ebook img

Engineering Mathematics PDF

705 Pages·2014·9.384 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Mathematics

Engineering Mathematics Whyisknowledgeofmathematicsimportantinengineering? A career in any engineering or scientific field will principles and theory of nuclear science to problems requirebothbasicandadvancedmathematics.Without concerned with release, control, and utilisation of mathematicsto determineprinciples,calculate dimen- nuclearenergyandnuclearwastedisposal. sionsandlimits,explorevariations,proveconcepts,and Petroleum engineers require mathematics to devise soon,therewouldbenomobiletelephones,televisions, methods to improve oil and gas well production and stereosystems,videogames,microwaveovens,comput- determine the need for new or modified tool designs; ers,orvirtuallyanythingelectronic.Therewouldbeno they oversee drilling and offer technical advice to bridges,tunnels,roads,skyscrapers,automobiles,ships, achieveeconomicalandsatisfactoryprogress. planes,rocketsormostthingsmechanical.Therewould be no metals beyond the common ones, such as iron Industrial engineers require mathematics to design, and copper, no plastics, no synthetics. In fact, society develop,test,andevaluateintegratedsystemsforman- wouldmostcertainlybelessadvancedwithouttheuse agingindustrialproductionprocesses,includinghuman of mathematics throughout the centuries and into the work factors, quality control, inventorycontrol, logis- future. tics and material flow, cost analysis, and production co-ordination. Electrical engineers require mathematics to design, develop,test,orsupervisethemanufacturingandinstal- Environmental engineers require mathematics to lationofelectricalequipment,components,orsystems design, plan, or perform engineering duties in the forcommercial,industrial,military,orscientificuse. prevention, control, and remediation of environmen- tal health hazards, using various engineering disci- Mechanicalengineersrequiremathematicstoperform plines; their work may include waste treatment, site engineering duties in planning and designing tools, remediation,orpollutioncontroltechnology. engines,machines,andothermechanicallyfunctioning equipment;theyoverseeinstallation,operation,mainte- Civil engineers require mathematics at all levels in nance,andrepairofsuchequipmentascentralisedheat, civil engineering – structural engineering, hydraulics gas,water,andsteamsystems. andgeotechnicalengineeringareallfieldsthatemploy mathematicaltoolssuchasdifferentialequations,tensor Aerospaceengineersrequiremathematicstoperforma analysis,fieldtheory,numericalmethodsandoperations varietyofengineeringworkindesigning,constructing, research. andtestingaircraft,missiles,andspacecraft;theycon- ductbasicandappliedresearchtoevaluateadaptability Knowledgeofmathematicsisthereforeneededbyeach of materials and equipment to aircraft design and oftheengineeringdisciplineslistedabove. manufacture and recommendimprovementsin testing Itisintendedthatthistext–EngineeringMathematics equipmentandtechniques. –willprovideastep-by-stepapproachtolearningfun- Nuclear engineers require mathematics to conduct damental mathematics needed for your engineering research on nuclear engineering problems or apply studies. In memory of Elizabeth Engineering Mathematics Seventh Edition John Bird ,BSc(Hons), CMath, CEng, CSci, FIMA, FIET, FCollT Seventheditionpublished2014 byRoutledge 2ParkSquare,MiltonPark,Abingdon,OxonOX144RN andbyRoutledge 711ThirdAvenue,NewYorkNY10017 RoutledgeisanimprintoftheTaylor&FrancisGroup,aninformabusiness ©2014JohnBird TherightofJohnBirdtobeidentifiedastheauthorofthisworkhasbeenassertedbyhiminaccordance withsections77and78oftheCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthisbookmaybereprintedorreproducedorutilisedinanyformorbyanyelectronic,mechanical, orothermeans,nowknownorhereafterinvented,includingphotocopyingandrecording,orinanyinformationstorageor retrievalsystem,withoutpermissioninwritingfromthepublishers. Trademarknotice:Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidentification andexplanationwithoutintenttoinfringe. FirsteditionpublishedbyNewnes1999 SixtheditionpublishedbyNewnes2010 BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Bird,J.O.,author. Engineeringmathematics/JohnBird.–Seventhedition. pagescm Includesbibliographicalreferencesandindex. 1.Engineeringmathematics.2.Engineeringmathematics–Problems,exercises,etc.I.Title. TA330.B5152014 510.24’62–dc23 2013040519 ISBN13:978-0-415-66280-2(pbk) ISBN13:978-1-315-85883-8(ebk) TypesetinTimesby ServisFilmsettingLtd,Stockport,Cheshire Contents Preface xi 7 Partialfractions 57 7.1 Introductiontopartialfractions 57 7.2 Workedproblemsonpartialfractionswith Section1 Numberandalgebra 1 linearfactors 58 7.3 Workedproblemsonpartialfractionswith 1 Revisionoffractions,decimalsandpercentages 3 repeatedlinearfactors 60 1.1 Fractions 3 7.4 Workedproblemsonpartialfractionswith 1.2 Ratioandproportion 6 quadraticfactors 61 1.3 Decimals 7 1.4 Percentages 9 8 Solvingsimpleequations 64 8.1 Expressions,equationsandidentities 64 2 Indices,standardformandengineeringnotation 11 8.2 Workedproblemsonsimpleequations 65 2.1 Indices 11 8.3 Furtherworkedproblemsonsimple 2.2 Workedproblemsonindices 12 equations 66 2.3 Furtherworkedproblemsonindices 13 8.4 Practicalproblemsinvolvingsimple 2.4 Standardform 15 equations 68 2.5 Workedproblemsonstandardform 15 8.5 Furtherpracticalproblemsinvolving simpleequations 69 2.6 Furtherworkedproblemsonstandardform 16 2.7 Engineeringnotationandcommonprefixes 17 RevisionTest2 72 3 Binary,octalandhexadecimalnumbers 19 3.1 Introduction 19 9 Solvingsimultaneousequations 73 3.2 Binarynumbers 20 9.1 Introductiontosimultaneousequations 73 3.3 Octalnumbers 23 9.2 Workedproblemsonsimultaneous 3.4 Hexadecimalnumbers 24 equationsintwounknowns 73 9.3 Furtherworkedproblemsonsimultaneous 4 Calculationsandevaluationofformulae 29 equations 75 4.1 Errorsandapproximations 29 9.4 Moredifficultworkedproblemson 4.2 Useofcalculator 31 simultaneousequations 77 4.3 Conversiontablesandcharts 33 9.5 Practicalproblemsinvolvingsimultaneous 4.4 Evaluationofformulae 34 equations 79 10 Transpositionofformulae 83 RevisionTest1 39 10.1 Introductiontotranspositionofformulae 83 10.2 Workedproblemsontranspositionof formulae 83 5 Algebra 40 5.1 Basicoperations 40 10.3 Furtherworkedproblemsontransposition offormulae 85 5.2 Lawsofindices 42 10.4 Harderworkedproblemsontransposition 5.3 Bracketsandfactorisation 44 offormulae 87 5.4 Fundamentallawsandprecedence 46 5.5 Directandinverseproportionality 48 11 Solvingquadraticequations 90 11.1 Introductiontoquadraticequations 90 6 Furtheralgebra 50 11.2 Solutionofquadraticequationsby 6.1 Polynomialdivision 50 factorisation 91 6.2 Thefactortheorem 52 11.3 Solutionofquadraticequationsby 6.3 Theremaindertheorem 54 ‘completingthesquare’ 92 vi Contents 11.4 Solutionofquadraticequationsbyformula 94 RevisionTest4 147 11.5 Practicalproblemsinvolvingquadratic equations 95 MultiplechoicequestionsonChapters1–17 148 11.6 Thesolutionoflinearandquadratic equationssimultaneously 97 12 Inequalities 99 Section2 Areasandvolumes 153 12.1 Introductiontoinequalities 99 12.2 Simpleinequalities 100 18 Areasofcommonshapes 155 12.3 Inequalitiesinvolvingamodulus 100 18.1 Introduction 155 12.4 Inequalitiesinvolvingquotients 101 18.2 Propertiesofquadrilaterals 156 12.5 Inequalitiesinvolvingsquarefunctions 102 18.3 Areasofcommonshapes 156 12.6 Quadraticinequalities 103 18.4 Workedproblemsonareasofcommon 13 Logarithms 105 shapes 157 13.1 Introductiontologarithms 105 18.5 Furtherworkedproblemsonareasof 13.2 Lawsoflogarithms 107 planefigures 160 13.3 Indicialequations 110 18.6 Workedproblemsonareasofcomposite 13.4 Graphsoflogarithmicfunctions 111 figures 161 18.7 Areasofsimilarshapes 163 RevisionTest3 112 19 Thecircle 164 19.1 Introduction 164 14 Exponentialfunctions 113 19.2 Propertiesofcircles 164 14.1 Introductiontoexponentialfunctions 113 19.3 Radiansanddegrees 166 14.2 Thepowerseriesforex 114 19.4 Arclengthandareaofcirclesandsectors 167 14.3 Graphsofexponentialfunctions 116 19.5 Workedproblemsonarclengthandarea 14.4 Napierianlogarithms 118 ofcirclesandsectors 167 14.5 Lawsofgrowthanddecay 120 19.6 Theequationofacircle 170 15 Numbersequences 125 20 Volumesandsurfaceareasofcommonsolids 172 15.1 Arithmeticprogressions 125 20.1 Introduction 172 15.2 Workedproblemsonarithmetic 20.2 Volumesandsurfaceareasofregular progressions 126 solids 173 15.3 Furtherworkedproblemsonarithmetic 20.3 Workedproblemsonvolumesandsurface progressions 127 areasofregularsolids 173 15.4 Geometricprogressions 128 20.4 Furtherworkedproblemsonvolumesand 15.5 Workedproblemsongeometric surfaceareasofregularsolids 175 progressions 129 20.5 Volumesandsurfaceareasoffrustaof 15.6 Furtherworkedproblemsongeometric pyramidsandcones 179 progressions 130 20.6 Thefrustumandzoneofasphere 183 15.7 Combinationsandpermutations 132 20.7 Prismoidalrule 185 16 Thebinomialseries 134 20.8 Volumesofsimilarshapes 187 16.1 Pascal’striangle 134 16.2 Thebinomialseries 136 21 Irregularareasandvolumesandmeanvalues ofwaveforms 189 16.3 Workedproblemsonthebinomialseries 136 21.1 Areaofirregularfigures 190 16.4 Furtherworkedproblemsonthebinomial series 138 21.2 Volumesofirregularsolids 192 21.3 Themeanoraveragevalue 16.5 Practicalproblemsinvolvingthebinomial ofawaveform 193 theorem 140 17 Solvingequationsbyiterativemethods 143 RevisionTest5 198 17.1 Introductiontoiterativemethods 143 17.2 TheNewton–Raphsonmethod 144 17.3 Workedproblemsonthe Section3 Trigonometry 201 Newton–Raphsonmethod 144 Contents vii 22 Introductiontotrigonometry 203 27 Compoundangles 251 22.1 Trigonometry 203 27.1 Compoundangleformulae 251 22.2 ThetheoremofPythagoras 204 27.2 Conversionofasinωt+bcosωt into 22.3 Trigonometricratiosofacuteangles 205 Rsin(ωt+α) 253 22.4 Fractionalandsurdformsoftrigonometric 27.3 Doubleangles 257 ratios 207 27.4 Changingproductsofsinesandcosines 22.5 Evaluatingtrigonometricratiosofany intosumsordifferences 258 angles 208 27.5 Changingsumsordifferencesofsinesand 22.6 Solutionofright-angledtriangles 212 cosinesintoproducts 259 22.7 Angleofelevationanddepression 213 22.8 Trigonometricapproximationsforsmall RevisionTest7 261 angles 215 23 Trigonometricwaveforms 216 MultiplechoicequestionsonChapters18–27 262 23.1 Graphsoftrigonometricfunctions 216 23.2 Anglesofanymagnitude 217 23.3 Theproductionofasineandcosinewave 219 Section4 Graphs 267 23.4 Sineandcosinecurves 220 23.5 Sinusoidalform Asin(ωt±α) 224 28 Straightlinegraphs 269 28.1 Introductiontographs 269 23.6 Waveformharmonics 226 28.2 Thestraightlinegraph 270 24 Cartesianandpolarco-ordinates 228 28.3 Practicalproblemsinvolvingstraightline 24.1 Introduction 229 graphs 275 24.2 ChangingfromCartesianintopolar co-ordinates 229 29 Reductionofnon-linearlawstolinearform 282 24.3 ChangingfrompolarintoCartesian 29.1 Determinationoflaw 282 co-ordinates 230 29.2 Determinationoflawinvolving 24.4 UseofPol/Recfunctionsoncalculators 232 logarithms 285 RevisionTest6 233 30 Graphswithlogarithmicscales 291 30.1 Logarithmicscales 291 25 Trianglesandsomepracticalapplications 234 30.2 Graphsoftheformy=axn 292 25.1 Sineandcosinerules 234 30.3 Graphsoftheformy=abx 295 25.2 Areaofanytriangle 235 30.4 Graphsoftheformy=aekx 296 25.3 Workedproblemsonthesolutionof trianglesandtheirareas 235 31 Graphicalsolutionofequations 299 25.4 Furtherworkedproblemsonthesolution 31.1 Graphicalsolutionofsimultaneous oftrianglesandtheirareas 237 equations 299 25.5 Practicalsituationsinvolving 31.2 Graphicalsolutionofquadraticequations 301 trigonometry 238 31.3 Graphicalsolutionoflinearandquadratic 25.6 Furtherpracticalsituationsinvolving equationssimultaneously 304 trigonometry 240 31.4 Graphicalsolutionofcubicequations 305 26 Trigonometricidentitiesandequations 244 32 Functionsandtheircurves 307 26.1 Trigonometricidentities 244 32.1 Standardcurves 307 26.2 Workedproblemsontrigonometric 32.2 Simpletransformations 310 identities 245 32.3 Periodicfunctions 314 26.3 Trigonometricequations 246 32.4 Continuousanddiscontinuousfunctions 314 26.4 Workedproblems(i)ontrigonometric 32.5 Evenandoddfunctions 315 equations 247 32.6 Inversefunctions 316 26.5 Workedproblems(ii)ontrigonometric equations 248 26.6 Workedproblems(iii)ontrigonometric RevisionTest8 319 equations 249 26.7 Workedproblems(iv)ontrigonometric Section5 Complexnumbers 321 equations 249 viii Contents 33 Complexnumbers 323 38.3 Mean,medianandmodeforgroupeddata 385 33.1 Cartesiancomplexnumbers 323 38.4 Standarddeviation 386 33.2 TheArganddiagram 325 38.5 Quartiles,decilesandpercentiles 388 33.3 Additionandsubtractionofcomplex 39 Probability 390 numbers 325 39.1 Introductiontoprobability 391 33.4 Multiplicationanddivisionofcomplex 39.2 Lawsofprobability 391 numbers 326 39.3 Workedproblemsonprobability 392 33.5 Complexequations 328 39.4 Furtherworkedproblemsonprobability 393 33.6 Thepolarformofacomplexnumber 329 39.5 Permutationsandcombinations 396 33.7 Multiplicationanddivisioninpolarform 330 33.8 Applicationsofcomplexnumbers 331 RevisionTest10 398 34 DeMoivre’stheorem 336 40 ThebinomialandPoissondistribution 399 34.1 Introduction 336 40.1 Thebinomialdistribution 399 34.2 Powersofcomplexnumbers 336 40.2 ThePoissondistribution 402 34.3 Rootsofcomplexnumbers 337 41 Thenormaldistribution 406 41.1 Introductiontothenormaldistribution 406 Section6 Vectors 341 41.2 Testingforanormaldistribution 411 35 Vectors 343 RevisionTest11 415 35.1 Introduction 343 35.2 Scalarsandvectors 343 42 Linearcorrelation 416 35.3 Drawingavector 344 42.1 Introductiontolinearcorrelation 416 35.4 Additionofvectorsbydrawing 344 42.2 Theproduct-momentformulafor 35.5 Resolvingvectorsintohorizontaland determiningthelinearcorrelation verticalcomponents 347 coefficient 416 35.6 Additionofvectorsbycalculation 348 42.3 Thesignificanceofacoefficientof 35.7 Vectorsubtraction 352 correlation 417 35.8 Relativevelocity 354 42.4 Workedproblemsonlinearcorrelation 417 35.9 i, j,andknotation 355 43 Linearregression 421 36 Methodsofaddingalternatingwaveforms 357 43.1 Introductiontolinearregression 421 36.1 Combinationoftwoperiodicfunctions 357 43.2 Theleast-squaresregressionlines 421 36.2 Plottingperiodicfunctions 358 43.3 Workedproblemsonlinearregression 422 36.3 Determiningresultantphasorsbydrawing 359 44 Samplingandestimationtheories 427 36.4 Determiningresultantphasorsbythesine 44.1 Introduction 427 andcosinerules 361 44.2 Samplingdistributions 427 36.5 Determiningresultantphasorsby 44.3 Thesamplingdistributionofthemeans 428 horizontalandverticalcomponents 362 44.4 Theestimationofpopulationparameters 36.6 Determiningresultantphasorsbycomplex basedonalargesamplesize 431 numbers 364 44.5 Estimatingthemeanofapopulationbased onasmallsamplesize 435 RevisionTest9 367 RevisionTest12 439 Section7 Statistics 369 MultiplechoicequestionsonChapters28–44 440 37 Presentationofstatisticaldata 371 37.1 Somestatisticalterminology 372 37.2 Presentationofungroupeddata 373 Section8 Differentialcalculus 445 37.3 Presentationofgroupeddata 376 38 Mean,median,modeandstandarddeviation 383 45 Introductiontodifferentiation 447 38.1 Measuresofcentraltendency 383 45.1 Introductiontocalculus 447 38.2 Mean,medianandmodefordiscretedata 384 45.2 Functionalnotation 447 Contents ix 45.3 Thegradientofacurve 448 51.3 Standardintegrals 506 45.4 Differentiationfromfirstprinciples 449 51.4 Definiteintegrals 509 45.5 Differentiationofy=axn bythegeneral 52 Integrationusingalgebraicsubstitutions 512 rule 452 52.1 Introduction 512 45.6 Differentiationofsineandcosinefunctions 453 52.2 Algebraicsubstitutions 512 45.7 Differentiationofeax andlnax 455 52.3 Workedproblemsonintegrationusing 46 Methodsofdifferentiation 457 algebraicsubstitutions 513 46.1 Differentiationofcommonfunctions 457 52.4 Furtherworkedproblemsonintegration 46.2 Differentiationofaproduct 459 usingalgebraicsubstitutions 514 46.3 Differentiationofaquotient 460 52.5 Changeoflimits 515 46.4 Functionofafunction 462 53 Integrationusingtrigonometricsubstitutions 517 46.5 Successivedifferentiation 463 53.1 Introduction 517 47 Someapplicationsofdifferentiation 466 53.2 Workedproblemsonintegrationof 47.1 Ratesofchange 466 sin2x,cos2x,tan2x andcot2x 517 47.2 Velocityandacceleration 468 53.3 Workedproblemsonintegrationofpowers 47.3 Turningpoints 470 ofsinesandcosines 519 47.4 Practicalproblemsinvolvingmaximum 53.4 Workedproblemsonintegrationof andminimumvalues 474 productsofsinesandcosines 520 47.5 Pointsofinflexion 477 53.5 Workedproblemsonintegrationusingthe sinθ substitution 521 47.6 Tangentsandnormals 479 53.6 Workedproblemsonintegrationusingthe 47.7 Smallchanges 481 tanθ substitution 523 RevisionTest13 483 RevisionTest15 524 48 Differentiationofparametricequations 484 48.1 Introductiontoparametricequations 484 54 Integrationusingpartialfractions 525 48.2 Somecommonparametricequations 485 54.1 Introduction 525 48.3 Differentiationinparameters 485 54.2 Workedproblemsonintegrationusing 48.4 Furtherworkedproblemson partialfractionswithlinearfactors 525 differentiationofparametricequations 487 54.3 Workedproblemsonintegrationusing partialfractionswithrepeatedlinear 49 Differentiationofimplicitfunctions 490 factors 527 49.1 Implicitfunctions 490 54.4 Workedproblemsonintegrationusing 49.2 Differentiatingimplicitfunctions 490 partialfractionswithquadraticfactors 528 49.3 Differentiatingimplicitfunctions containingproductsandquotients 491 55 Thet=tanθ substitution 530 2 49.4 Furtherimplicitdifferentiation 492 55.1 Introduction 530 55.2 Workedproblemsonthet=tanθ 50 Logarithmicdifferentiation 495 2 substitution 531 50.1 Introductiontologarithmicdifferentiation 495 55.3 Furtherworkedproblemsonthet=tanθ 50.2 Lawsoflogarithms 495 2 substitution 532 50.3 Differentiationoflogarithmicfunctions 496 56 Integrationbyparts 535 50.4 Differentiationoffurtherlogarithmic functions 496 56.1 Introduction 535 50.5 Differentiationof[f(x)]x 498 56.2 Workedproblemsonintegrationbyparts 535 56.3 Furtherworkedproblemsonintegration byparts 537 RevisionTest14 501 57 Numericalintegration 541 Section9 Integralcalculus 503 57.1 Introduction 541 57.2 Thetrapezoidalrule 541 51 Standardintegration 505 57.3 Themid-ordinaterule 544 51.1 Theprocessofintegration 505 57.4 Simpson’srule 545 51.2 Thegeneralsolutionofintegralsofthe formaxn 506 RevisionTest16 549

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.