ENGINEERING MATHEMATICS A Foundation for Electronic, Electrical, Communications and Systems Engineers FIFTH EDITION Anthony Croft (cid:127) Robert Davison Martin Hargreaves (cid:127) James Flint Engineering Mathematics At Pearson, we have a simple mission: to help people make more of their lives through learning. We combine innovative learning technology with trusted content and educational expertise to provide engaging and effective learning experiences that serve people wherever and whenever they are learning. From classroom to boardroom, our curriculum materials, digital learning tools and testing programmes help to educate millions of people worldwide – more than any other private enterprise. Every day our work helps learning flourish, and wherever learning flourishes, so do people. To learn more, please visit us at www.pearson.com/uk Fifth Edition Engineering Mathematics A Foundation for Electronic, Electrical, Communications and Systems Engineers Anthony Croft LoughboroughUniversity Robert Davison Martin Hargreaves CharteredPhysicist James Flint LoughboroughUniversity Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney Dubai • Singapore • Hong Kong • Tokyo • Seoul • Taipei • New Delhi Cape Town • São Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan PEARSONEDUCATIONLIMITED EdinburghGate HarlowCM202JE UnitedKingdom Tel:+44(0)1279623623 Web:www.pearson.com/uk FirsteditionpublishedundertheAddison-Wesleyimprint1992(print) SecondeditionpublishedundertheAddison-Wesleyimprint1996(print) ThirdeditionpublishedunderthePrenticeHallimprint2001(print) Fourtheditionpublished2013(printandelectronic) Fiftheditionpublished2017(printandelectronic) ©Addison-WesleyPublishersLimited1992,1996(print) ©PearsonEducationLimited2001(print) ©PearsonEducationLimited2013,2017(printandelectronic) TherightsofAnthonyCroft,RobertDavison,MartinHargreavesandJamesFlint tobeidentifiedasauthorsofthisworkhavebeenassertedbythemin accordancewiththeCopyright,DesignsandPatentsAct1988. Theprintpublicationisprotectedbycopyright.Priortoanyprohibitedreproduction, storageinaretrievalsystem,distributionortransmissioninanyformorbyanymeans, electronic,mechanical,recordingorotherwise,permissionshouldbeobtainedfrom thepublisheror,whereapplicable,alicencepermittingrestrictedcopyinginthe UnitedKingdomshouldbeobtainedfromtheCopyrightLicensingAgencyLtd, Barnard’sInn,86FetterLane,LondonEC4A1EN. TheePublicationisprotectedbycopyrightandmustnotbecopied,reproduced,transferred, distributed,leased,licensedorpubliclyperformedorusedinanywayexceptasspecifically permittedinwritingbythepublishers,asallowedunderthetermsandconditionsunderwhich itwaspurchased,orasstrictlypermittedbyapplicablecopyrightlaw.Anyunauthorised distributionoruseofthistextmaybeadirectinfringementoftheauthors’andthepublisher’s rightsandthoseresponsiblemaybeliableinlawaccordingly. PearsonEducationisnotresponsibleforthecontentofthird-partyinternetsites. ISBN:978-1-292-14665-2(print) 978-1-292-14667-6(PDF) 978-1-292-14666-9(ePub) BritishLibraryCataloguing-in-PublicationData AcataloguerecordfortheprinteditionisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Names:Croft,Tony,1957–author. Title:Engineeringmathematics:afoundationforelectronic,electrical, communicationsandsystemsengineers/AnthonyCroft,Loughborough University,RobertDavison,DeMontfortUniversity,MartinHargreaves, DeMontfortUniversity,JamesFlint,LoughboroughUniversity. Description:Fifthedition.|Harlow,England;NewYork:Pearson,2017.k Revisededitionof:Engineeringmathematics:afoundationforelectronic, electrical,communications,andsystemsengineers/AnthonyCroft,Robert Davison,MartinHargreaves.3rdediton.2001.|Includesindex. Identifiers:LCCN2017011081|ISBN9781292146652(Print)|ISBN9781292146676 (PDF)|ISBN9781292146669(ePub) Subjects:LCSH:Engineeringmathematics.|Electrical engineering–Mathematics.|Electronics–Mathematics. Classification:LCCTA330.C762017|DDC510–dc23 LCrecordavailableathttps://lccn.loc.gov/2017011081 AcatalogrecordfortheprinteditionisavailablefromtheLibraryofCongress 10 9 8 7 6 5 4 3 2 1 21 20 19 18 17 Printeditiontypesetin10/12TimesRomanbyiEnerzigerAptara®,Ltd. PrintedinSlovakiabyNeografia NOTETHATANYPAGECROSSREFERENCESREFERTOTHEPRINTEDITION To Kate, Tom and Harvey -- A.C. To Kathy -- R.D. To my father and mother -- M.H. To Suzanne, Alexandra and Dominic -- J.F. Contents Preface xvii Acknowledgements xix Chapter 1 Review of algebraic techniques 1 1.1 Introduction 1 1.2 Lawsofindices 2 1.3 Numberbases 11 1.4 Polynomialequations 20 1.5 Algebraicfractions 26 1.6 Solutionofinequalities 33 1.7 Partialfractions 39 1.8 Summationnotation 46 Reviewexercises1 50 Chapter 2 Engineering functions 54 2.1 Introduction 54 2.2 Numbersandintervals 55 2.3 Basicconceptsoffunctions 56 2.4 Reviewofsomecommonengineeringfunctionsandtechniques 70 Reviewexercises2 113 Chapter 3 The trigonometric functions 115 3.1 Introduction 115 3.2 Degreesandradians 116 3.3 Thetrigonometricratios 116 3.4 Thesine,cosineandtangentfunctions 120 3.5 Thesincxfunction 123 3.6 Trigonometricidentities 125 3.7 Modellingwavesusingsint andcost 131 3.8 Trigonometricequations 144 Reviewexercises3 150 viii Contents Chapter 4 Coordinate systems 154 4.1 Introduction 154 4.2 Cartesiancoordinatesystem–twodimensions 154 4.3 Cartesiancoordinatesystem–threedimensions 157 4.4 Polarcoordinates 159 4.5 Somesimplepolarcurves 163 4.6 Cylindricalpolarcoordinates 166 4.7 Sphericalpolarcoordinates 170 Reviewexercises4 173 Chapter 5 Discrete mathematics 175 5.1 Introduction 175 5.2 Settheory 175 5.3 Logic 183 5.4 Booleanalgebra 185 Reviewexercises5 197 Chapter 6 Sequences and series 200 6.1 Introduction 200 6.2 Sequences 201 6.3 Series 209 6.4 Thebinomialtheorem 214 6.5 Powerseries 218 6.6 Sequencesarisingfromtheiterativesolution ofnon-linearequations 219 Reviewexercises6 222 Chapter 7 Vectors 224 7.1 Introduction 224 7.2 Vectorsandscalars:basicconcepts 224 7.3 Cartesiancomponents 232 7.4 Scalarfieldsandvectorfields 240 7.5 Thescalarproduct 241 7.6 Thevectorproduct 246 7.7 Vectorsofndimensions 253 Reviewexercises7 255 Chapter 8 Matrix algebra 257 8.1 Introduction 257 8.2 Basicdefinitions 258 Contents ix 8.3 Addition,subtractionandmultiplication 259 8.4 Usingmatricesinthetranslationandrotationofvectors 267 8.5 Somespecialmatrices 271 8.6 Theinverseofa2 2matrix 274 × 8.7 Determinants 278 8.8 Theinverseofa3 3matrix 281 × 8.9 Applicationtothesolutionofsimultaneousequations 283 8.10 Gaussianelimination 286 8.11 Eigenvaluesandeigenvectors 294 8.12 Analysisofelectricalnetworks 307 8.13 Iterativetechniquesforthesolutionofsimultaneousequations 312 8.14 Computersolutionsofmatrixproblems 319 Reviewexercises8 321 Chapter 9 Complex numbers 324 9.1 Introduction 324 9.2 Complexnumbers 325 9.3 Operationswithcomplexnumbers 328 9.4 Graphicalrepresentationofcomplexnumbers 332 9.5 Polarformofacomplexnumber 333 9.6 Vectorsandcomplexnumbers 336 9.7 Theexponentialformofacomplexnumber 337 9.8 Phasors 340 9.9 DeMoivre’stheorem 344 9.10 Lociandregionsofthecomplexplane 351 Reviewexercises9 354 Chapter 10 Differentiation 356 10.1 Introduction 356 10.2 Graphicalapproachtodifferentiation 357 10.3 Limitsandcontinuity 358 10.4 Rateofchangeataspecificpoint 362 10.5 Rateofchangeatageneralpoint 364 10.6 Existenceofderivatives 370 10.7 Commonderivatives 372 10.8 Differentiationasalinearoperator 375 Reviewexercises10 385 Chapter 11 Techniques of differentiation 386 11.1 Introduction 386 x Contents 11.2 Rulesofdifferentiation 386 11.3 Parametric,implicitandlogarithmicdifferentiation 393 11.4 Higherderivatives 400 Reviewexercises11 404 Chapter 12 Applications of differentiation 406 12.1 Introduction 406 12.2 Maximumpointsandminimumpoints 406 12.3 Pointsofinflexion 415 12.4 TheNewton–Raphsonmethodforsolvingequations 418 12.5 Differentiationofvectors 423 Reviewexercises12 427 Chapter 13 Integration 428 13.1 Introduction 428 13.2 Elementaryintegration 429 13.3 Definiteandindefiniteintegrals 442 Reviewexercises13 453 Chapter 14 Techniques of integration 457 14.1 Introduction 457 14.2 Integrationbyparts 457 14.3 Integrationbysubstitution 463 14.4 Integrationusingpartialfractions 466 Reviewexercises14 468 Chapter 15 Applications of integration 471 15.1 Introduction 471 15.2 Averagevalueofafunction 471 15.3 Rootmeansquarevalueofafunction 475 Reviewexercises15 479 Chapter 16 Further topics in integration 480 16.1 Introduction 480 16.2 Orthogonalfunctions 480 16.3 Improperintegrals 483 16.4 Integralpropertiesofthedeltafunction 489 16.5 Integrationofpiecewisecontinuousfunctions 491 16.6 Integrationofvectors 493 Reviewexercises16 494