ebook img

Energy-Efficient 60GHz Phased-Array Design for Multi- Gb/s Communication Systems PDF

112 Pages·2014·9.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy-Efficient 60GHz Phased-Array Design for Multi- Gb/s Communication Systems

Energy-Efficient 60GHz Phased-Array Design for Multi- Gb/s Communication Systems Lingkai Kong Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-191 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-191.html December 1, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Energy-Efficient 60GHz Phased-Array Design for Multi-Gb/s Communication Systems by Lingkai Kong A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Elad Alon, Chair Professor Ali M. Niknejad Professor Paul K. Wright Fall 2012 Energy-Efficient 60GHz Phased-Array Design for Multi-Gb/s Communication Systems Copyright 2012 by Lingkai Kong 1 Abstract Energy-Efficient 60GHz Phased-Array Design for Multi-Gb/s Communication Systems by Lingkai Kong Doctor of Philosophy in Electrical Engineering and Computer Science University of California, Berkeley Professor Elad Alon, Chair Recent advance in wireless technologies has enabled rapid growth of mobile devices. Con- sequently, emerging applications for mobile devices have begun demanding data rates up to multiple Gb/s. Although advanced WiFi systems are approaching such data rates, the narrow bandwidth at ISM band fundamentally limits the achievable data-rate. Therefore, the unlicensed 7GHz of bandwidth at 60GHz band provides an opportunity to efficiently im- plement these communication systems with a potential to achieve >10Gb/s throughput. Be- sides the wider bandwidth, operating at higher frequency theoretically has higher achievable signal-to-noise ratio in area limited applications. This is because the maximum achievable antenna gain within limited aperture increases with frequency and it can be achieved using phased-array technique. This thesis therefore focuses on the design of 60GHz phased-array transceivers to support energy-efficient high data-rate communication systems. Despite the advantages of 60GHz, mobile applications often require low power consump- tion as well as low cost implementation, making the design of 60GHz phased-array systems challenging. Taking into account the limited power budget, this research investigates the design choices of the number of elements in phased-array transceivers, and identifies that the overhead power is the bottleneck of energy efficiency. In order to reduce the overhead power in the transmitter, a new architecture using a fast start-up oscillator is proposed, which eliminates the need of explicit modulator and 60GHz LO delivery. Measurements has shown that the transmitter efficiency is boosted by more than 2X. More importantly, the overhead power is significantly reduced down to 2mW, making this architecture a good candidate for large number phased-array. On the other hand, suffering from the similar over- head problem, the receiver unfortunately could not share the same architecture. A different architecture that stacks the mixer on top of LO generation is thus proposed to reduce the power consumption in the receiver. This approach demonstrated a 2X power reduction in receiver overhead, and the resulted optimum number of receiver elements is close to 4. Besides using CMOS technologies, on-chip antenna is also studied in order to further reduce the system cost. Slot-loop antenna is identified as a good candidate because that its intrinsic ground plane eases the integration with the rest of circuitry. Although the 2 simulation shows an efficiency as high as 30%, the planar nature of the on-chip antenna limits its coverage in end-fire directions. Antenna diversity is thus proposed to overcome this limitation by utilizing multiple drive points on the same antenna. Because the antenna is fully integrated on-chip, antenna diversity can be implemented without extra high frequency I/Os, eliminating the loss that would be introduced otherwise. Using the proposed transceiver architectures, a 4-element phased-array with on-chip an- tennas was fabricated on TSMC’s 65nm CMOS technology as a test vehicle. Consuming 50mW in the transmitter and 65mW in the receiver, this 10.4Gb/s phased-array covers a range larger than 45cm in all directions. This achieves a state-of-art energy-efficiency of 11pJ/bit. The 29mW/element power consumption also demonstrates the lowest power of a single phased-array element. i To My Parents ii Contents Contents ii List of Figures v List of Tables viii 1 Introduction 1 1.1 The 60GHz Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Link Budget with Limited Area . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Phased-Array Architectures for Energy-Efficient Communication 5 2.1 Introduction to Phased-Array . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Choice of Number of Elements in a Phased-Array . . . . . . . . . . . . . . . 7 2.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Phased-Array Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 RF Phase Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 LO Phase Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Baseband Phase Shifting . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 Transmitter Phased-Array Architecture . . . . . . . . . . . . . . . . . 16 2.4 Phase Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Modulation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Implementation of Baseband Phase Shifting 20 3.1 Implementation of Phase Shifter Resolution . . . . . . . . . . . . . . . . . . 20 3.2 Effect of I/Q Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Implementations of VGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Variable Current Source . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 iii 3.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Power Reduction in Segmented Approach . . . . . . . . . . . . . . . . . . . . 24 3.5 Phase Shifter Demonstration and Measurement Results . . . . . . . . . . . . 27 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Energy-Efficient Phased-Array Transmitter 30 4.1 Low Overhead Transmitter Architecture . . . . . . . . . . . . . . . . . . . . 30 4.2 Proposed Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.1 Oscillator Implementation . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1.1 Oscillator Startup Time . . . . . . . . . . . . . . . . . . . . 34 4.3.1.2 Faster Startup . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1.3 Shut-down of Oscillation . . . . . . . . . . . . . . . . . . . . 39 4.3.2 Power Amplifier Design . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Timing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.5 Transmitter Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5.1 Waveform Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5.2 Phased-Array Functionality Validation . . . . . . . . . . . . . . . . . 43 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 Energy-Efficient Phased-Array Receiver 49 5.1 Stacked Mixer with LO Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Hybrid Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 Incorporating the Mixer with the 60GHz LO Generation . . . . . . . . . . . 55 5.3.1 Stacked 30GHz VCO with Mixer . . . . . . . . . . . . . . . . . . . . 55 5.3.2 Stacked Push-Push with Mixer . . . . . . . . . . . . . . . . . . . . . 56 5.3.2.1 Optimization of Push-Push Inductance . . . . . . . . . . . . 57 5.3.2.2 Sharing LO between Elements . . . . . . . . . . . . . . . . . 60 5.3.2.3 Sizing of Push-Push . . . . . . . . . . . . . . . . . . . . . . 61 5.3.3 30GHz Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4 Receiver Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.4.1 Bandwidth Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.4.2 LO Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6 On-Chip mm-Wave Antennas 69 6.1 On-Chip Antenna Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.1 Slot-Loop Antenna Design . . . . . . . . . . . . . . . . . . . . . . . . 70 6.1.1.1 Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.1.1.2 Gap Width . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1.1.3 Substrate Thickness . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Multiple-Access On-Chip Antenna . . . . . . . . . . . . . . . . . . . . . . . . 73 iv 6.2.1 Antenna Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2.2 Reducing Loading Effect . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.1 Measured Transmitter Power and Receiver Gain . . . . . . . . . . . . 78 6.3.2 Antenna Pattern Measurement . . . . . . . . . . . . . . . . . . . . . 80 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7 Fully Integrated 4-Element Phased-Array 82 7.1 Phased-Array Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.1.1 Transmitter Phased-Array Measurement . . . . . . . . . . . . . . . . 83 7.1.2 Receiver Phased-Array Measurement . . . . . . . . . . . . . . . . . . 84 7.2 Link Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8 Conclusions 89 8.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Bibliography 92

Description:
Recent advance in wireless technologies has enabled rapid growth of mobile devices. design choices of the number of elements in phased-array transceivers, and .. most of it is because of my classmates and other senior colleagues: Ehsan Adabi, Louis . In order to enable the applications men-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.