ebook img

Energy Systems in the Era of Energy Vectors: A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels PDF

365 Pages·2012·6.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy Systems in the Era of Energy Vectors: A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

Green Energy and Technology For furthervolumes: http://www.springer.com/series/8059 Fabio Orecchini Vincenzo Naso • Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels 123 Prof.FabioOrecchini Prof.Vincenzo Naso CentroInteruniversitario diRicerca CentroInteruniversitario diRicerca Per SviluppoSostenibile (CIRPS) Per SviluppoSostenibile (CIRPS) Sapienza Università diRoma Sapienza Università diRoma Piazza San PietroinVincoli 10 Piazza San PietroinVincoli 10 00184Rome 00184Rome Italy Italy e-mail: [email protected] e-mail: [email protected] ISSN 1865-3529 e-ISSN1865-3537 ISBN 978-0-85729-243-8 e-ISBN978-0-85729-244-5 DOI 10.1007/978-0-85729-244-5 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary (cid:2)Springer-VerlagLondonLimited2012 Apart from anyfair dealing for the purposes of researchor privatestudy, or criticismor review,as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbe senttothepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceof aspecificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandtherefore freeforgeneraluse. The publisher makes no representation, express or implied, with regard to the accuracy of the informationcontainedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrors oromissionsthatmaybemade. Coverdesign:eStudioCalamar,Berlin/Figueres Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Energy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Energy Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Energy and Power: Natural Forms of Energy. . . . . . . . . 3 1.1.3 Units of Measurement in Energy Systems . . . . . . . . . . . 6 1.1.4 Energy Availability in Nature. . . . . . . . . . . . . . . . . . . . 8 1.1.5 Classification of Energy Sources. . . . . . . . . . . . . . . . . . 11 1.2 Closed Cycles of Energy Resources. . . . . . . . . . . . . . . . . . . . . 13 1.2.1 The ‘‘Measurable’’ Definition of Sustainability. . . . . . . . 14 1.2.2 The Earth, as an ‘‘Open’’ Energy System, Allows the Realisation of Closed Cycles. . . . . . . . . . . . . . . . . . 19 1.3 Energy Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 Energy Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Definition of Energy Potential. . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 The Earth’s Energy Balance. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Renewable Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 Solar Energy (Direct) . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 Hydropower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 Wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.4 Biomass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.5 Geothermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.6 Other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.7 Current Renewable Energy Use . . . . . . . . . . . . . . . . . . 62 2.4 Non-renewable Energy Sources. . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.4.2 Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 v vi Contents 2.4.3 Tar Sands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.4.4 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.4.5 Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3 Energy Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1 The Need for Energy Transportation and Storage . . . . . . . . . . . 97 3.2 Attitude to Energy Transportation in Space and Time and Range of Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3 Duration and Range of Transfers. . . . . . . . . . . . . . . . . . . . . . . 100 3.4 Characteristics of Energy Vectors . . . . . . . . . . . . . . . . . . . . . . 102 3.4.1 Ways and Means of Storage, Transportation and Distribution of Vectors . . . . . . . . . . . . . . . . . . . . . 102 3.5 Analysis of the Main Energy Vectors. . . . . . . . . . . . . . . . . . . . 105 3.5.1 Oil as Energy Vector. . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.5.2 Coal as Energy Vector. . . . . . . . . . . . . . . . . . . . . . . . . 114 3.5.3 Natural Gas as Energy Vector . . . . . . . . . . . . . . . . . . . 115 3.5.4 Electricity as Energy Vector. . . . . . . . . . . . . . . . . . . . . 120 3.5.5 Hydrogen as Energy Vector. . . . . . . . . . . . . . . . . . . . . 143 3.5.6 Synthetic Fuels as Energy Vectors . . . . . . . . . . . . . . . . 164 3.5.7 Heat-Transfer Fluids as Energy Vectors. . . . . . . . . . . . . 168 3.5.8 Mechanic Energy as Energy Vector . . . . . . . . . . . . . . . 170 3.5.9 Radiant Energy as Energy Vector. . . . . . . . . . . . . . . . . 173 3.6 The Era of Energy Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.6.1 Possible Production from Different Primary Sources. . . . 175 3.6.2 Environmental Compatibility During Use. . . . . . . . . . . . 176 3.6.3 Conversion Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . 176 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4 Energy Conversion and Transformation Plants. . . . . . . . . . . . . . . 179 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.2 Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.2.1 Mechanical Energy-to-Electric Power Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.2.2 Radiant Energy-to-Electric Power Conversion Plants. . . . 197 4.2.3 Chemical Energy-to-Electric Power Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 4.2.4 Chemical Energy-to-Mechanical Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.2.5 Radiant Energy-to-Thermal Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 4.2.6 Thermal Energy-to-Chemical Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Contents vii 4.2.7 Electric Power-to-Chemical Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 4.2.8 Radiant Energy-to-Chemical Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 4.2.9 Electric Energy-to-Thermal Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 4.2.10 Electric Power-to-Radiant (Luminous) Energy Conversion Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 4.3 Energy Transformation Plants. . . . . . . . . . . . . . . . . . . . . . . . . 277 4.3.1 Chemical Energy Transformation Plants . . . . . . . . . . . . 277 4.3.2 Thermal Energy Transformation Plants . . . . . . . . . . . . . 283 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 5 Distributed Generation and Cogeneration. . . . . . . . . . . . . . . . . . . 291 5.1 Distributed Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 5.1.1 General Features of Conversion Plants . . . . . . . . . . . . . 291 5.1.2 Scale Economies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 5.1.3 Energy Sources and Distributed Generation Technologies . . . . . . . . . . . . . . . . . . . . . . . 293 5.1.4 From Concentrated Production to Distributed Production. . . . . . . . . . . . . . . . . . . . . . . . . 294 5.1.5 Type One and Two Distributed Generation . . . . . . . . . . 297 5.2 Combined Production of Electric Power and Heat: Cogeneration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 5.2.1 Cogeneration Technologies . . . . . . . . . . . . . . . . . . . . . 302 5.2.2 Typical Indexes of Cogeneration Plants. . . . . . . . . . . . . 311 5.2.3 District Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 6 Energy Useful Effect and End Use . . . . . . . . . . . . . . . . . . . . . . . . 321 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 6.2 Thermal End Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 6.2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 6.2.2 Thermal End Use with Heat Pump . . . . . . . . . . . . . . . . 333 6.3 Luminous End Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 6.3.1 Interior Lighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 6.3.2 Elements of Photometry. . . . . . . . . . . . . . . . . . . . . . . . 337 6.3.3 Natural Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 6.3.4 Artificial Light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 6.4 Mechanic End Use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 6.5 Electric/Electronic End Use . . . . . . . . . . . . . . . . . . . . . . . . . . 350 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Chapter 1 Energy Systems 1.1 The Energy Cycle 1.1.1 Introduction Theenergycycleconcernsenergyevolutioninitspassagefromnaturalavailability to the most suitable form for end use, meaning the form that allows the desired useful effect and entails the disposal of its unexploited portion. Energetics is the branch of learning that studies the forms and quantities through which nature provides energy to human beings, and the sources (called primarysources)throughwhichthisavailabilityiscarriedout.Energysystemsare those devices in which, through transformation and conversion processes and flows, energy is processed until reaching end uses and thence the useful effect. Obviously, as shown in Fig. 1.1, the energy cycle—in its form commonly used nowadays—entails an interaction with the environment as well as the production of waste and pollutants. This cycle is shown in detail in Fig. 1.1, with the general reference scheme. It shows the so-called primary (or natural) forms of energy, the energy flows, which include the transformation from primary energy into secondary forms of energy, through their processing and physical or chemical transformation, that is to say the transformation into electric energy and the energy of end use, until achieving the useful effect. By following the indications of the arrows shown in the figure, the possible pathwaysoftheenergycyclecanbeidentified.Itisthereforeshownhowsomesources of primary energy are directly employable for end use (line (a); for instance: the naturalgasorcoalusedfordomesticheating,thewindenergyorhydropowerdirectly usedinmillssinceancienttimes,orthewindenergyusedforsailingpurposes). More often, the forms of energy available in nature must be adapted to the demandcomingfromendusersthatis,tosaytransformedand/orconverted.Inthis F.OrecchiniandV.Naso,EnergySystemsintheEraofEnergyVectors, 1 GreenEnergyandTechnology,DOI:10.1007/978-0-85729-244-5_1, (cid:2)Springer-VerlagLondonLimited2012 2 1 EnergySystem Fig.1.1 Generalreference diagramoftheenergycycle way, a passage occurs from primary forms (i.e., the potential chemical energy contained in liquid hydrocarbons) to secondary forms (line (b); i.e.: oil refining products) and they are directly employed for end use (line (c)). Inothercases,someprimarysources(line(d)),suchasnaturalgasandcoal,or secondary sources, can supply the thermoelectric plants that generate electric power(line(e)).Inturn,thelatterisemployedbyendusers(line(f));inthisfinal process of the cycle, energy allows the achievement of the desired useful effect, whereas the portion not used is generally released into the environment. Inthischart,particularattentionispaidtoelectricpower,duetoitspeculiarity andthepriorityitisgainingintheentireenergyframework,comparedtotheother forms of energy used. It is appropriate to underline that the definitions herein introduced differ from those that several authors adopted on the basis of other nomenclatures. For instance, some prefer to define ‘‘secondary energies’’ those types of energy that allow to transfer energy in space or in time, with a view to make it available wherever and whenever needed. In this framework, the name energy vector is ascribed to this type offunction. Forinstance,whenhydrogenproductionisfinallyobtained—havingconsidered that it is a very good fuel not directly available for use in nature—by using the waste heat of thermoelectric power plants, a sort of energy recovery through heat ‘‘accumulation’’ in hydrogen is carried out. In fact, the hydrogen energy vector willcollectthewastethermalenergythatwouldotherwisebelost.Theavailability of hydrogen so produced, in fact, will make energy available wherever and 1.1 TheEnergyCycle 3 whenever needed. As a matter of fact, through this process, the waste thermal energy will be transferred over time by means of the hydrogen energy vector. Inthenextfewparagraphs,ananalysisismadeofthemainusablenaturalforms of energy. Subsequently, the units of measurement used in the energy sector will be dealt with, since some of them—although commonly used among operators— are not the ones adopted by the International System. As a matter offact, as we will see more in detail afterwards, these particular units were selected for their characteristics and size, which make their use handy in the analysis of energy flows. Finally,ananalysisofnaturalenergysourceswillbemade,precededbygeneral considerations on global energy flows on the Earth, seen as an energy system interacting with the surrounding space. 1.1.2 Energy and Power: Natural Forms of Energy Energy,accordingtothemostwidespreaddefinition,isthecapacityofasystemtodo work.Asregardstheunitoftime,powerissimilarlydefined.The‘‘energyproblem’’ consistsinmakingenergyavailableattheplace,timeandconditionsrequestedby users;andthisfortheentiretimeneeded.Itisthereforeevenmoredifficulttofinda solution to the ‘‘power problem’’, having considered that the quantity of energy demanded may vary minute after minute. Solving the energy problem from the quantityviewpointandinagivenperiodoftimemaynotbesufficient.1 The energy available in nature—and which human beings avail themselves of—canbedistinguishedintodifferentheterogeneousforms.Theformsofenergy presently used are the following: • Chemical • Electrical • Electromagnetic • Mechanical – Kinetic – Potential and pressure • Nuclear • Thermal This classification is important since it provides the choice of the form of energy to be employed, according to its intended use. 1 Thisconceptcanbemoreeasilyunderstoodbymeansofanexample.Let’sconsiderthecaseof electricutilities:sinceitisknownthatelectricpowerisstoredwithdifficultyandexpensively,it is not easy for Utilities to avail themselves of all the necessary energy. Supplying the electric power demanded by users will entail the ability of providing, moment by moment, the exact quantityofenergyrequestedthatis,tosaysupplyingthepowerdemandedsecondaftersecond. 4 1 EnergySystem Infact, accordingtothecharacteristics andtheattitudeofeachformofenergy that is converted into useful work to be destined to a particular end use, it is possible to adopt each time the most convenient energy source, that is to say the conversion process that is most suitable to pursue the objectives set. For instance, in all the applications in environments with no free oxygen—as space and submarine applications—it is little convenient, if not impossible, to use the chemical energy developed from conventional combustion reactions, namely those that develop heat through exothermic oxidation reactions, entailing the availability of oxygen. In these cases, other conversion processes are privileged or, alternatively, other forms of energy: a technically interesting solution may be represented by nuclear power, supported by closed-cycle thermodynamic plants, or by the resort to special systems for energy conver- sion, such as some so-called direct conversion devices that will be described below. Here it follows a brief description of the characteristics and properties of the different forms of energy available in nature. 1.1.2.1 Chemical Energy Itisinborninthebondstrengthsexistingatamolecularandatomiclevelinsome particularsubstances.Itcanbedefinedeitheraspotential,underliningtheintrinsic character that can be expressed through suitable reactions in the form of thermal energy,orelectric.Intheformercase,exothermicreactions(ingeneral,oxidation) occur, and the quantity of heat provided, called reaction energy or reaction heat, corresponds, in an absolute terms, to the enthalpy variation pertaining to each reaction.Conversely,thegenerationofelectricpowerisduetothevariationoffree energyrelatingtooxidation–reductionreactionsortotheconcentrationgradientof different substances in given solutions (in this case, reference is made to free energyofmixing).Thechemicalenergythatismainlyusedistheonecontainedin fossil fuels. 1.1.2.2 Electric Power This form of energy, utterly linked to the development of the human society, is produced by the movement of free electrons in conductors. Although it is incorrect to refer to ‘‘electric power’’—since, in addition to the electric field, a magnetic field is always involved and therefore the definition of ‘‘electromag- netic energy’’ should apply—this distinction is however suitable to define the type of energy used for its electric features only. The electric power available in nature (for example through the phenomenon of thunderbolts) is not directly exploitable at the present state of technology; it is therefore necessary to pro- duce electricity artificially, converting other forms of energy available in nature into electric power.

Description:
What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach.Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.