Engineering Heat Transfer Donatello Annaratone Engineering Heat Transfer 123 Prof.DonatelloAnnaratone ViaCeradini,14 20129Milano Italy [email protected] ISBN978-3-642-03931-7 e-ISBN978-3-642-03932-4 DOI10.1007/978-3-642-03932-4 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009938931 ©Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface After the publication of “Pressure Vessel Design” and “Steam Generators” by SpringerVerlagwhichwerewrittenforfieldexperts,Idecidedtowriteageneralist textbook. It is designed for anybody interested in heat transmission, including scholars, designersandstudents,insteadofexpertsofaspecificfield. Twocriteriaconstitutethefoundationofallmypublicationsincludingthepresent one. The first one consists of indispensable scientific rigour without theoretical exasperation. The second criterion is to deliver practical solutions to operational problems. Admirable theoretical studies stand out because of their scientific rigor and depth. Unfortunately, though, at times they have little impact on design require- ments because they either refer to schemata too remote from actual phenomena, orbecausetheobtainedresultsdifferfromtheoutcomederivedfromexperimental data. Inaddition,heattransferinvolvesquitecomplexphenomena,andtypicallytheory iseithermissingortoogenerictobeappliedtooperationalscenarios.Therefore,itis sometimesnecessarytoadoptempiricalcomputationcriteria.Thesearelessstriking thanatheoreticaldiscourse,butcertainlymoreusefultothedesigner. Moreover, in my opinion the inclusion of these theoretical studies would have strengthenedthescientificfoundationofthispublication,yetwithoutprovidingthe readerwithfurtherapplicableknow-how. The second criterion is fulfilled through equations grounded on scientific rigor, aswellasaseriesofapproximatedequations,leadingtoconvenientandpractically acceptable solutions, and through diagrams and tables. When a practical case is close to a well defined theoretical solution, we discuss corrective factors to offer simpleandcorrectsolutionstotheproblem. AfterabriefintroductioninChap.1,heattransferbyconductioninbothsteady andunsteadystateisexaminedinChap.2aswellasChap.3. Chapter 4 develops the dimensional analysis as an indispensable premise to Chap.5withitsfocusonheattransferbyconvection. Chapter6analyzesheattransferbyradiationincludingradiationbyflame. v vi Preface Chapter7illustratestherequiredbehaviorwhenexaminingheattransferinheat exchangers,aswellastubebanks. Chapter8discussespressuredropsindetail. Appendix A shows a series of Tables relative to thermal characteristics of the materials. AppendixBincludesaseriesofTablesaboutthecorrectivefactorstobeadopted toobtaintherealvalueofthemeantemperaturedifferenceindesigncomputation. AppendixCincludesaseriesofTablesaboutthecorrectivefactorstobeadopted to obtain the real value of the exit temperature of the heating fluid in verification computation. Hopefullythegoaltoofferthereaderarelativelyeasyandusefulreferenceand toprovidethedesigneravaluabletoolwaspartlyaccomplished. Italy DonatelloAnnaratone Contents 1 IntroductiontoHeatTransfer . . . . . . . . . . . . . . . . . . . . . 1 1.1 GeneralConsiderations . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ModesofHeatTransfer . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Convection . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 LawsofHeatTransfer . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Convection . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 OverallHeatTransferCoefficient . . . . . . . . . . . . . . . . 6 2 SteadyConduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 ConductionthroughaPlaneWall . . . . . . . . . . . . . . . . 13 2.3 ConductionthroughaPlaneMultiwall . . . . . . . . . . . . . . 16 2.4 ConductionthroughaCylindricalWall . . . . . . . . . . . . . 19 2.5 ConductionthroughaCylindricalMultiwall . . . . . . . . . . . 21 2.6 ConductionthroughaSphericalWall . . . . . . . . . . . . . . 23 2.7 ConductionthroughLiquidsandGases . . . . . . . . . . . . . 25 3 TransientConduction . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 GeneralLawofThermalConduction . . . . . . . . . . . . . . 30 3.3 SurfaceTemperatureVariationinInfiniteThicknessWalls . . . 34 3.4 SurfaceTemperatureVariationinFiniteThicknessWalls . . . . 38 3.5 ImmersedPlaneWallinFluidatDifferentTemperature . . . . . 44 3.6 TransientConductioninTubes . . . . . . . . . . . . . . . . . . 46 3.7 Fourier’sNumber . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 DimensionalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 ThreeMethodstoFindDimensionlessGroups . . . . . . . . . 51 4.2.1 AlgebraicMethod . . . . . . . . . . . . . . . . . . . . 51 vii viii Contents 4.2.2 UseofDifferentialEquations . . . . . . . . . . . . . . 53 4.2.3 Geometric,KinematicalandDynamicalSimilitude . . 58 4.3 TheoryofModels. . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1 TypesofMotion . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 PhysicalCharacteristicsofFluids . . . . . . . . . . . . . . . . 64 5.2.1 Water . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.3 FlueGas . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 NaturalConvection . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.1 PlaneVerticalWallandVerticalTubes . . . . . . . . . 74 5.3.2 HorizontalCylinders . . . . . . . . . . . . . . . . . . 76 5.3.3 HorizontalPlanePlates . . . . . . . . . . . . . . . . . 79 5.3.4 InterspaceBetweentwoPlaneWalls . . . . . . . . . . 80 5.4 ForcedConvectionInsidetheTubes . . . . . . . . . . . . . . . 81 5.4.1 Water . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.2 SuperheatedSteam . . . . . . . . . . . . . . . . . . . 88 5.4.3 MineralOils . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.4 Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4.5 DifferentKindsofGas . . . . . . . . . . . . . . . . . 95 5.5 HeatTransferintheInitialSection . . . . . . . . . . . . . . . . 97 5.6 SpecialInstances . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.6.1 AnnularInterspace . . . . . . . . . . . . . . . . . . . 102 5.6.2 PlaneWall . . . . . . . . . . . . . . . . . . . . . . . . 103 5.7 LaminarMotionintheTubes. . . . . . . . . . . . . . . . . . . 105 5.8 ForcedConvectionOutsideaTubeBank. . . . . . . . . . . . . 107 5.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 107 5.8.2 Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.8.3 VariousTypesofGasandSuperheatedSteam . . . . . 113 5.9 ComparisonBetweenIn-LineandStaggeredArrangement . . . 115 5.10 HeatTransfertoaSingleTube . . . . . . . . . . . . . . . . . . 118 5.11 HeatTransfertoFinnedTubes . . . . . . . . . . . . . . . . . . 119 5.12 BoilingLiquids . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.12.1 BoilingLiquidsOutsidetheTubes . . . . . . . . . . . 127 5.12.2 BoilingLiquidsInsidetheTubes . . . . . . . . . . . . 132 5.13 CondensingVapors . . . . . . . . . . . . . . . . . . . . . . . . 135 6 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 TheLawsofRadiation . . . . . . . . . . . . . . . . . . . . . . 140 6.2.1 Planck’sLaw . . . . . . . . . . . . . . . . . . . . . . 140 6.2.2 Wien’sLaw . . . . . . . . . . . . . . . . . . . . . . . 142 6.2.3 Stefan-Boltzmann’sLaw . . . . . . . . . . . . . . . . 143 6.2.4 Kirchhoff’sLaw . . . . . . . . . . . . . . . . . . . . . 145 Contents ix 6.2.5 Lambert’Law–BlackBodiesArrangedinany WhichWay . . . . . . . . . . . . . . . . . . . . . . . 146 6.3 PlaneSurfacesFacingEachOther . . . . . . . . . . . . . . . . 150 6.4 BodyCompletelyContainedinAnotherBody . . . . . . . . . . 154 6.5 SolarRadiation . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.6 FlameRadiation . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.7 FlameRadiationandConvection . . . . . . . . . . . . . . . . . 173 6.8 RadiationofCO andSteam . . . . . . . . . . . . . . . . . . . 181 2 7 HeatExchangersandTubeBanks. . . . . . . . . . . . . . . . . . . 191 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.2 MeanLogarithmicTemperatureDifference . . . . . . . . . . . 192 7.3 MeanSpecificHeat . . . . . . . . . . . . . . . . . . . . . . . . 196 7.3.1 WaterandSuperheatedSteam. . . . . . . . . . . . . . 197 7.3.2 AirandOtherGases . . . . . . . . . . . . . . . . . . . 197 7.4 DesignCalculation . . . . . . . . . . . . . . . . . . . . . . . . 198 7.5 TheMeanDifferenceinTemperatureinReality . . . . . . . . . 199 7.5.1 FluidswithCrossFlow . . . . . . . . . . . . . . . . . 201 7.5.2 HeatExchangers . . . . . . . . . . . . . . . . . . . . 202 7.5.3 Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7.5.4 Tube Bank with Various Passages of the ExternalFluid . . . . . . . . . . . . . . . . . . . . . . 206 7.6 VerificationCalculation . . . . . . . . . . . . . . . . . . . . . 209 7.6.1 GeneralConsiderations . . . . . . . . . . . . . . . . . 209 7.6.2 FluidsinParallelFloworinCounterflow . . . . . . . 209 7.6.3 Factor(cid:2) inRealCases . . . . . . . . . . . . . . . . . 218 8 PressureDrops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.2 DistributedPressureDrops . . . . . . . . . . . . . . . . . . . . 225 8.2.1 TurbulentMotion . . . . . . . . . . . . . . . . . . . . 225 8.2.2 LaminarMotion . . . . . . . . . . . . . . . . . . . . . 239 8.3 ConcentratedPressureDrops . . . . . . . . . . . . . . . . . . . 242 8.4 PressureDropsthroughTubeBanks . . . . . . . . . . . . . . . 250 8.5 PressureDropinFinnedTubes . . . . . . . . . . . . . . . . . . 253 A ThermalCharacteristicsofMaterials . . . . . . . . . . . . . . . . . 257 B CorrectiveFactorsfortheDesignComputationinRealCases . . . 275 C CorrectiveFactorsfortheVerificationComputationinRealCases 299 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Description: