ebook img

Energy Levels of Nuclei: A = 5 to A = 257 PDF

807 Pages·1961·35.281 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy Levels of Nuclei: A = 5 to A = 257

- Energy Levels of Light Nuclei A-5 toA= F. Ajzenberg- Selove T. Lauritsen Haverford College California Institute of Technology Haverford, Pa. Pasadena, Calif. The compilation of this section was supported in part by the joint program of the Office of Naval Research and the U. S. Atomic Energy Commission, and by the National Science Foundation. l-l 1 Landolt - Bhmteh, New? Serie, Band I/l Introduction The following tables and diagrams summarize the presently available experimental informa- tion on the energy levels of the nuclei ftom He’ to Na2’. The tables list the following parameters fot each level, where known: E&, the excitation energy above the ground state; JR, the total angular momentum quantum number and the pati- ty; T, the isobaric spin quantum number; ‘t112 or TV, the half life or mean life of the state or r, its half-width. The tables also list the known modes of decay of ,the states, and any directly relevant references which have appeared since December 1, 1958. In addition, at the bottom of each table, there are listed recent references to papers dealing in a more gene- ral way with the propetties of the nucleus in question. Tabulated probable errors are gene- rally weighted means ftom several determinations and include uncertainties in mass values. Parameters whose assignment is in doubt are enclosed in parentheses. Much of the same information is incorpotated in the diagrams in which the energy levels of the various nuclei ate exhibited schematically, together with the reactions by which they are formed. The energy levels themselves are represented by horizontal lines in a ladder arrangement, with vertical displacements ptopottional to theit excitation energies. Also shown: at the sides of the diagrams, are the binding energies for various nucleon combinations and the Q-values for the relevant nuclear reactions. Vertical arrows with numbers indicate the highest bombarding energies at which these reactions have been stu- died. For reactions in which the given nucleus occurs as the compound system, thin-target excitation functions are shown, with cross sections plotted horizontally against center-of- mass energy on the vertical scale; numerical values on this scale tefet to laboratory enet- gjes. The ctoss section curves are drawn to arbitrary scales, and are occasionally distorted to emphasize weak resonances. Leaders extending ftom specific levels indicate association of these levels with structure in the excitation curves. Whete space permits, the excitation energies and J R; T assignments are entered ‘on the levels. Principal modes of decay are shown by arrows. Levels whose existence is in doubt ate indicated by dashed lines; particularly broad levels are cross-hatched. For more complete information on level parameters and for references to earlier literature, the reader is referted to a series of review articles entitled “Energy Levels of Light Nuclei“.‘) The literature search for the present survey was closed as of July 1, 1960. In all but a few cases, the recently published mass tables and the forthcoming Q-value tables of Fverling, KGnig, Mattauch and Wapstra’) have been used. For Be6, Li9, Be”, N1’, BE’, N”, Ne” and 02’, significantly more precise values have recently become available, as indicated in the tables, and these newer values have been used in computing Q-values and excitation energies. We are much indebted to our many colleagues who have supplied us with material in advance of publication, and in particular to Professot J.H.E. Mattauch and his associates for advance copies of theit mass- and Q-value tables. We are also grateful to Barbara Zimmermann for preparation of the diagrams. The courtesy of the North-Holland Publishing Company in per- mitting reuse of material from out article in Nuclear Physics is gratefully acknowledged. 1) F. Ajzenberg-Selove and T. Lauritsen: Nuclear Physics 11, 1 (1959). 2) Fverling, KGnig, Mattauch und Wapstra: Nuclear Physics, 15, 342 (1960). LauritsenfAjzenberg-Selove l-3 List of Symbols Symbol Definition a-particle a-Teilchen ij /3+-decay fit -2erfall 16 -decay P’-Zerfall d deuteron Deuteron 6 scattering phase shift Streuphase 6 a> scattering phase shift for state X Streuphase fiir den Zustand X 6 (4 scattering phase shift for waves of Streuphase fir die Partialwelle mit der angular momentum a Drehimpulsquantenzahl a E, excitation energy Anregungsenergie [Mev] E orbital electron capture Hiillenelektroneneinfang I width of the state Halbwertsbreite Y y-w Gammastrahl yield of rrays of a Mev energy Ausbeute von Gammastrahlen der Fner- Ya gie von ~Mev He’ He’-particle He’-Teilchen J total angular momentum Kernspin n neutron Neutron P proton Proton % percentage of total decay to state Prozentsatz des Gesamtzerfalls in den indicated by arrow durch einen Pfeil angezeigten Zustand 77 parity Paritlt 0 cross section Wirkungsquerschnitt 4 total cross section Gesamtwirkungsquerschnitt cross section at angle X0 Wirkungsquerschnitt zum Winkel X0 OX0 cross section for emission of particles y Wirkungsquerschnitt bei y -Teilchen- OY Emission Q(X9 scattering cross section at angle X0 Streu-Wirkungsquerschnitt zum Winkel X0 O(n, n’) inelastic neutron scattering cross Wirkungsquerschnitt fiir unelastische section Neutronenstreuung 0 cross section for (x, y) reaction Wirkungsquerschnitt bei (x, y)-Reaktion x, Y 41 Rutherford cross section Rutherford-Wirkungsquerschnitt T isobaric spin quantum number Quantenzahl des Isobarenspin t triton Triton THRESH. threshold energy Schwellenenergie T lifetime of the state Lebensdauer des Zustandes Ll mean lifetime mittlere Lebensdauer Tc’/z half life Halbwertszeit yield of particles x to state a of Ausbeute der Teilchensorte x, die zum xa residual nucleus : if a = 0, state is Zustand a des Folgekems fiihren; a = 0 ground state, if a = 1, state is first bedeutet Grundzustand, a= 1 den ersten excited, etc. angeregten Zustand usw. LauritsenfAjzenberg-Selove 1-S He5 Exi nM ev J ?i r in Mev Decay New References 0 3/2- 0.55+0.03 nt a -4.6 l/2’ -3 n, a Ha 6Oh, Ha 60a 16.70 to.02 3/2+ 0.08 n,d,hy Bo 59b, Co 59d c-m >l n,d,t,a Ar 59a References: Ba 59b, Ba 59i, Ba 59n, Br 6Oa, Go 59g, Ha 59, Ha 59b, Ma 59f, Na 59b, Ph 61, Pi 59b, Sa 59a, Sa 59c, Sm 59, Va 6Oa l-6 I Li” 16.6 Hd+ p Yf f-5.663 ’ Lii+y-n E, in Mev J” r in Mev Decay New References 0 3/2- - 1.5 P, a VI 59, Ha 60a 5 . ..lO 1/2- 3 a**5 P9a 16.64 3/2+ -0.3 d,He’,p,o,y References: Ar 59a, Ba 59n, Br 60a, Bu 59f, Go 59g, Ha 59, Ha 59b, Hi 59c, Hi 59f, Ko 59c, Ku 59d, MC 59c, Ph 59, Ph 59b, Ph 61, Pi 59b, Sa 59f, Sa FiOa, Se 58b LauritsedAjzenberg-Selove 1-7 He6 H’+ H3 1.3 f 9.828 -f Li’+ 1-a xL~---,~~ !s.!--------- 1.92 I 1.71 t2+, He’+n “x.0.964 He4t 2n t PO608 J.O+ He6 Be*‘+ n-u ,,Li6+ n-p \ % -4.492; Li’+ d-He’ 7% in set E, in Mev J" Decay New References r in Mev 0 0-f T -0.813tO.007 F' ‘/z 1.71*0.01 (23 r 6 0.1 cm (Y) (3.4) (SO.3) (6.0 $0.9) (9.3*0.7) a,n References: Cs 58, Pe 60a,Ph 61,Ub 59 l-8 Li6 1 40.8 H3+ He3 15.791 0.90 T 13.325 Li’+ He3-a 4.6 Ep=4( Best p-a He4td 1 Lie+ x - x’ Li’+d-t 31.8 T f - 5.028 -4.0221 Li’+ p-d He3+a-p 20 J T-7.253 Li’+ y-n l-10 Li6 E, in Kev J”; T r in kev Decay New References 0 1+; ‘0 Stable 2.184 * 0.003 3+; 0 21 G&Y Be 60b, Da 59a 3.560 +0.006 o+; 1 5.9 l a.9. 1 ev Y Co 59i, Be 60b 4.52 -CO.08 2+; 0 -600 a,d 5.35 50.07 i(l) < 100 5.5 *0.4 1+; 10 -600 a,d Ha 60a, Ma 59d 6.63 +0.08 i(l) <200 7.40 to.10 ; (0) - 500 a,d,p,n (8.37 f 0.08) ;(l) (<200) (9.3 kO.2) (-500) (12.5) n Ro 59 References: An 60, Ba 59k, Be 59e, Ca 58e, Ch 59a, Co 59a, Fe 59e, Go 59b, Go 60f, Ha 59b, He 59d, Hu 57d, Ku 59d, Le 59e, MC 59, Me 59a, Me 59d, Pe 6Oa, Ph 59a, Ph 61, Pr 60b, Se 60, Sk 59, Ub 59, Vl 59, Wa 59b Lauritsen / Ajzenberg-Selove l-11 Be6 Lib: see pages 10 and 11. L&----L 0.6 LP+p \ 6 Be -1.4 -4.31 He4+ 2p Li6aHe3 -t\ 10.5 -7-5. I LP+p-n E, in Mev P T, in set Decay New References 24.10’2’ p, a, Li’ Aj 59b (1.50iO.2) >7 *lo+’ p,a,Li5 Aj 59b The mass excess,M-A, of Be6 computed from Q (Li’ (p,n)Be6)= - 5.1+0.14 Mev is 20.2+0.14 Mev (016 scale), 18.4kO.14 Mev (Cl2 scale). Lauritsen / Ajzenberg- Selove 1-9 Li’ II t9-k-l-3 E#=l I T I I Q;/ I “‘I II 1 E&48 -8 I Li’(y,n) -6 I Ep= 180 J -4 9.985 He*+ p 9.681 I He’td Ed=15 t I E =I4 P 4,63 II 19.5 Li’td-p TL 1 2.790 I E =500 B’O+n-a 1 1.643 0.86 I Be’+n-p Li’+t-d Be’ 0.478 i/2- 1 J=3/2- ri ‘+ x-x’ Li’ 1-12

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.