ebook img

Energy-Efficient Joint Estimation in Sensor Networks: Analog vs. Digital PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy-Efficient Joint Estimation in Sensor Networks: Analog vs. Digital

ENERGY-EFFICIENTJOINTESTIMATION IN SENSOR NETWORKS: ANALOGVS. DIGITAL ShuguangCui1, Jin-JunXiao2, Andrea J.Goldsmith1, Zhi-QuanLuo2, and H. VincentPoor3 5 1WirelessSystemLab,DepartmentofElectricalEngineering,StanfordUniversity. 0 2DepartmentofElectricalandComputerEngineering,UniversityofMinnesota. 0 3DepartmentofElectricalEngineering,PrincetonUniversity. 2 ABSTRACT thesensornoisepdf. Recently,universaldecentralizedestimation n schemes(DES)withouttheknowledgeofnoisedistributionhave a Sensornetworksinwhichenergyisalimitedresourcesothat J beenproposedin[7]and[8].In[7],theauthorconsideredtheuni- energyconsumptionmustbeminimizedfortheintendedapplica- versalDESinahomogeneoussensornetworkwheresensorshave 1 tionareconsidered.Inthiscontext,anenergy-efficientmethodfor observations ofthesamequality, whilein[8],theuniversalDES 2 the joint estimation of an unknown analog source under a given inaninhomogeneoussensingenvironmentwasconsidered.These ] distortionconstraintisproposed. Theapproachispurelyanalog, proposed DESs require each sensor to send to the fusion center T in which each sensor simply amplifies and forwards the noise- a short discretemessage withlength decided bythe local Signal corrupted analog observation to the fusion center for joint esti- I toNoiseRatio(SNR),whiletheperformanceisguaranteedtobe s. mation. Thetotaltransmissionpoweracrossallthesensornodes withinaconstantfactorofthatachievedbytheBestLinearUnbi- isminimizedwhilesatisfyingadistortionrequirementonthejoint c asedEstimator(BLUE).Anassumptionintheseproposedschemes [ estimate. Theenergy efficiency of thisanalog approach is com- isthatthechannelsbetweensensorsandthefusioncenterareper- paredwithpreviouslyproposeddigitalapproacheswithandwith- fect,andallmessagesarereceivedbythefusioncenterwithoutany 1 outcoding. Itisshowninoursimulationthattheanalogapproach distortion. However,duetopowerlimitationsandchannelnoise, v is more energy-efficient than the digital system without coding, thesignalsentbyeachindividualsensortothefusioncenterwill 0 and in some cases outperforms the digital system with optimal 5 becorrupted. Therefore, thegoal ofthetransmissionsystemde- coding. 0 signforthejointestimationproblemistominimizetheeffectof 1 thechannelcorruptionwhileconsumingtheminimumamountof 0 1. INTRODUCTION powerateachnode. 5 Historically, if the sensor observation is in analog form, we 0 A typical Wireless Sensor Network (WSN), as shown in Fig. 1, have twomain options totransmit the observation fromthesen- / consistsof afusion center and alargenumber of geographically s sorstothefusioncenter:analogordigitalcommunication. Forthe c distributedsensors. Thesensorstypicallyhavelimitedenergyre- analog approach, wekeep theobservation signal analogandfur- v: sourcesandcommunicationcapability.Eachsensorinthenetwork theruseanalogmodulationschemestotransmitthesignal,which makesanobservationofthetargetofinterest,generatesalocalsig- i isalsocalledanamplify-and-forwardapproach. Inthedigitalap- X nal(eitheranalogordigital),andthensendsittothefusioncenter proach,wedigitizetheobservationintobits,possiblyapplychan- wherethereceivedsensorsignalsarecombinedtoproduceafinal r nel coding, then use digital modulation schemes to transmit the a estimateoftheobservedsignal. Sensornetworksofthistypeare data. Itiswellknown([4],[5])thatforasingleGaussiansource well-suited for situation awareness applications such as environ- withanAWGNchannel,theamplify-and-forwardapproachisop- mentalmonitoringandsmartfactoryinstrumentation. timal.However,foranarbitrarysourcewithmultipleobservations andmultipletransmissionchannels, itisunclear whichapproach willleadtoasmallerpower consumption whilemeetingthedis- Fusion Center tortionrequirementsatthefusioncenter. Another severe challenge facing sensor networks isthe hard energyconstraint.Sinceeachsensorisequippedwithonlyasmall- Fig.1.Sensornetworkwithafusioncenter. sizebattery,forwhichreplacementisveryexpensiveifnotimpos- Decentralizedestimationhasbeenstudiedfirstinthecontext sible, thepower consumption must beminimizedtoincrease the of distributed control [1], distributed tracking [2], and most re- networklifetime[6].Therefore,energyefficiencycanbeusedasa centlyinwirelesssensornetworks[3]. Amongthesestudies,itis performancecriteriontoevaluatedifferentsensornetworkdesigns usuallyassumedthatthejointdistributionofthesensor observa- underthesamedistortionrequirement. In[9],adigitalsystemis tionsisknown. Inpracticalsystems,theprobabilitydensityfunc- proposedtominimizethetotalpowerconsumptionforthejointes- tion (pdf) of the observation noise is hard to characterize, espe- timationproblem,whereeachsensorquantizestheanalogobserva- ciallyforalargescalesensornetwork.Thismotivatesustodevise tionintodigitalbitsandtransmitsthebitstothefusioncenterwith signalprocessingalgorithmsthatdonotrequiretheknowledgeof uncodedMQAM.Thenumberofquantizationbitsforeachsensor isoptimizedwiththetargetof minimizing thetotaltransmission ThisresearchissupportedinpartbyfundsfromNationalSemicon- poweracrossallthesensornodestoachieveagivendistortion. In ductorandToyotaCorporation,bytheNaturalSciencesandEngineering thispaper,weproposeananalogcounterpartforthesamesystem Research Council of Canada, Grant No. OPG0090391, by the National ScienceFoundation,GrantNo.DMS-0312416,bytheOfficeofNavalRe- and compare the energy efficiency between the analog approach searchunderGrantN00014-03-1-0102. andthedigitalone. Asin[9],weassumethattheobservedsignal isanalogandbounded,thefusioncenterdeploysthebestunbiased Thereceivedsignalvectorateachtimeinstanceisgivenby linearestimator, theobservation noiseisuncorrelated acrossdif- y=hθ+v, (5) ferent sensors, and only the variance of the observation noise is known. where Our paper is organized as follows. Section II discusses the y = [y1,y2,··· ,yK]†, problemformulation. SectionIIIcomparestheenergyefficiency h = [√α1g1,√α2g1, ,√αKgK]†, ··· nbuetmweereincatlheexaamnaplloegs.aSpepcrtoioacnhIVansdumthmeadriigeistaoluarpcpornocalcuhsiovnias.some v = [√α1g1n1+nc1,··· ,√αKgKnk+ncK]†, and meanstranspose. † 2. MINIMUMPOWERANALOGINFORMATION Accordingto[10],thebestlinearunbiasedestimator(BLUE) COLLECTION forθisgivenby WeassumethatthereareK sensorsandtheobservationxk(t)at θˆ = [h†R−1h]−1h†R−1y sensorkisrepresentedasarandomsignalθ(t)corruptedwiththe observationnoisenk(t):xk(t)=θ(t)+nk(t).Eachsensortrans- = K αkgk −1 K √αkgkyk , (6) mfroitmstthheesxigkn(at)l’xs,kk(t=)to1,thef,uKsio.nWceenftuerrthwerhearsesuθm(te)tihsaetsntikm(ta)teids Xk=1σk2αkgk+ξk2! Xk=1σk2αkgk+ξk2 ofunknownstatisticsand·t·h·eamplitudeofx(t)isboundedwithin wherethenoisevariancematrixRisadiagonalmatrixwithRkk = [ W,W], which isdefined by thesensing range of each sensor. σk2αkgk+ξk2withσk2thevarianceofthesensorobservationnoise F−orsimplicityweassumeW = 1,butouranalysiscanbeeasily nk(t),k = 1,··· ,K. Thechannel noisevarianceξk2 isdefined extendedtoanyvalues. Wealsoassumethatthenetworkissyn- bythenoisepowerspectraldensityandthebandwidthB. chronized,whichmaybeenabledbyutilizingbeaconsignalsina Themeansquarederrorofthisestimatorisgivenas[10] separatecontrolchannel. Var[θˆ] = [h†R−1h]−1 We assume that xk(t) is also band-limited and the informa- K −1 tion is contained within the frequency range [ B/2,B/2]. We = αkgk . (7) ceonntsreidceerivaenr[a1n1a]l.ogThSeintrgalnesSmiditete-Bdasnigdn(aSlSisBg)ivsyesn−tebmy withacoher- Xk=1σk2αkgk+ξk2! AccordingtoEq.(2),thetransmitpowerfornodekisbounded yt(t)=2√αcos(ωct)x(t)+2√αsin(ωct)xˆ(t), (1) by 4W2αk. Therefore, the minimum power analog information collectionproblemcanbecastas K forwhichtheaveragetransmissionpoweris min W2α k P =4αPx 4αW2 (2) Xk=1 ≤ K −1 α g wofhxer(et)4.αisthetransmitterpowergainandPx isthepeakpower s.t. Xk=1σk2αkgkkk+ξk2! ≤D0 Thereceivedsignalatthefusioncenterisgivenby α 0, k=1, ,K k ≥ ··· yr(t)=2√α√gcos(ωct)x(t)+2√α√gsin(ωct)xˆ(t)+nc(t) where D0 is the distortion target. However, this problem is not (3) convexovertheαk’s. wheregisthechannelpowergain,xˆ(t)istheHilberttransformof Letusdefine x(t),andnc(t)isthechannelAWGN.Hence,attheoutputofthe r = αkgk = 1 . coherentdetectorthesignalis k σk2αkgk+ξk2 σ2+ ξk2 k gkαk 1 B 1 B y(t)=√α√gx(t)+ nI(t)cos(π t)+ nQ(t)sin(π t), Thentheaboveoptimizationproblemisequivalentto 2 c 2 2 c 2 K (4) min W2α k where nIc(t)+jnQc (t) is the complex envelope of nc(t). After Xk=1 passingy(t)throughalow-passfilterandsamplingthebaseband K 1 signalatasamplingrateB,wecanobtainanequivalentdiscrete- s.t. r k timesystem. Sincewe have K such sensors, theoverall system ≥ D0 isshowninFig.2. TheK transmitterssharethechannelviaFre- Xk=1 1 qspueecntcryalDefifivcisiieonncyMausltthipeleTiAmcecDesisvi(sFioDnMMAu)l,tiwplheiAchccheassst(hTeDsMamAe) rk = σk2+ gkξkα2k, αk ≥0, ∀k, thatisusedin[9]. whereweseethatthevariableα canbecompletelyreplacedbya k functionofr . Therefore,theproblemcanbetransformedintoa n k 1 2√α1 √g1 nc1nc2ncK problemwithvariables{r1,r2,...,rK}shownasfollows: θ n2 2√α2 √g2 y1,··· ,yK min XkK=1Wg2kξk2 (cid:18)1−rrkkσk2(cid:19) nK 2√αK √gK s.t. XkK=1rk ≥ D10; 0≤rk < σ1k2, ∀k (8) Fig.2.AmplifyandForward whichisconvexoverr .Theupperlimitonr inthesecondcon- conditions,thepowerisscaledbythefactor 1 ,whichmeansthat straintisduetothefactkthatr =1/ σ2+ ξkk2 and ξk2 0. morepowerisusedtotransmitthesignalsfσrok2mthesensorswith k k gkαk gkαk ≥ NowwesolveEq.(8).ItsLagra(cid:16)ngianGisgi(cid:17)venas betterobservationquality. Wenowsolvetheoptimizationproblemforsomespecificex- G(L,λ0) = kXK=1Wg2kξk2 (cid:18)1−rrkkσk2(cid:19) aadnmkdpisGletsh.e=Wtreana3ssm0suidmsBseioitsnhtadhtiesthtgaeaniccnheaaftnrndoem=lps1oenwmseo.rrAgkasitniongt[hk9e]=,fuwsdGei3ko.0g5nencweehnreaterteer 1 K σ2uni0form−lywithintherange[0.01,0.08]. WetakeB=10KHz +λ r (9) k 0 D0 −Xk=1 k! saonrds,ξFk2i=g.3−(9a0)sdhBomw,skth=er1el,a·t·iv·e,pKow.Ferorsaavninexgasmcopmlepwariethd1w0i0thsethne- for0 r 1 , k,whichleadstothefollowingKarush-Kuhn- uniformtransmissionstrategywhereallthesensorsusethesame ≤ k ≤ σK2 ∀ transmissionpowertoachievethegivendistortiontarget.Therel- Tucker(KKT)conditions[12]: ative power savings is plotted as a function of R = √Var(d), W2ξ2 1 E(d) k λ =0, k thedistancedeviationnormalizedbythemeandistance. Foreach gk (1−rkσk2)2 − 0 ∀ valueofR,weaveragetherelativepowersavingsover100random K runswhereineachrunthed ’sarerandomlygeneratedaccording 1 k rk =0 tothegivenR.Asexpected,alargervariationofdistanceandcor- Xk=1 − D0 respondingchannelqualityleadstoahigherpowersavingswhen thisvariationisexploitedwithoptimalpowerallocation. for 0 r 1 , k. Without loss of generality, we rank the ≤ k ≤ σK2 ∀ InFig.3(b),thenumberofactivesensorsoverRisshownfor channelqualitysuchthat ξ12 ξ22 ... ξK2 wherewecallthe an example with10 sensors. Weseethat when thetransmission g1 ≤ g2 ≤ ≤ gK quantity gk thechannelSNR,andwedefine distancesfordifferentsensorsspanawiderangeofvalues(i.e.,R ξk2 is large), more sensors can be shut off to save energy, since the remainingsensorshaveverygoodchannels. ξM2 A(M) f(M)= gM , for1 M K, (10) qB(M) ≤ ≤ %) aUwtuannshkdiieeqnrLugKeeetAt1huue(n=sMlsefiaKs)msn.d=feT(KtmMehXMce1=hn)1sntu<iqhqceσuh1mg2ξeKtmm2shfKoaarTtsaanficlnd(loKnB[19d1(]≤i,)MtiwoξM<k2n)es=c1g≤a+inmavXMnKe=sdhλ1,of0iσwn(1m=2Kwth1(cid:16)−hait+WctBDhh1A1(i0cKs()aK.1Ks≥1)e)1w(cid:17)1i2es. Power saving over uniform transmission (in 1111267890111122.....067890155555.35 0(.4a) N0.4o5rm0a.5lize0d.55 dis0t.6anc0e.65 dev0.7iatio0.n75 (R0).8 0.85 Number of active sensors 1067891.....0578955550.3 0(.4b) N0.5orm0a.6lize0d.7 dis0t.8anc0e.9 dev1iatio1.n1 (R1).2 1.3 ropt= 1 1 W gk , k (11) Fig.3. (a)Powersavingsofoptimalpowerallocationvs. uniform k σk2  − q√λ0 ∀ power;(b)Numberofactivesensorsversusdistancedeviation where(x)+equals0whenx<0,andotherwiseisequaltox. Inourmodelweminimizethepowersum P ,i.e.,theL1- Hence,bydefinition,wehave norm of the transmission power vector P = (Pk1,kP2,...,PK). If the channel gainand thevariance of theobPservation noise for ξ2 ropt αopt = k k eachsensorareergodicallytime-varyingonablock-by-blockba- k gk1−σk2rkopt sis, minimizingtheL1-normofPineachtimeblock minimizes = ξk2 gkη 1 k=1, ,K , (12) E{ kPk}withE{}theexpectationoperation. Inotherwords, gkσk2 (cid:18)rξk2 0− (cid:19) ··· 1 it1mPaximiEze0sthweiathveEragtehneobdaettleirfyeteimneer,gwyhaivcahiliasbdleefitoneedacahssensor K k E{Pk} 0 andTαhke=ref0oroet,hethrweiosep,tiwmhaelrepoηw0e=r aAll(oKca1t)io/nB(sKtra1t)e.gy is divided p(wroePveadssubmyethtehafatcEtt0haistth1esameEfo0rallthesenEso0rs). T.hHisocwaenvebre, intotwosteps.Inthefirststep,athresholdforkisobtainedaccord- K k E{Pk} ≥ E{K1 kPk} whenthechannelisstaticandthevarianceoftheobservationnoise ingtoEq.(10). ForchannelswithSNRworsethanthisthreshold, istime-invariant,minimizinPgtheL1-normmayPleadsomeindivid- thecorrespondingsensorisshutoffandnopoweriswasted. For ual sensors to consume toomuch power and die out quickly. In the remaining active sensors, power should be assigned accord- thiscaseminimizingtheL∞-norm,i.e.,minimizingthemaximum ing to Eq. (12). From Eq. (12) we see that when the channel is oftheindividualpowervalues,isthemostfairforallsensors,but fairlygood, i.e., gkη 1,wehaveαopt ξk2 η0,which thetotalpowerconsumptioncanbehigh. Asin[9],wecanmake ξk2 0 ≫ k ∝ gkσk2 a compromise to minimize the L2-norm of P. In this way, we meanstheoptimaqlsolutionisinverselyproportionqaltothesquare canpenalizethelargetermsinthepowervectorwhilestillkeep- rootofthechannelSNR.When gξkk2η0 isclosetoone,theopti- ingthetotalpowerconsumptionreasonablylow.FortheL2-norm malsolutionmaynolongerhaveqsuchproperties. Forallchannel minimization,theproblemformulationbecomes K W4ξ4 r 2 101 min k k AAnnaalloogg:: 2100 sseennssoorrss s.t. XkK=1r gk2 1(cid:18)1; −0rkσkr2(cid:19)< 1 , k, (13) wer vector 100 DDiiggiittaall:: ufunncdoadmede nMtaQl AlimMi tw witihth 1 100 s oernthsoogrsonal channels wsehcitciohnw, ewceacnosmolpvaeXkre=u1stihnekgp≥inowteDeri0rorefpfiociine≤tnmcyketohfodtσhske2[1a2n]a.∀loIngtahnedntehxet 2L−norm of the po 10−1 digital approaches previously discussed, where we minimize the L2-normofP. WeusetheL2-normsinceitsimplifiesthecom- 10−22.5 3 3.5 D0 4 4.5 x 10−35 parison,butthecomparisoncanbemadeforanypowernorms. Fig.4.ComparisonoftheL2-normofthepowervector 3. ANALOGVS.DIGITAL 5. REFERENCES In order to transmit the observed analog signal with frequency [1] D.A.CastanonandD.Teneketzis,“DistributedEstimationAl- range [ B/2,B/2] to the fusion center, each sensor in the dig- gorithmsforNonlinear Systems,”IEEETransactionsonAu- italsys−temproposed in[9]firstsamplesthesignal atasampling tomaticControl,Vol.AC-30,pp.418–425,1985. rateB, then quantizes each sample intobk bits, and finallyuses [2] A.S. Willsky, M. Bello, D.A. Castanon, B.C. Levy, and G. uncoded MQAM to transmit the bk bits with a symbol rate B Verghese, “CombiningandUpdatingofLocalEstimatesand and constellation size M = 2bk. Therefore, the total transmis- RegionalMapsAlongSetsofOne-dimensionalTracks,”IEEE sionbandwidthinthepassbandisapproximatelyequaltoKBfor TransactionsonAutomaticControl,Vol.AC-27,pp.799–813, the digital system where TDMA is used for the multiple access. 1982. FortheSSBschemeusedinouranalogsystem,eachsensoronly [3] H.C.Papadopoulos,G.W.Wornell,andA.V.Oppenheim,“Se- occupies B/2 in the passband such that the total bandwidth re- quential Signal Encoding from Noisy Measurements Using quirementisKB/2whenFDMAisusedforthemultipleaccess. QuantizerswithDynamicBiasControl,”IEEETrans.onIn- Therefore,undertheassumptionoforthogonalchannelusage,the formationTheory,Vol.47,pp.978–1002,2001. analogsystemcansupportdoublethenumberofsensorsthatthe digitalsystemsupportsinthesameamountofbandwidth. Thisis [4] T.J.Goblick,“TheoreticalLimitationsontheTransmissionof mainlycausedbythefactthatthedigitalapproachproposedin[9] DatafromAnalogSources,”IEEETrans.Inform.Theory,vol. forces the transmission symbol rate to be equal to the sampling IT-11,pp.558567,Oct.1965. rateinthesourcecodingpart. [5] M. Gastpar, B. Rimoldi and M. Vetterli, “To Code, or Not Thepowerefficiencycomparisonbetweentheanalogapproach ToCode: LossySource-channel Communication Revisited,” andthedigitalapproachisshowninFig.4, wherewedeploy 10 IEEETrans.on Information Theory, Vol. 49pp. 1147-1158, sensors for the digital system and we plot the power curves for May2003. boththecasewhereuncodedMQAMisused(thedottedline)and [6] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained the case where single-user capacity-achieving channel codes are Modulation Optimization,” to appear at IEEE Transac- appliedtoeachtransmitter,whichgivesthefundamentalShannon tions on Wireless Communications, 2003. Also available at limit(thedashedline)forthedigitalsystemwithorthogonalchan- http://wsl.stanford.edu/Publications.html. nelusage.Fromthefigureweseethattheanalogapproachwith10 nodes,whichhavethesameobservationqualityandtransmission [7] Z.-Q. Luo, “Universal Decentralized Estimation in a Band- distancesasinthedigitalsystem,ismoreenergyefficientthanthe width Constrained Sensor Network,” submitted to IEEE digitalapproach withuncodedMQAM,butnotnecessarilymore Transactions on Information Theory. Also available at energyefficientthanthefundamentallimitcurve. However,since http://www.ece.umn.edu/users/luozq/. wecansupport20nodesintheanalogsystemwiththesameband- [8] Z.-Q. Luo, J.-J., Xiao, “Decentralized Estimation in an In- widthrequirement,withthe20analognodeswecanachieveabet- homogeneous Sensing Environment,” at International Sypo- terpowerefficiency(thesolidline)thanthedigitalsystemwith10 siumonInformationTheory,Chicago,2004.Alsoavailableat nodesunder theoptimalsingle-userchannel coding. Thisistrue http://www.ece.umn.edu/users/luozq/. even when the extra ten nodes in the analog system have worse [9] J.Xiao,S.Cui,Z.Q.Luo,andA.J.Goldsmith,“JointEstima- observationqualityandlargertransmissiondistancesthanthefirst tioninSensorNetworksunderEnergyConstraint,”toappear tennodes. attheIEEEfirstconferenceonSensorandAdHocCommuni- 4. CONCLUSIONS cationsandNetworks,SantaClara,CA,October,2004. [10] J.M.Mendel,LessonsinEstimationTheoryforSignalPro- Inthispaper, wehaveshownthatforabounded sourcewithun- cessing,Communications,andControl,PrenticeHall,Engle- knownstatisticsandafusioncenterequippedwiththebestlinear woodCliffs,NJ,1995. unbiased estimator, we can minimize the total power consump- tionacrossallthesensornodesunderacertaindistortionrequire- [11] S.Haykin,CommunicationSystems,3rdedition,JohnWiley ment.Theinformationcollectioncanbeimplementedwithanana- &Sons,NewYork,1994. logapproach,whichmaybemoreenergyefficientthanthedigital [12] S.Boyd,L.Vandenberghe,ConvexOptimization,Cambridge approachwhenonlyorthogonal multipleaccessschemessuchas Univ.Press,Cambridge,U.K.,2003. TDMAandFDMAareused.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.