ebook img

Engineering Acoustics PDF

36 Pages·2000·0.547 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering Acoustics

ENGINEERING ACOUSTICS EE 363N INDEX (p,q,r) modes....................28 cross product.....................35 gradient mechanical radiation 2q half-power beamwidth curl....................................36 thermoacoustic.............32 impedance.......................18 HP .........................................16 D(r) directivity function...16 gradient ratio.....................32 modal density....................28 A absorption......................27 D(q ) directivity function..14, graphing terminology........36 modes................................28 a absorption coefficient....21 15, 16 H enthalpy........................36 modulus of elasticity...........9 absorption..........................27 dB decibels.............2, 12, 13 h specific enthalpy............36 momentum conservation.6, 8 average.........................27 dBA...................................13 half-power beamwidth......16 monopole..........................13 measuring.....................27 decibel.....................2, 12, 13 harmonic wave..................36 moving coil speaker..........17 absorption coefficient..21, 28 del......................................35 heat flux............................11 m radiation mass.............18 r measuring.....................21 density.................................6 Helmholtz resonator..........25 mufflers.......................24, 25 acoustic analogies................8 equilibrium.....................6 henry...................................3 musical intervals...............12 acoustic impedance........3, 10 dependent variable.............36 Hooke's Law........................4 N fractional octave...........12 acoustic intensity...............10 diffuse field.......................28 horsepower..........................3 n number of reflections....28 acoustic power...................10 diffuse field mass law........22 humidity............................28 N(f) modal density............28 spherical waves............11 dipole.................................14 hyperbolic functions..........34 nabla operator...................35 acoustic pressure..............5, 9 direct field...................29, 30 I acoustic intensity10, 11, 12 natural angular frequency....4 effective..........................5 directivity function14, 15, 16 I spectral frequency density natural frequency................4 f adiabatic........................7, 36 dispersion..........................22 ........................................13 newton.................................3 adiabatic bulk modulus........6 displacement IL intensity level...............12 Newton's Law.....................4 ambient density................2, 6 particle.........................10 impedance.....................3, 10 noise..................................36 amp......................................3 divergence.........................35 air 10 noise reduction..................30 amplitude.............................4 dot product........................35 due to air......................18 NR noise reduction..........30 analogies..............................8 double walls......................23 mechanical...................17 number of reflections........28 anechoic room...................36 E energy density...............26 plane wave...................10 octave bands......................12 arbitrary direction plane E(t) room energy density..26 radiation.......................18 odd function........................5 wave..................................9 effective acoustic pressure...5 spherical wave.............11 p acoustic pressure.........5, 6 architectural absorption electrical analogies..............8 incident power...................27 Pa........................................3 coefficient........................28 electrical impedance..........18 independent variable.........36 particle displacement...10, 22 area electrostatic transducer......19 inductance...........................8 partition.............................21 sphere...........................36 energy density...................26 inertance..............................8 pascal..................................3 average absorption.............27 direct field....................29 instantaneous intensity......10 paxial axial pressure...........19 average energy density......26 reverberant field...........30 instantaneous pressure.........5 Pe effective acoustic axial pressure.....................19 enthalpy.............................36 intensity.......................10, 11 pressure.............................5 B bulk modulus..................6 entropy..............................36 intensity (dB)..............12, 13 perfect adiabatic gas............7 band equation of state..............6, 7 intensity spectrum level.....13 phase.................................33 frequency......................12 equation overview...............6 intervals phase angle..........................4 bandwidth..........................12 equilibrium density..............6 musical.........................12 phase speed.........................9 bass reflex..........................19 Euler's equation.................34 Iref reference intensity.......12 phasor notation..................33 Bessel J function..........18, 34 even function.......................5 isentropic...........................36 piezoelectric transducer.....19 binomial expansion............34 expansion chamber......24, 25 ISL intensity spectrum level pink noise..........................36 binomial theorem...............34 Eyring-Norris....................28 ........................................13 plane wave bulk modulus.......................6 far field..............................16 isothermal..........................36 impedance....................10 C compliance......................8 farad....................................3 isotropic.............................28 velocity..........................9 c speed of sound.................3 f center frequency............12 joule....................................3 plane waves.........................9 c calculus..............................34 f lower frequency.............12 k wave number...................2 polar form...........................4 l capacitance..........................8 flexural wavelength...........22 k wave vector.....................9 power..........................10, 11 center frequency................12 flow effects........................25 kelvin..................................3 SPL..............................29 characteristic impedance....10 focal plane.........................16 L inertance..........................8 power absorbed.................27 circular source...................15 focused source...................16 Laplacian...........................35 Pref reference pressure......13 cocktail party effect...........30 Fourier series.......................5 line source.........................14 pressure...........................6, 9 coincidence effect..............22 Fourier's law for heat linearizing an equation......34 progressive plane wave.......9 complex conjugate.............33 conduction.......................11 LM mean free path.............28 progressive spherical wave11 complex numbers..............33 frequency m architectural absorption propagation.........................9 compliance..........................8 center............................12 coefficient........................28 propagation constant...........2 condensation................2, 6, 7 frequency band..................12 magnitude..........................33 Q quality factor................29 conjugate frequency band intensity mass quality factor.....................29 complex........................33 level.................................13 radiation.......................18 r gas constant.....................7 contiguous bands...............12 f upper frequency............12 mass conservation...........6, 7 R room constant...............29 u coulomb...............................3 gas constant.........................7 material properties.............20 radiation impedance..........18 C dispersion....................22 general math......................33 mean free path...................28 radiation mass...................18 p Cramer's rule.....................23 glossary.............................36 mechanical impedance......17 radiation reactance............18 critical gradient..................32 grad operator.....................35 rayleigh number................16 Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 1 of 36 rayls.....................................3 specific acoustic impedance trace wavelength...............22 wave vector.........................9 r reverberation radius......29 .........................................10 transducer wavelength..........................2 d reflection............................20 specific enthalpy................36 electrostatic..................19 temperature effects.......25 reflection coefficient..........20 specific gas constant............7 piezoelectric.................19 weber...................................3 resonance spectral frequency density.13 transmission......................20 weighted sound levels.......13 modal............................28 speed amplitude...................4 transmission at oblique white noise........................36 reverberant field................30 speed of sound.....................3 incidence.........................22 W incident power.....27 incident reverberation radius...........29 sphere................................36 transmission coefficient....20 Young's modulus.................9 reverberation room............36 spherical wave...................11 transmission loss...............21 z acoustic impedance........10 reverberation time..............28 impedance....................11 composite walls............22 z impedance................10, 11 rms.................................5, 34 velocity........................11 diffuse field..................22 z rayleigh number...........16 0 room acoustics...................26 spherical wave impedance.11 expansion chamber......25 Z elec. impedance due to air A room constant....................29 SPL sound power level.....29 thin partition.................21 ........................................18 room energy density..........26 SPL sound pressure level..13 trigonometric identities.....34 Z elec. impedance due to M room modes.......................28 spring constant....................4 u velocity..................6, 9, 11 mech. forces....................18 root mean square...............34 standing waves..................10 U volume velocity..............8 Z mechanical impedance17 m s condensation................2, 6 Struve function..................18 vector differential equation35 Z radiation impedance.....18 r Sabin formula....................28 surface density...................21 velocity................................6 G gradient ratio.................32 sabins.................................27 T60 reverberation time.......28 plane wave.....................9 P acoustic power.......10, 11 series..................................34 TDS...................................36 spherical wave.............11 g ratio of specific heats.......6 sidebranch resonator..........26 temperature..........................3 volt......................................3 l wavelength......................2 simple harmonic motion......4 temperature effects............25 volume l flexural wavelength.....22 p sound...................................3 tesla.....................................3 sphere...........................36 l trace wavelength..........22 sound decay.......................26 thermoacoustic cycle.........31 volume velocity...................8 r tr equilibrium density........6 sound growth.....................26 thermoacoustic engine.......31 w bandwidth.....................12 0 r surface density.............21 sound power level..............29 thermoacoustic gradient....32 W power absorbed........27 s abs t time constant.................26 sound pressure level (dB)..13 thin rod................................9 watt......................................3 x particle displacement....10, source..........................13, 14 time constant.....................26 wave 22 space derivative.................35 time delay spectrometry....36 progressive...................11 space-time..........................33 time-average......................33 spherical.......................11 (cid:209) del.................................35 speaker...............................17 time-averaged power.........33 wave equation.....................6 (cid:209) ×(cid:31)·c ur.l............................36 TL transmission loss...21, 22 wave number.......................2 (cid:209) 2 · Laplacian....................35 (cid:209) ·d ivergence ...................35 DECIBELS [dB] k WAVE NUMBER [rad/m] A log based unit of energy that makes it easier to The wave number of propagation constant describe exponential losses, etc. The decibel means is a component of a wave function 2p w 10 bels, a unit named after Bell Laboratories. representing the wave density or wave k = = spacing relative to distance. Sometimes l c L=10log energy [dB] represented by the le tter b . See also reference energy WAVE VECTOR p9. One decibel is approximately the minimum discernable amplitude difference that can be detected by the human ear s CONDENSATION [no units] over the full range of amplitude. The ratio of the change in density to the ambient density, i.e. the degree to which the medium has ll WAVELENGTH [m] condensed (or expanded) due to sound waves. For example, s = 0 means no condensation or expansion Wavelength is the distance that a l= c= 2p of the medium. s = -½ means the density is at one wave advances during one cycle. half the ambient value. s = +1 means the density is at f k twice the ambient value. Of course these examples At high temperatures, the speed of 343 T are unrealistic for most sounds; the condensation will sound increases so l changes. T is l = k typically be close to zero. k temperature in Kelvin. f 293 r-r s = 0 r 0 r = instantaneous density [kg/m3] r = equilibrium (ambient) density [kg/m3] 0 Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 2 of 36 UNITS c SPEED OF SOUND [m/s] A (amp) = CW=== JNmV= F · · Sound travels faster in stiffer (i.e. higher B, less s VVsVs· s · compressible) materials. Sound travels faster at higher temperatures. JNmW·s · C (coulomb) = A·sV=F==· = VV V lw Frequency/wavelength relation: c=l =f F (farad) = CC=C=J=A2 s =2 · 2p V JNmV · V 2 g H (henry) = V·s (note that H·F=s2) In a perfect gas: cr=T= gP0 A r K 0 C2 J (joule) = Nm···V··=CWsA·V==sF=V = 2 F g B In liquids: c= T where B=g B N (newton) = JC=VW·s·kg=m · = r T mm m s 2 0 g = ratio of specific heats (1.4 for a diatomic gas) [no units] NkgJW s · Pa (pascal) = == = mm223sm · 3m P0 = ambient (atmospheric) pressure (p= P0 ). At sea level, P» 101kPa [Pa] T (tesla) = WbV=sH·A= · 0 mm22 m2 r 0 = equilibrium (ambient) density [kg/m3] r = specific gas constant [J/(kg·K)] WJJWsNm C · · V (volt) = ==== = T = temperature in Kelvin [K] K A CAsCC· F (cid:230) ¶ P(cid:246) B = r (cid:231) (cid:247) adiabatic bulk modulus [Pa] W (watt) = JN=m=C=V=···FV =1 VA·HP 2 0Ł r¶ ł r 0 sss s 746 B = isothermal bulk modulus, easier to measure than the T Wb (weber) = HA·V=s · = J adiabatic bulk modulus [Pa] A Two values are given for the speed of sound in solids, Bar Acoustic impedance: [rayls or (Pa·s)/m] and Bulk. The Bar value provides for the ability of sound to distort the dimensions of solids having a small-cross- Temperature: [°C or K] 0°C = 273.15K sectional area. Sound moves more slowly in Bar material. The Bulk value is used below where applicable. Speed of Sound in Selected Materials [m/s] Air @ 20°C 343 Copper 5000 Steel 6100 Aluminum 6300 Glass (pyrex) 5600 Water, fresh 20°C 1481 Brass 4700 Ice 3200 Water, sea 13°C 1500 Concrete 3100 Steam @ 100°C 404.8 Wood, oak 4000 Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 3 of 36 SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION, POLAR FORM Restoring force on a spring s (Hooke's Lawf)s: x=- M The solution abovxet( Aca)n= bw+e fwcroittste(n ), s 0 and Newton's Law: where we have the new constants: Fm=a (cid:230) (cid:246) 2 u yield: - sx= md2x and dx2 +s x=0 amplitude: A= x02 +(cid:231)Ł w 0(cid:247)ł dt2 dt2 m 0 s (cid:230) - u (cid:246) Let w =2 , so that the system is described by the initial phase angle: f= tan- 1(cid:231) 0(cid:247) 0 m Ł w xł 0 0 d2x Note that zero phase angle occurs at maximum positive equation dt2 +w 02=x 0. displacement. By differentiation, it can be found that the speed of the mass w = s is the natural angular frequency in rad/s. is uU=-w+f sint( ), where U =w A is the speed 0 m 0 0 w amplitude. The acceleration is aU=-ww+f ctos( ). f = 0 is the natural frequency in Hz. 0 0 0 2p Using the initial conditions, the equation can be written The general solution takes the form xt(At)A=w+10c2ostsiwn0 xt(x)=+w - 2 (cid:230)(cid:246)(cid:230)(cid:231)(cid:247)(cid:231) u0 2 ctostan (cid:246)(cid:247) - 1 u0 Initial conditions: 0 ŁłŁ w 0 ł w x displacement: x(0)= x , so A = x 00 0 0 1 0 x = the initial position [m] 0 velocity x&(0)=u , so A = u0 u0 = the initial speed [m/s] 0 2 w s 0 w = is the natural angular frequency in rad/s. Solution: xt(xt)=w+ cossinwt u0 0 m 00 w 0 It is seen that displacement lags 90° behind the speed and 0 that the acceleration is 180° out of phase with the s = spring constant [no units] displacement. x = the displacement [m] m = mass [kg] SIMPLE HARMONIC MOTION, u = velocity of the mass [m/s] t = time [s] displacement – acceleration - speed Displacement, Acceleration Speed, a Acceleration Displacement Speed x u 0 p p 3p 2p w 0t 2 2 Phase Angle Initial phase angle ff=0° The speed of a simple oscillator leads the displacement by 90°. Acceleration and displacement are 180° out of phase with each other. Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 4 of 36 FOURIER SERIES p ACOUSTIC PRESSURE [Pa] The Fourier Series is a method of describing a Sound waves produce proportional changes in complex periodic function in terms of the frequencies pressure, density, and temperature. Sound is usually and amplitudes of its fundamental and harmonic measured as a change in pressure. See Plane frequencies. Waves p9. Let ftf(t)=T+ ( = ) any periodic signal p= P- P0 where T = the period. For a simple harmonic plane wave traveling in the x direction, p is a function of x and t: f ( t ) px(tP,e)= j(w-tkx ) P = instantaneous pressure [Pa] 0 1T 2T t P0 = ambient (atmospheric) pressure (p= P0 ). At sea level, P» 101kPa [Pa] 0 P = peak acoustic pressure [Pa] x = position along the x-axis [m] Then ftA(A)n=t+B1w+n t (cid:229) ¥ (w cossin ) t = time [s] 2 0 n n n=1 2p Pe EFFECTIVE ACOUSTIC PRESSURE where w= = the fundamental frequency [Pa] T A = the DC component and will be zero provided the The effective acoustic pressure is the rms value of the 0 function is symmetric about the t-axis. This is almost sound pressure, or the rms sum (see page 34) of the always the case in acoustics. values of multiple acoustic sources. An = T2 (cid:242) tt00+T ftn(td)tcos w Aothdne di sr i fgzuhentr-coht awionhnde, npi. lefa(.tn )fe (its )i s=a -anf( -t), Pe = P2 PeP2p=dt 2 = (cid:242) T 2 mirror image of the left- hthaenmd pisl afinrset pflriopvpiedde da boonuet of Pe =+ P12 + P22 + P32 L the horizontal axis, e.g. P = peak acoustic pressure [Pa] sine function. p = P- Pacoustic pressure [Pa] 0 B = 2 (cid:242) t0+T ftn(td)stin w Bn is zero when f(t) is an n even function, i.e. f(t)=f(-t), T t0 the right-hand plane is a mirror image of the left- hand plane, e.g. cosine function. where t = an arbitrary time 0 Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 5 of 36 rr EQUILIBRIUM DENSITY [kg/m3] EQUATION OVERVIEW 0 The ambient density. Equation of State (pressure) r= =B g P0 for ideal gases p= Bs 0 c2 c2 Mass Conservation (density) g B r = T 3-dimensional 1-dimensional for liquids 0 c2 ¶ s+(cid:209)(cid:215)v =uv 0 ¶ s+¶ u =0 The equilibrium density is the inverse of the specific volume. ¶ t ¶ t ¶ x From the ideal gas equation: Pn=Rfi=TPr RT Momentum Conservation (velocity) 0 ( ) 3-dimensional 1-dimensional B = r 0 ¶r¶ P r 0adiabatic bulk modulus, approximately equal (cid:209)+vrp =¶ uv 0 ¶ p+r ¶ u= 0 to the isothermal bulk modulus, 2.18×109 for water [Pa] 0 ¶ t ¶ x 0¶ t c = the phase speed (speed of sound) [m/s] From the above 3 equations and 3 unknowns (p, s, u) g = ratio of specific heats (1.4 for a diatomic gas) [no units] we can derive the Wave Equation P0 = ambient (atmospheric) pressure (p= P0 ). At sea 1 ¶ 2p P = plerveesls, urP0e »[P1a0]1 kPa [Pa] (cid:209) 2p= c2 ¶ t2 n = V/m specific volume [m3/kg] V = volume [m3] m = mass [kg] EQUATION OF STATE - GAS R = gas constant (287 for air) [J/(kg·K) ] An equation of state relates the physical properties T = absolute temperature [K] (°C + 273.15) describing the thermodynamic behavior of the fluid. In r 0 Equilibrium Density of Selected Materials [kg/m3] acoustics, the temperature property can be ignored. Air @ 20°C 1.21 Copper 8900 Steel 7700 In a perfect adiabatic gas, the thermal conductivity of Aluminum 2700 Glass (pyrex) 2300 Water, fresh 20°C 998 the gas and temperature gradients due to sound Brass 8500 Ice 920 Water, sea 13°C 1026 waves are so small that no appreciable thermal Concrete 2600 Steam @ 100°C 0.6 Wood, oak 720 energy transfer occurs between adjacent elements of the gas. BB ADIABATIC BULK MODULUS [Pa] g (cid:230) r (cid:246) P B is a stiffness parameter. A larger B means the Perfect adiabatic gas: =(cid:231) (cid:247) material is not as compressible and sound travels P Ł r ł 0 0 faster within the material. p=g Ps (cid:230) ¶ (cid:246) Linearized: 0 P B=r=r=(cid:231)g (cid:247) c2 P 00Ł ¶r ł 0 P = instantaneous (total) pressure [Pa] r 0 P0 = ambient (atmospheric) pressure (p= P0 ). At sea r = instantaneous density [kg/m3] level, P» 101kPa [Pa] r 0 = equilibrium (ambient) density [kg/m3] r = instantan0eous density [kg/m3] c = the phase speed (speed of sound, 343 m/s in air) [m/s] r = equilibrium (ambient) density [kg/m3] P = instantaneous (total) pressure [Pa or N/m2] g 0= ratio of specific heats (1.4 for a diatomic gas) [no units] P0 = ambient (atmospheric) pressure (p= P0 ). At sea p = P - P0 acoustic pressure [Pa] level, P0 » 101kPa [Pa] s = r-r 0 1condensation [no units] g = ratio of specific heats (1.4 for a diatomic gas) [no units] r = 0 BB Bulk Modulus of Selected Materials [Pa] Aluminum 75×109 Iron (cast) 86×109 Rubber (hard) 5×109 Brass 136×109 Lead 42×109 Rubber (soft) 1×109 Copper 160×109 Quartz 33×109 Water *2.18×109 Glass (pyrex) 39×109 Steel 170×109 Water (sea) *2.28×109 *B , isothermal bulk modulus T Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 6 of 36 EQUATION OF STATE – LIQUID MASS CONSERVATION – one dimension An equation of state relates the physical properties For the one-dimensional problem, consider sound describing the thermodynamic behavior of the fluid. In waves traveling through a tube. Individual particles of acoustics, the temperature property can be ignored. the medium move back and forth in the x-direction. Adiabatic liquid: p= Bs x x+dx p = P - P acoustic pressure [Pa] (0 ) A= tube area B = r 0 ¶r¶ P r adiabatic bulk modulus, approximately equal 0 to the isothermal bulk modulus, 2.18×109 for water [Pa] (r uA) is called the mass flux [kg/s] r-r x s = r 0 =1condensation [no units] (r uA)xd+x is what's coming out the other side (a different 0 value due to compression) [kg/s] The difference between the rate of mass entering the center r SPECIFIC GAS CONSTANT [J/(kg·K) ] volume (A dx) and the rate at which it leaves the center volume is the rate at which the mass is changing in the The specific gas constant r depends on the universal center volume. gpaasrt iccounlasrt agnats R. Faonrd a tihr er m» o2l8e7cJu/kla(gr· Kwei)g.h t M of the (r-r=u-Au)Adx( ) ¶ r( uA) xxdx + ¶ x r = R r dv is the mass in the center volume, so the rate at which M the mass is changing can be written as ¶ ¶ R = universal gas constant r dv=Adxr M = molecular weight ¶ t ¶ t Equating the two expressions gives ¶ ¶ r( uA) r=A- dxdx , which can be simplified ¶ t ¶ x ¶ ¶ r+r = ( u) 0 ¶ t ¶ x u = particle velocity (due to oscillation, not flow) [m/s] r = instantaneous density [kg/m3] p = P - P acoustic pressure [Pa] 0 A = area of the tube [m2] MASS CONSERVATION – three dimensions ¶ r+(cid:209)(cid:215)r v=( uv) 0 ¶ t ¶¶ ¶ where (cid:209)v=r+r+r xˆ yˆ zˆ ¶ xy ¶ z ¶ and let r=r +(1 s) 0 ¶ s+(cid:209)(cid:215)v =uv 0 (linearized) ¶ t Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 7 of 36 MOMENTUM CONSERVATION – one ACOUSTIC ANALOGIES dimension (5.4) to electrical systems For the one-dimensional problem, consider sound ACOUSTIC ELECTRIC waves traveling through a tube. Individual particles of p V the medium move back and forth in the x-direction. Impedance: Z = Z = A U I x x+dx Voltage: D p VI=R ( P A )x -( P A )x+dx A= tube area Current: U I =V R (PA) is the force due to sound pressure at location x in p = P - P0 acoustic pressure [Pa] x the tube [N] U = volume velocity (not a vector) [m3/s] (PA) is the force due to sound pressure at location ZA = acoustic impedance [Pa·s/m3] xd+x x + dx in the tube (taken to be in the positive or right-hand direction) [N] L INERTANCE [kg/m4] The sum of the forces in the center volume is: Describes the inertial properties of gas in a channel. (cid:229) FA=A-=(A-Pdx ) ( P ) ¶ P Analogous to electrical inductance. xxdx + ¶ x r D x L= 0 Force in the tube can be written in this form, noting that this A is not a partial derivative: r = ambient density [kg/m3] 0 Fm=a=Adr x ( )du D x = incremental distance [m] dt A = cross-sectional area [m2] For some reason, this can be written as follows: (r=Ar dxA)ddxuu+( uu )(cid:230)(cid:231) ¶ ¶ (cid:246)(cid:247) C COMPLIANCE [m6/kg] dtt x Ł ¶ ¶ ł The springiness of the system; a higher value means with the term u¶ u often discarded in acoustics. softer. Analogous to electrical capacitance. ¶ x V P = instantaneous (total) pressure [Pa or N/m2] C = gr A = area of the tube [m2] 0 r = instantaneous density [kg/m3] V = volume [m3] p = P - P acoustic pressure [Pa] g = ratio of specific heats (1.4 for a diatomic gas) [no units] 0 u = particle velocity (due to oscillation, not flow) [m/s] r = ambient density [kg/m3] 0 MOMENTUM CONSERVATION – U VOLUME VELOCITY [m3/s] three dimensions Although termed a velocity, volume velocity is not a ¶¶ ¶ (cid:230) u u(cid:246) vector. Volume velocity in a (uniform flow) duct is the P+r+(cid:231) =u (cid:247) 0 product of the cross-sectional area and the velocity. ¶¶ tt ¶ Łx ł ¶ V dx and (cid:209)+vr+p(cid:215)(cid:209)u =(cid:230)(cid:231)u¶ uv v vv(cid:246)(cid:247) 0 US=u=S¶ tdt = Ł ¶ t ł Note that uv(cid:215)(cid:209) vuv is a quadratic term and that r ¶ uv is VS == avroeluam [me 2[]m 3] ¶ t u = velocity [m/s] quadratic after multiplication x = particle displacement, the displacement of a fluid (cid:209)+vrp =¶ uv 0 (linearized) element from its equilibrium position [m] 0 ¶ t Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 8 of 36 PLANE WAVES u VELOCITY, PLANE WAVE [m/s] PLANE WAVES (2.4, 5.7) The acoustic pressure divided by the impedance, also A disturbance a great distance from the source is from the momentum equation: approximated as a plane wave. Each acoustic variable has constant amplitude and phase on any ¶ p+r=¶ fi u 0 u = p = p plane perpendicular to the direction of propagation. ¶ x 0¶ t z r c 0 The wave equation is the same as that for a disturbance on a string under tension. p = P - P acoustic pressure [Pa] 0 ¶ ¶ z = wave impedance [rayls or (Pa·s)/m ] There is no y or z dependence, so ¶ y =¶ z =0. r 0 = equilibrium (ambient) density [kg/m3] c = dx is the phase speed (speed of sound) [m/s] One-dimensional wave equation: ¶ 2p = 1¶ 2p k = wdatve number or propagation constant [rad./m] ¶ xc22 t2¶ r = radial distance from the center of the sphere [m] General Solution for the acoustic px(tA,eB)e= 14j(w-w+2tkxtk4x) +31j(42)43 PROPAGATION (2.5) pressure of a propagating inpropagating in plane wave: the +x directionthe -x direction a disturbance F(x-cD t) p = P - P acoustic pressure [Pa] 0 A = magnitude of the positive-traveling wave [Pa] x x B = magnitude of the negative-traveling wave [Pa] w = frequency [rad/s] D x=cD t t = time [s] D xdx k = wave number or propagation constant [rad./m] c=fiD fi , t 0 x = position along the x-axis [m] D tdt c = dx is the phase speed (speed of sound) at which F is dt PROGRESSIVE PLANE WAVE (2.8) translated in the +x direction. [m/s] A progressive plane wave is a unidirectional plane wave—no reverse-propagating component. v px(tA,e)= j(w-tkx ) k WAVE VECTOR [rad/m or m-1] The phase constant k is converted to a vector. For v plane waves, the vector k is in the direction of ARBITRARY DIRECTION PLANE WAVE propagation. v The expression for an arbitrary direction plane wave kk=xkykˆz+ ˆ + ˆ where x y z contains wave numbers for the x, y, and z (cid:230) w (cid:246) 2 components. k2 +k2 +k2 =(cid:231) (cid:247) px(tA,e)= j(w- tkx- xk- ykyz z ) x y z Ł cł (cid:230) w (cid:246) 2 where k2+k2 +k2 =(cid:231) (cid:247) THIN ROD PROPAGATION xy z Ł cł A thin rod is defined as l ?a. a a= rod radius c = dx is the phase speed (speed of sound) [m/s] dt ¡ = Young's modulus, or modulus of elasticity, a characteristic property of the material [Pa] r = equilibrium (ambient) density [kg/m3] 0 Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 9 of 36 STANDING WAVES xv PARTICLE DISPLACEMENT [m] Two waves with identical frequency and phase The displacement of a fluid element from its characteristics traveling in opposite directions will equilibrium position. cause constructive and destructive interference: ¶x v p px(tp,ep)=e 1 jt(kw-wx+jtkx )+ 2 ( ) uv = ¶ t x= rw c 1424314243 0 moving rightmoving left for p =p =10, k=1, t=0: uv = particle velocity [m/s] 1 2 PP ACOUSTIC POWER [W] Acoustic power is usually small compared to the power required to produce it. P = (cid:242) Ivd·sv S S = surface surrounding the sound source, or at least the for p =5, p =10, k=1, t=0: surface area through which all of the sound passes [m2] 1 2 I = acoustic intensity [W/m2] I ACOUSTIC INTENSITY [W/m2] The time-averaged rate of energy transmission through a unit area normal to the direction of propagation; power per unit area. Note that I = Æ puæ T is a nonlinear equation (It’s the product of two functions of space and time.) so you can't simply use z SPECIFIC ACOUSTIC IMPEDANCE jw t or take the real parts and multiply, see Time- [rayls or (Pa·s)/m ] (5.10) Average p33. Simppeecidfiacn acceo uz sisti ca imprpoepdeartnyc oef othr ec hmaerdaicutmer aisntdic o f the IIt=p=up(ud)t = 1 (cid:242) T T T T 0 type of wave being propagated. It is useful in calculations involving transmission from one medium For a single frequency: tiso ianndoetpheenr.d eInn tt hoef fcreaqsuee onfc ay .p lFaonre swpahveeri,c za li sw raevael sa nthde Ip=u1 Re{ *} 2 opposite is true. In general, z is complex. p For a plane harmonic wave traveling in the +z direction: z ==ur 0c (applies to progressive plane waves) 1 ¶¶¶ EEx¶1 E p2 P2 I == = c , I = = e AtA¶¶¶ xt ¶ V 2r c r c Acoustic impedance is analogous to electrical 0 0 impedance: T = period [s] I(t) = instantaneous intensity [W/m2] pressurev=olitmspedance= p = P - P acoustic pressure [Pa] velocityamps 0 |p| = peak acoustic pressure [Pa] z = r+ j x u = particle velocity (due to oscillation, not flow) [m/s] P = effective or rms acoustic pressure [Pa] e In a sense this is resistive, In a sense this is reactive, r 0 = equilibrium (ambient) density [kg/m3] id.eep. aar ltos sfsr osmin cteh eth seo uwracvee. iann tihmatp ethdiism veanlut eto r epprorepsaegnattsion. c = ddxt is the phase speed (speed of sound) [m/s] r 0c Characteristic Impedance, Selected Materials (bulk) [rayls] Air @ 20°C 415 Copper 44.5×106 Steel 47×106 Aluminum 17×106 Glass (pyrex) 12.9×106 Water, fresh 20°C 1.48×106 Brass 40×106 Ice 2.95×106 Water, sea 13°C 1.54×106 Concrete 8×106 Steam @ 100°C 242 Wood, oak 2.9×106 Tom Penick [email protected] www.teicontrols.com/notes EngineeringAcoustics.pdf 12/20/00 Page 10 of 36

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.