 Integrationusingpartialfractions 466 Reviewexercises14 468 Chapter 15 Applications of integration 471 15.1 Introduction 471 15.2 Averagevalueofafunction 471 15.3 Rootmeansquarevalueofafunction 475 Reviewexercises15 479 Chapter 16 Further topics in integration 480 16.1 Introduction 480 16.2 Orthogonalfunctions 480 16.3 Improperintegrals 483 16.4 Integralpropertiesofthedeltafunction 489 16.5 Integrationofpiecewisecontinuousfunctions 491 16.6 Integrationofvectors 493 Reviewexercises16 494 Chapter 17 Numerical integration 496 17.1 Introduction 496 17.2 Trapeziumrule 496 17.3 Simpson’srule 500 Reviewexercises17 505 Chapter 18 Taylor polynomials, Taylor series and Maclaurin series 507 18.1 Introduction 507 18.2 Linearizationusingfirst-orderTaylorpolynomials 508 18.3 Second-orderTaylorpolynomials 513 18.4 Taylorpolynomialsofthenthorder 517 18.5 Taylor’sformulaandtheremainderterm 521 18.6 TaylorandMaclaurinseries 524 Reviewexercises18 532 Chapter 19 Ordinary differential equations I 534 19.1 Introduction 534 19.2 Basicdefinitions 535 19.3 First-orderequations:simpleequationsandseparation ofvariables 540 19.4 First-orderlinearequations:useofanintegratingfactor 547 19.5 Second-orderlinearequations 558 19.6 Constantcoefficientequations 560 19.7 Seriessolutionofdifferentialequations 584 19.8 Bessel’sequationandBesselfunctions 587 Reviewexercises19 601 Chapter 20 Ordinary differential equations II 603 20.1 Introduction 603 20.2 Analoguesimulation 603 20.3 Higherorderequations 606 20.4 State-spacemodels 609 20.5 Numericalmethods 615 20.6 Euler’smethod 616 20.7 ImprovedEulermethod 620 20.8 Runge–Kuttamethodoforder4 623 Reviewexercises20 626 Chapter 21 The Laplace transform 627 21.1 Introduction 627 21.2 DefinitionoftheLaplacetransform 628 21.3 Laplacetransformsofsomecommonfunctions 629 21.4 PropertiesoftheLaplacetransform 631 21.5 Laplacetransformofderivativesandintegrals 635 21.6 InverseLaplacetransforms 638 21.7 UsingpartialfractionstofindtheinverseLaplacetransform 641 21.8 FindingtheinverseLaplacetransformusingcomplexnumbers 643 21.9 Theconvolutiontheorem 647 21.10Solvinglinearconstantcoefficientdifferential equationsusingtheLaplacetransform 649 21.11Transferfunctions 659 21.12Poles,zerosandthesplane 668 21.13Laplacetransformsofsomespecialfunctions 675 Reviewexercises21 678 Chapter 22 Difference equations and the z transform 681 22.1 Introduction 681 22.2 Basicdefinitions 682 22.3 Rewritingdifferenceequations 686 22.4 Blockdiagramrepresentationofdifferenceequations 688 22.5 Designofadiscrete-timecontroller 693 22.6 Numericalsolutionofdifferenceequations 695 22.7 Definitionoftheztransform 698 22.8 Samplingacontinuoussignal 702 22.9 Therelationshipbetweentheztransformandthe Laplacetransform 704 22.10Propertiesoftheztransform 709 22.11Inversionofztransforms 715 22.12Theztransformanddifferenceequations 718 Reviewexercises22 720 Chapter 23 Fourier series 722 23.1 Introduction 722 23.2 Periodicwaveforms 723 23.3 Oddandevenfunctions 726 23.4 Orthogonalityrelationsandotherusefulidentities 732 23.5 Fourierseries 733 23.6 Half-rangeseries 745 23.7 Parseval’stheorem 748 23.8 Complexnotation 749 23.9 Frequencyresponseofalinearsystem 751 Reviewexercises23 755 Chapter 24 The Fourier transform 757 24.1 Introduction 757 24.2 TheFouriertransform–definitions 758 24.3 SomepropertiesoftheFouriertransform 761 24.4 Spectra 766 24.5 Thet−ωdualityprinciple 768 24.6 Fouriertransformsofsomespecialfunctions 770 24.7 TherelationshipbetweentheFouriertransform andtheLaplacetransform 772 24.8 Convolutionandcorrelation 774 24.9 ThediscreteFouriertransform 783 24.10Derivationofthed.f.t. 787 24.11Usingthed.f.t.toestimateaFouriertransform 790 24.12Matrixrepresentationofthed.f.t. 792 24.13Somepropertiesofthed.f.t. 793 24.14Thediscretecosinetransform 795 24.15Discreteconvolutionandcorrelation 801 Reviewexercises24 821 Chapter 25 Functions of several variables 823 25.1 Introduction 823 25.2 Functionsofmorethanonevariable 823 25.3 Partialderivatives 825 25.4 Higherorderderivatives 829 25.5 Partialdifferentialequations 832 25.6 TaylorpolynomialsandTaylorseriesintwovariables 835 25.7 Maximumandminimumpointsofafunctionoftwovariables 841 Reviewexercises25 846 Chapter 26 Vector calculus 849 26.1 Introduction 849 26.2 Partialdifferentiationofvectors 849 26.3 Thegradientofascalarfield 851 26.4 Thedivergenceofavectorfield 856 26.5 Thecurlofavectorfield 859 26.6 Combiningtheoperatorsgrad,divandcurl 861 26.7 Vectorcalculusandelectromagnetism 864 Reviewexercises26 865 Chapter 27 Line integrals and multiple integrals 867 27.1 Introduction 867 27.2 Lineintegrals 867 27.3 Evaluationoflineintegralsintwodimensions 871 27.4 Evaluationoflineintegralsinthreedimensions 873 27.5 Conservativefieldsandpotentialfunctions 875 27.6 Doubleandtripleintegrals 880 27.7 Somesimplevolumeandsurfaceintegrals 889 27.8 ThedivergencetheoremandStokes’theorem 895 27.9 Maxwell’sequationsinintegralform 899 Reviewexercises27 901 Chapter 28 Probability 903 28.1 Introduction 903 28.2 Introducingprobability 904 28.3 Mutuallyexclusiveevents:theadditionlawofprobability 909 28.4 Complementaryevents 913 28.5 Conceptsfromcommunicationtheory 915 28.6 Conditionalprobability:themultiplicationlaw 919 28.7 Independentevents 925 Reviewexercises28 930 Chapter 29 Statistics and probability distributions 933 29.1 Introduction 933 29.2 Randomvariables 934 29.3 Probabilitydistributions–discretevariable 935 29.4 Probabilitydensityfunctions–continuousvariable 936 29.5 Meanvalue 938 29.6 Standarddeviation 941 29.7 Expectedvalueofarandomvariable 943 29.8 Standarddeviationofarandomvariable 946 29.9 Permutationsandcombinations 948 29.10Thebinomialdistribution 953 29.11ThePoissondistribution 957 29.12Theuniformdistribution 961 29.13Theexponentialdistribution 962 29.14Thenormaldistribution 963 29.15Reliabilityengineering 970 Reviewexercises29 977

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.