ebook img

Energy Efficient Computation Offloading in Mobile Edge Computing PDF

167 Pages·2022·3.063 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy Efficient Computation Offloading in Mobile Edge Computing

Wireless Networks Ying Chen Ning Zhang Yuan Wu Sherman Shen Energy Efficient Computation Offloading in Mobile Edge Computing Wireless Networks SeriesEditor XueminShermanShen,UniversityofWaterloo,Waterloo,ON,Canada The purpose of Springer’s Wireless Networks book series is to establish the state of the art and set the course for future research and development in wireless communication networks. The scope of this series includes not only all aspects of wireless networks (including cellular networks, WiFi, sensor networks, and vehicular networks), but related areas such as cloud computing and big data. The series serves as a central source of references for wireless networks research and development. It aims to publish thorough and cohesive overviews on specific topics in wireless networks, as well as works that are larger in scope than survey articles and that contain more detailed background information. The series also providescoverageofadvancedandtimelytopicsworthyofmonographs,contributed volumes,textbooksandhandbooks. **Indexing:WirelessNetworksisindexedinEBSCOdatabasesandDPLB** Ying Chen (cid:129) Ning Zhang (cid:129) Yuan Wu (cid:129) Sherman Shen Energy Efficient Computation Offloading in Mobile Edge Computing YingChen NingZhang ComputerSchool DepartmentofElectricalandComputer BeijingInformationScienceand Engineering TechnologyUniversity UniversityofWindsor Beijing,China Windsor,ON,Canada YuanWu ShermanShen StateKeyLabofInternetofThingsfor DepartmentofElectricalandComputer SmartCity Engineering UniversityofMacau UniversityofWaterloo Taipa,China Waterloo,ON,Canada ISSN2366-1186 ISSN2366-1445 (electronic) WirelessNetworks ISBN978-3-031-16821-5 ISBN978-3-031-16822-2 (eBook) https://doi.org/10.1007/978-3-031-16822-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface With the proliferation of mobile devices and development of Internet of Things (IoT), more and more computation-intensive and delay-sensitive applications are running on terminal devices, which result in high-energy consumption and heavy computationloadofdevices.Duetothesizeandhardwareconstraints,thebattery lifetime and computing capacity of terminal devices are limited. Consequently, it is hard to process all of the tasks locally while satisfying Quality of Service (QoS) requirements for devices. Mobile Cloud Computing (MCC) is a potential technologytosolvetheproblem,whereterminaldevicescanalleviatetheoperating load by offloading tasks to the cloud with abundant computing resources for processing.However,ascloudserversaregenerallylocatedfarawayfromterminal devices, data transmission from terminal devices to cloud servers would incur a large amount of energy consumption and transmission delay. Mobile Edge Computing(MEC)isconsideredasapromisingparadigmthatdeployscomputing resources at the network edge in proximity of terminal devices. With the help of MEC, terminal devices can achieve better computing performance and battery lifetime while ensuring QoS. The introduction of MEC also brings the challenges of computation offloading and resources management under energy-constrained and dynamic channel conditions. It is of importance to design energy-efficient computation offloading strategies while considering the dynamics of task arrival andsystemenvironments. In this book, we provide a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for MEC, covering task offloading, channel allocation, frequency scaling, and resource scheduling. In Chap. 1, we provide a comprehensive review on the background of MCC, MEC, and computation offloading.Then,wepresentthecharacteristicsandtypicalapplicationsofMCCand MEC.Finally,wesummarizethechallengesofcomputationoffloadinginMEC.In Chap.2,weproposeanEnergyEfficientDynamicComputingOffloading(EEDCO) scheme to minimize energy consumption and guarantee terminal devices’ delay performance. In Chap. 3, to further improve energy efficiency combined with tail energy, we propose a Computation Offloading and Frequency Scaling for Energy v vi Preface Efficiency (COFSEE) scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling to achieve the minimum energy consumption while guaranteeing the system stability. In Chap. 4, we investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and an end-to-end Deep Reinforcement Learning (DRL) approach is presented to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. In Chap. 5, we study the multi-task computation offloading in multi- access MEC via non-orthogonal multiple access (NOMA), and accounting for the time-varying channel conditions between the ST and edge-computing servers, an onlinealgorithm,whichisbasedonDRL,isproposedtoefficientlylearnthenear- optimaloffloadingsolutions.InChap.6,weconcludethebookandgivedirections forfutureresearch. We believe that the presented computation offloading and energy management solutions and the corresponding research results in this book can provide some valuable insights for practical applications of MEC and motivate new ideas for futureMEC-enabledIoTnetworks. We would like to thank Mr. Kaixin Li and Mr. Yongchao Zhang from Beijing Information Science and Technology for their contributions to this book. We also wouldliketothankallmembersoftheBBCRgroupattheUniversityofWaterloo fortheirvaluablediscussionsandinsightfulsuggestions.SpecialthanksgotoSusan Lagerstrom-Fife and Shina Harshavardhan from Springer Nature for their help throughoutthepublicationprocess. Beijing,China YingChen Windsor,ON,Canada NingZhang Macao,China YuanWu Waterloo,ON,Canada ShermanShen Acknowledgements This work was supported in part by the National Natural Science Foundation of China under Grants 61902029 and 62072490, the Scientific Research Project of BeijingMunicipalEducationCommissionunderGrantKM202011232015, inpart by the Joint Scientific Research Project Funding Scheme between Macao Science and Technology Development Fund and the Ministry of Science and Technology of the People’s Republic of China under Grant 0066/2019/AMJ, in part by the Macao Science and Technology Development Fund under Grants 0060/2019/A1 and 0162/2019/A3, in part by FDCT SKL-IOTSC(UM)-2021-2023, in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287), andinpartbytheNaturalSciencesandEngineeringResearchCouncilofCanada. vii Contents 1 Introduction .................................................................. 1 1.1 Background.............................................................. 1 1.1.1 MobileCloudComputing ...................................... 2 1.1.2 MobileEdgeComputing ....................................... 8 1.1.3 ComputationOffloading........................................ 12 1.2 Challenges............................................................... 17 1.3 Contributions............................................................ 19 1.4 BookOutline............................................................ 21 References..................................................................... 21 2 DynamicComputationOffloadingforEnergyEfficiencyin MobileEdgeComputing .................................................... 27 2.1 SystemModelandProblemStatement ................................ 27 2.1.1 NetworkModel ................................................. 28 2.1.2 TaskOffloadingModel......................................... 28 2.1.3 TaskQueuingModel ........................................... 30 2.1.4 EnergyConsumptionModel ................................... 30 2.1.5 ProblemStatement.............................................. 31 2.2 EEDCO:EnergyEfficientDynamicComputingOffloading forMobileEdgeComputing............................................ 32 2.2.1 JointOptimizationofEnergyandQueue...................... 32 2.2.2 DynamicComputationOffloadingforMobileEdge Computing ...................................................... 34 2.2.3 Trade-OffBetweenQueueBacklogandEnergyEfficiency .. 36 2.2.4 ConvergenceandComplexityAnalysis........................ 37 2.3 PerformanceEvaluation ................................................ 40 2.3.1 ImpactsofParameters.......................................... 40 2.3.2 PerformanceComparisonwithEAandQWSchemes........ 48 2.4 LiteratureReview ....................................................... 50 2.5 Summary ................................................................ 57 References..................................................................... 57 ix x Contents 3 Energy Efficient Offloading and Frequency Scaling for InternetofThingsDevices .................................................. 61 3.1 SystemModelandProblemFormulation.............................. 61 3.1.1 NetworkModel ................................................. 63 3.1.2 TaskModel...................................................... 63 3.1.3 QueuingModel ................................................. 65 3.1.4 EnergyConsumptionModel ................................... 65 3.1.5 ProblemFormulation........................................... 67 3.2 COFSEE:ComputationOffloadingandFrequencyScaling forEnergyEfficiencyofInternetofThingsDevices.................. 68 3.2.1 ProblemTransformation........................................ 68 3.2.2 OptimalFrequencyScaling .................................... 71 3.2.3 LocalComputationAllocation................................. 72 3.2.4 MECComputationAllocation ................................. 74 3.2.5 TheoreticalAnalysis............................................ 75 3.3 PerformanceEvaluation ................................................ 79 3.3.1 ImpactsofSystemParameters ................................. 80 3.3.2 PerformanceComparisonwithRLE,RMEandTS Schemes......................................................... 84 3.4 LiteratureReview ....................................................... 87 3.5 Summary ................................................................ 91 References..................................................................... 92 4 Deep Reinforcement Learning for Delay-Aware and Energy-EfficientComputationOffloading................................ 97 4.1 SystemModelandProblemFormulation.............................. 97 4.1.1 SystemModel................................................... 97 4.1.2 ProblemFormulation........................................... 99 4.2 ProposedDRLMethod ................................................. 103 4.2.1 DataPrepossessing ............................................. 104 4.2.2 DRLModel ..................................................... 105 4.2.3 Training ......................................................... 108 4.3 PerformanceEvaluation ................................................ 111 4.4 LiteratureReview ....................................................... 117 4.5 Summary ................................................................ 120 References..................................................................... 120 5 Energy-Efficient Multi-Task Multi-Access Computation OffloadingviaNOMA....................................................... 123 5.1 SystemModelandProblemFormulation.............................. 123 5.1.1 Motivation....................................................... 123 5.1.2 SystemModel................................................... 125 5.1.3 ProblemFormulation........................................... 126 5.2 LEEMMO: Layered Energy-Efficient Multi-Task Multi-AccessAlgorithm................................................ 127 5.2.1 LayeredDecompositionofJointOptimizationProblem...... 128

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.