ebook img

Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics PDF

20 Pages·2017·0.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics

sustainability Article Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain) DavidPérez-Neira1 ID,MartaSoler-Montiel2,* ID,RosarioGutiérrez-Peña3and YolandaMena-Guerrero4 1 DepartmentofEconomicsandStatistics,UniversityofLeon,24071León,Spain;[email protected] 2 DepartmentofAppliedEconomics,UniversityofSeville,41018Seville,Spain 3 InstituteofAgriculturalandFishingResearchandTraining(IRFAP)oftheGovernmentoftheBalearic Islands,07009Palma,Spain;[email protected] 4 DepartmentofAgroforestrySciences,UniversityofSeville,41013Seville,Spain;[email protected] * Correspondence:[email protected];Tel.:+34-620865953 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:21June2018;Accepted:5August2018;Published:9August2018 Abstract: This paper presents a methodological proposal of new energy sustainability indicators accordingtoanovelaccountingthatfollowsagroecologicalandecologicaleconomicscriteria. Energy outputisreformulatedtoincludemanureandthusconsiderthecontributiontofertilizationmade by pastoral livestock farming to agroecosystems. Energy inputs calculations include the grazing resources. Thesenewdefinitionsandcalculationsallowfornewformulationsoftheenergyreturn on investment (EROI) as measures of the energy efficiency of livestock farming systems (final EROIandfood/feedEROI).Theenvironmentalbenefitofmanureisestimatedfromtheavoided energycostofusingthisalternativetoinorganicfertilizers(AEC ). Theenvironmentalbenefitof M grazing is measured through the energy cost of avoiding cultivated animal feed (AEC ) and its P impact in terms of non-utilized agricultural area (ALC ). The comparative analysis of different P livestockbreedingsystemsinthreepastoraldairygoatfarmsintheSierradeCádizinAndalusia, southernSpain,revealstheanalyticalpotentialofthenewenergysustainabilityindicatorsproposed, aswellasthepotentialenvironmentalbenefitsderivedfromterritorial-basedstockbreedingand, morespecifically,grazingactivities. Thosebenefitsincludegainsinenergyefficiency,areductionof thedependenceonnon-renewableenergy,andenvironmentalcostsavoidedintermsofenergyin extensivepastoralsystems. Keywords: sustainability; EROI; avoided costs; food/feed competition; pastoral farming; ecologicaleconomics 1. Introduction The increasing demand of livestock products and the search for an increase of livestock productivityhaveinducedtherapidtransitionoflivestockbreedingsystemsfrompastoralisminto intensivesystems. Thissearchforlivestockproductivityhasbeenbasedonthegeneticselectionof improvedbreedstothedetrimentofindigenousonesadaptedtothevariousagroecosystemsandon thechangeinanimalfeedingassociatedtothegrowingtendencytohousethelivestock. Extensive livestock husbandry systems and their traditional use of pastures have been substituted by high livestockdensityorevenlandlesssystemswithanintensivediet. Thesesystemsaredependentonthe globalizedsupplyofcornandsoybeanorothergrainsproducedbyexportmonoculturesinlandsthat couldbeusedtoprovidehumanfoodoroccupiedbyold-growthforestsfunctioningasirreplaceable Sustainability2018,10,2838;doi:10.3390/su10082838 www.mdpi.com/journal/sustainability Sustainability2018,10,2838 2of20 carbon sinks [1]. This intensification has led to a separation of livestock and territory, a process thatisinterruptingnutrientflowsandcausingsoilorganicmatterdepletionintheterritorieswhere animalfeedisoriginallyproduced,oftenalsogeneratingpollutionintheplacewherethelivestockis housed[2]. Directenvironmentalimpactsofthisprocessincludegroundwaterpollution,theincrease ofanthropogenicgreenhousegasemissions[3,4],concentrationofpollutingwaste[5],andgrowth ofenergyconsumption[6]. Indirectimpacts,mostofthemrelatedtoanimalfeeding,arealsotobe considered,includingdeforestation,soilerosion,andlossofbiodiversity[7],particularlyinthemain intensiveagriculturalregions[8]. Therefore,theinitialhypothesisofthepresentworkisthattheglobal disconnectionofcropsandlivestockfrompasturableresourcesimpliesalackofefficiencyintheuseof naturalresourcesandagreaterenvironmentalimpactofconfinedlivestockfarming[9]. Withinthedebateonsustainability, energyisacentralandcross-cuttingelementaffectingall economicactivities[10–12],especiallyinacontextofoildepletionandclimatechange[13],thaturges amovetowardfoodprovisionsystemsbasedonrenewableenergy,lowenergyintensity,andrates ofenergyreturnabovetheunit[14]. Therefore,thefosteringofdecision-makingprocessesfavoring energy sustainability require to develop new analytical methodologies and indicators that allow understanding and evaluating, in a comparative way, the energy-environmental implications of technology and production-related decision-making within farms. Energy indicators, as well as sustainabilityindicators,operatetomakevisiblethepotentialenvironmentalbenefitsderivedfrom energyefficiency,andconsiderenergyandmaterialflowsthatareusuallyneglected. Thesetoolsneed tobeparticularlyadaptabletomanagementspecificitiesintheagro-livestocksystemsthatarebeing analyzed[15]. Thispaperdevelopsandimplementsaseriesofindicatorsspecificallydesignedforthestudyof goatfarmingsustainability(Finalenergyreturnoninvestment—EROI,NRFinalEROI,Food/feed EROI, etc.). These indicators allow the energy implications of the different types of management associated with this activity to be assessed and compared, focusing mainly on the role of animal feedingandtheuseofpasturableresources. Thelivestockfarm,understoodasatechno-productive andeconomicdecision-makingentity,isthereforetheunitofanalysis. Anagroecologicalapproachis appliedthatviewsstockbreedingaspartofacomplexagroecosystemexchangingenergyflowswith othernaturalandsocialsystems[16,17]. Fromthispointofview,thesocializedoutputisafractionof thetotaloutputintendedtomeethumanneedsmostlythroughthemarket. However,thetotaloutput isabroaderfactorthatincludesinternalenergyflows,someofthemwithnodirecthuman-oriented purpose,butpotentiallycontributingtoecologicalbalance,likemanure. Thisagroecologicalapproach allowsbringingtolightandanalyzingtheinternalenergyflowsbetweenpastoralagroecosystemsand theuseofmanure,bothofwhicharecentralelementsoftheenergyandbiophysicalmetabolismof livestockhusbandry,eveniftheyhavenomarketvalueordirectandimmediatehuman-orienteduse. Inaddition,fromanecologicaleconomicsapproach,newindicatorsareproposedtoidentifyandmake visibletheavoidedenergycostsassociatedwithpastoralism(“avoidedenergycostofmanure”AEC M or“avoidedenergycost”and“avoidedenergylandcost”ofnaturalpastureAEC andALC ). P P Energy analyses based on indicators, such as the EROI (energy return on investment), allow measuringoftheenergyefficiencyofagriculture. Thisimportantanalyticaltoolprovidesvaluable information on the energy cost of producing food and feed [18,19]. However, different authors have recently criticized the insufficiency of this conventional approach, which reproduces the cost-benefitlogicintermsofenergyandtreatsagriculturalsystemsasunexploredblackboxes,ignoring internalenergyflowsthatdonotenterthemarket,butarecrucialfortheecologicalbalanceofthe agroecosystem[17]. Inthecaseoflivestockhusbandry,forinstance,pastoralismenablesusingthe biomass produced by agroecosystems and largely reincorporating it into the systems in the form of organic fertilizer. These internal energy flows, which are not usually taken into consideration, contribute to maintaining the structure and functions of the ecosystem and, therefore, sustain the flow of ecosystem services [20]. In particular, manure is a central element of the nutrient flow within the agroecosystem and of the soil structure, despite the loss of energy in the form of heat Sustainability2018,10,2838 3of20 during the decomposition process. Manure is a crucial contribution to the net primary biomass andenergyproductionoftheagroecosystemindifferentproductioncyclesovertime. Toovercome economicism,recentagrarianenergystudieshavesuggestedtheimplementationofanagroecological approachtoanalyzethecomplexityofthesystems’biophysicalinteractions,exchangeofflowswiththe environment,andpotentialenvironmentalbenefits,independentoftheirmarketorientation,aswell as to widen the understanding of the recirculation of internal flows generated by agroecosystems (see [16]). However, even if some previous studies have analyzed the use of energy in livestock husbandryactivities[21,22]andintheproductionofcowmilk[6,23,24]orgoatmilk[25],veryfew workshaveadoptedthisagroecologicalapproachtoevaluatetheuseofenergyinlivestockfarming systems[26]. Ontheotherhand,thescarcityofenergyresourcesineconomicprocessesisacentralelementin theanalysisofenergyviability. Byapplyinganecologicaleconomicsapproach[27],thisscarcitycanbe analyzedintermsof“biophysicalopportunitycost”. Theconceptofopportunitycost,proposedbythe Austrianmarginalistschoolattheendofthe19thcentury,referstothebenefitormonetaryrevenuethat iswaivedwhenchoosingoneuseamongthedifferentpossibleusesofaresource.Thus,thebiophysical opportunitycostisespeciallyrelevantinconflictsbetweenalternativehumanuses, whetherthere is a monetary value attached to them or not [28]. For instance, in energy analyses of agriculture, thesolarenergyusedduringphotosynthesisisoftenconsidereda“free”input,i.e.,aresourcewith noopportunitycostthatcannotbedepletedordegradedbyhumanuse[29]. This“free-of-charge” conceptofsolarenergyintroducesamoderateanthropocentricbiasinenergyuseanalysesandallows theEROItoreachavaluethatisabovetheunit. Alongthoselines,theenergyinputofnaturalpasture, contributedthroughgrazing,hasnobiophysicalopportunitycostandmayalsobeconsideredafree inputbecauseitisnotdigestibleforhumanbeingsanditsuseforlivestockfeedingisnotcompetitive intheseterms. However,incontrastwiththesolarflux,animpropermanagementofpastures,for instancethroughovergrazing,mayindeeddepleteordegradetheresourcebyexceedingitsbearing capacity. Inthissense,pasturesshouldnotbeconsideredunlimitedandfreelyavailableeconomic resources,butthebiomassgeneratedbythemandusedbythelivestockcanbeconceptualizedasa resourcewithoutanyhumanbiophysicalopportunitycostinrelationtothefood/feeddebate. Onthecontrary,theuseofgrainsforanimalfeedinghasaclearhumanbiophysicalopportunity cost,giventhatgrainscanbedestinedtohumanconsumption. Thus,food/feedcompetenceisoneof thecentraldebatesaroundthesustainabilityoflivestockhusbandry[30]. Devotingenergyresources thatareedibleforhumanbeingstolivestockfeedingreducestheenergyefficiencyofanimalfood productionascomparedtothatofagriculturalsystems. Onaverage,thenetenergyusedbyruminants formaintenance,milkproduction,andfatteningamountsto41%,34%,and25%ofthegrossenergy ingested by them, respectively [31]. In addition to the energy cost, the production of fodder has a biophysical opportunity cost in terms of territory. The livestock breeding industry is not only responsiblefor18%ofthegreenhousegasemissions[32,33],butitalsoaccountsfor80%ofthetotal anthropogeniclanduse,withgrazinglandforruminantscoveringabout70%oftheglobalagricultural land,andfeedcropsoccupying34%oftheglobalcropland[34]. Finally,anotherrelevantconcepttobeintegratedinenergyanalysesoflivestockhusbandryis the“avoidedcost”. Theavoidedcostallowstheidentificationofthebenefitsderivedfromchoosing onealternativeinsteadofanother. Inthefieldofenvironmentaleconomics,thisconceptwasinitially proposed as a monetary indicator [35] and it has been recently reinterpreted from the biophysical perspectiveofecologicaleconomics. Thus,forinstance,Artoetal.[36]havemeasuredtheemissions avoided by international trade in Spain, while Ruisheng et al. [37] have quantified the avoided environmentalimpactsofrecyclingwoodwasteinSingapore. Thepresentworksuggestsapplying theconceptofavoidedcosttomanureandnaturalpasture. Theuseofmanureasfertilizeravoidsthe environmentalcostofusingtheenergyequivalentofinorganicfertilizers[29]. Theenergyaccounting ofmanureis,inaddition,ameasureofthepotentialenvironmentalbenefitofincorporatingbiomass Sustainability2018,10,2838 4of20 Sustainability 2018, 10, x FOR PEER REVIEW 4 of 20 to the agroecosystem. The use of natural pastoralism avoids the energy costs associated with the produTchtiiso narotficlliev ehsatos ckthfee egden[3e8r]a,li nobajdedctiitvioen otfo prerdoupcoisninggp rneeswsu reenoenrgtyh escursotapilnaanbdi.lity indicators for livestTohciks ahrutiscbleanhdarsy,t hpeagretincuerlaarllyo bjgeoctaitv efaorfmpirnogp, osaicncgorndeinwg entoe rgtyhes uasbtaoivnea-bdieliftiyneidn dtichaetoorrestifcoarl lpivreemstiosceks.h Musobraen sdpreyc,ipfiacratlilcyu, liat rplyrogpooastefsa rimndinicga,toarcsc otrhdaitn aglltoowth tehea bhoivgeh-ldigehfitninegd athnedo raestsiecsaslipngre mof isthese. Mpooterentsipale ceinfivciarlolyn,mitenptraolp boesnesefiintsd diceartiovresdt hfraotmal ltohwe stuhsetahiingahbllieg hutsine ganadn dmaasnsaegsseimngenotf othf empaontuernet iaasl eonrgvairnoicn mfeerntitlaizlebre nanefidt sfrdoemri vaendimfraol mfetehdeinsgu sbtaasinedab loenu tshee asnudstmaiannaabglee museen toof fpmasatnuureres. aEsmoprgiraincaicl feevritdileinzecre aisn pdrfersoemnteadn ifmora tlhfee ethdrineeg pbraosdeudcotinveth geosaut sfatarminsa bslteuduiseedo. Afpnaaslytuzrinesg. tEhmespe ifraicrmalse, vloidcaentecde iins pthree sSeinetrerda fdoer Ctháedtihzr Neeapturoradlu Pcatirvke, ganoadt pfarremsesnstitnugd idedif.feArennatl ylezvineglst hoef seexftaernmsisv,elnoecsaste mdainketsh eit Spieorsrsaibdlee Ctoá ddeizmNoantsutrraatleP tahrek ,aannadlyptirceasle pnotisnsgibdiliiftfieerse onft tlheve eslussotfaienxatebnilsitivye innedsiscamtoarkse psriotppoossesidb.l etodemonstrate theanalyticalpossibilitiesofthesustainabilityindicatorsproposed. 2. Materials and Methods 2. MaterialsandMethods 2.1. System Boundaries and Functional Unit 2.1. SystemBoundariesandFunctionalUnit The energy analysis performed in this work applies a “cradle-to-farm gate” approach. The livestTohcek setnanerdgayrda unnailty (sLisSUp)e (rofonrem geodat i=n 0.t1h5i sLSwUo) raknda popnlei elistear o“f cmraidlkl ea-rteo -tfhaer mtwog arteef”ereanpcper uoanciths. Tsehleecltievde sttoo cekxpstraenssd athrde urensiutl(tLs.S TUh)e( oannealgyosaist =is 0a.r1t5icLuSlaUte)da nindtoo ntehrleitee rleovfemls iolkf asrtuedthye (atwdaoprteefde rfernocme u[3n9i,t4s0s])e l(eFcitgeudreto 1e)x. pLreevsesl t1h emreeasusultrse.sT thhee acnoanlsyusmispistioarnt iocuf liantdedireicntt oentherregey,l epvaerltsicouflasrtulyd yth(ea denapertgedy fcroosmt o[3f 9p,4r0o]d)u(Fciinggu raen1d). tLreavneslp1ormtienags uthrees itnhpeuctosn saunmd pctaiponitaolf uinsdedir edctuerinnegr gtyh,ep alirvtiecsutolacrkly ptrhoedeuncetriogny cporsotcoefssp. rModourcei nsgpeacnidfictarallnys,p tohret iinngdtihreecitn epnuetsrgayn dascsaopciitaatleuds etod dthuer icnogntshuemlipvteisotno cokf pfreoeddu ccotinocnenptrroacteesss,. Mfododreers,p eelceicfitcriacliltyy,, thdeiesinedl, irluecbtriecnaenrtgs,y pahsysotocsiaatneidtartyo tmheatceorinaslsu, mpplatsiotincso, ftofeoelsd, fceornticleiznetrrsa,t easn,df osdededers, ehlaesc tbrieceinty ,qduiaensetilf,ieludb. rAicsa nfotsr, cpahpyittaols,a tnhieta reynemrgayte rreialalst,epdl atost itchse, taomolosr,tfiezrattiiloizne rosf, amnadchseineedrsyh aansdb etehne qreupaanitriifinegd a.nAds mfoaricnatpenitaanl,cteh eofe nfiexregdy craeplaittaedl htoast haelsaom boeretniz caatilocnuloaftemd.a cLheivneelr y2 aqnudanthtiefieresp tahier inengearngdy mdiareincttelyn acnocnesuomffiexde datc tahpei tfaalrhma:s (aal)s oThbee eonncea alcsusolactieadte.dL etvoe tlh2e qcuoannstuifimepsttihoen eonfe drgieysedli,r eecletlcytrcicointysu, mfeeedd acotnthceenfatrramte:s(,a )foTdhdeeorn, eanasds olcaibaoter;d atondth e(bc)o nthseu monpeti orneloafteddi etsoe l,inelteract-rfaicrimty ,cfeoendsucmonpcteinotnr aoters ,infotedrdnearl, aennedrglayb ofrlo;wansd ((mb)anthuereo,n feereedla, tgerdatzoinign trina-pfuartms, ceotcn.)s.u Lmepvteiol n3 ocroirnrteesrpnoanldens etrog ythfleo wfasrm(m’sa nsuocreia,lfiezeedd, genraezrginyg oiuntppuutts., e tc.). Level3correspondstothefarm’ssocializedenergyoutput. Level 1 Level 2 Level 3 Livestock External Inputs and Capital Internal Manure (Diesel, NPK, Socialized output Inputs feedstuff, (Milk and Meat) transport, labor, tools, etc.) Pasture and crops Indirect energy Direct energy Socialized output FFiigguurree 11.. SSyysstteemm bboouunnddaarriieess ooff tthhee eenneerrggyy aannaallyyssiiss:: CCrraaddllee--ttoo--ffaarrmm ggaattee aapppprrooaacchh.. 2.2. Indicators of the Use of Energy in Livestock Farms 2.2. IndicatorsoftheUseofEnergyinLivestockFarms 22..22..11.. EERROOII aanndd EEnneerrggyy IInnppuutt--OOuuttppuutt iinn LLiivveessttoocckk SSyysstteemmss:: CCoonnvveennttiioonnaall AApppprrooaacchh FFoolllloowwiinngg tthhee aaggrricicuultltuurraalla annaalylysissisa pappproraocahcha nadndu suinsignagn aimniamlascl isecniceencdee fidneiftiinointiso(nAs p(pAepnpdeinxdAix), tAh)e, gthroes gsreonsesr geynecrognyta cinoendtaiinnecdom inm ceorcmiamlizerecdialilvizeesdto lcikvepsrtoodcukc ptsro(mduilcktas n(dmmilke aatn)dis mtakeaent) aiss atarkeefenr eansc ae troefeesrteinmcaet etot heesteinmeargtey tohuet peunte(rEgqyu oautitopnu(t1 ()E).qRueagtiaornd in(1g))t.h Reeingparudtsin,gth etheex tienrpnuatlse, ntehreg yexintepruntali necnluerdgeys tinhpeuetn einrgcylucdoems itnhge feronmergoyu tcsoidmeinthga tfriosmd iroeucttslyidoer tihnadti riesc tdlyireucsteldy ionr liivnedsitroeccktlyh uussbeadn dinry lisvyesstteomcks (hEuqsubaatniodnry( 2s)y).stDemiresc t(Eeqnueargtiyonis (t2h)a).t wDhirieccht, eanltehroguyg ihs gtehnaet rwathedicho,u taslitdheouthgeh fagremne,riastceodn osuumtsiedde inthiet farm, is consumed in it during the livestock production process (electricity, diesel, human labor, feed, etc.), while indirect energy stands for the energy cost of fabricating the consumable goods employed in the management of the farm (fodder, diesel, fertilizers, etc.). Efficiency in the use of Sustainability2018,10,2838 5of20 duringthelivestockproductionprocess(electricity, diesel, humanlabor, feed, etc.), whileindirect energystandsfortheenergycostoffabricatingtheconsumablegoodsemployedinthemanagement ofthefarm(fodder,diesel,fertilizers,etc.). Efficiencyintheuseofexternalinputsinrelationtothe socializedoutputismeasuredthroughtheindicator,“externalEROI”(Equation(3)). Socializedoutput=∑Livestockoutput (kgLSU−1)×α −1(MJkg−1) (1) (p) (p) Externalenergyinput=∑Externalinput (unitLSU−1orL−1)×ß (MJunit−1) (2) (j) (j) ExternalEROI=Socializedoutput(MJLSU−1)×Externalenergyinputs−1(MJLSU−1) (3) wherelivestockoutput =milk+meat; α istheenergyequivalentoftheproduct, p(MJkg−1); (p) (p) external input = feed concentrates, fodder, electricity, diesel, lubricants, phytosanitary material, (j) plastics,tools,fertilizers,seeds,machinery,andlabor;andß istheenergyconverter,includingthe (j) directandindirectenergyoftheinput,j. 2.2.2. EnergyIndicatorsforLivestockSystems: AnAgroecologicalApproach Indicators1,2,and3analyzetheenergyinputsandoutputsoffarmsconsideredas“blackboxes” becausetheinternalenergyflows,i.e.,theintra-farmconsumptionofbiomassisexcluded[17]. Inthe specificcaseoflivestockfarming,thefollowingenergyflowsareneglected: (a)Theincrease/decrease inthenumberoflivestockunitsandmanure,whichcaninfactbeincludedaspartoftheenergyoutput ofthelivestocksystem(Equation(4));and(b)thefarm’sowncrops(whetherconsumedindoorsor throughgrazing)andnaturalpastureconsumedduringgrazing,whichcanbeaccountedaspartof theinput(Equation(5)). Manureisconsideredanenergyoutputduetoitspotentialuseasfertilizer, either directly during grazing or through management and reincorporation in the case of housed livestock.Insystemswheremanurecannotbeused,itshouldnotbeconsidered.Inallcases,theenergy costsassociatedwithmanuremanagementmustbeaccounted(transportation, labor, capital, etc.). Theagroecologicalredefinitionofoutput,input,andenergyefficiencyisthusreflectedinEquations(4) and (5), which generate a new energy indicator, the “final EROI” (Equation (6)). In addition, and keepinginmindtheseveryspecifications,thepercentageofthelivestock’sgrossenergyrequirements coveredwithpurchasedfeedisanadditionalenergyindicator(“externalfeeddependence”)thatallows identifyingthelevelofintensiveness/extensivenessofthelivestockmanagementand,consequently, thelevelofenergydependence/autonomyofthefarm[40](Equation(7)). Totalenergyoutput=Socializedoutput(MJLSU−1) +Energyrecoveryofmanure(MJLSU−1) (4) +Energyincrease/decreaseinthenumberoflivestockunits(MJLSU−1) Cumulativeenergydemand(CED)=Externalenergyinputs(MJLSU−1orL−1) (5) +Internalenergyinputs(MJLSU−1orL−1) FinalEROI=Totalenergyoutput(MJLSU−1)×Cumulativeenergydemand−1(MJLSU−1) (6) Externalfeeddependence=Grossenergyofexternalfeed(MJLSU−1) (7) ×Grossenergyrequirementsofthelivestock−1(MJLSU−1)×100 whereinternalenergyinputs=energycontributiontoanimalfeedoffodderandgrainsgrownwithin thefarm(consumedduringgrazingorindoors)(MJLSU−1orL−1)+energycontributiontoanimal feedofnaturalpastureconsumedduringgrazing(MJLSU−1orL−1). Inenergyanalysis,itisrelevanttodifferentiaterenewableandnon-renewableenergy. Renewable energy includes biomass, labor, and the proportional share of renewable energy (mainly wind, hydraulic,andsolar)usedtoproduceagrarianinputs,whichareestimatedbasedontheinformation providedbyAguileraetal.[41], theInstitutodeDiversificaciónyAhorroEnergético(Institutefor Sustainability2018,10,2838 6of20 Energy Diversification and Savings) [42], and the Spanish Ministry of Industry and Tourism [43]. Bearing this distinction in mind, the external energy input and CED are recalculated according to theuseofnon-renewable(NR)energy;hence,theenergyindicators,“NRexternalEROI”and“NR finalEROI”. 2.2.3. EfficiencyIndicatorsandAvoidedCostsRelatedtoManagement: AnAgroecological EconomicsApproach Fromanagroecologicaleconomicsperspective,itispossibletoestimatetheavoidedcostassociated withthereuseofmanureandthenaturalpastureconsumedduringgrazingandtodesignnewenergy sustainabilityindicatorsforlivestocksystems. Thus,theindicator,“avoidedenergycostofreusing manure”(AEC ),isestimatedastheenergycostofindustriallysynthesizingtheequivalentamountof M nitrogen(N)(Equation(8))(adaptedfrom[29]). Theindicator,“avoidedenergycostofnaturalpasture consumedduringgrazing”(AEC ),iscalculatedbyaddingtothegrossenergyprovidedbynatural P pasturetheindirectenergycoststhatwouldhavebeenincurredtoobtainthesameamountofenergy fromcultivatedcrops(Equation(9)). Avoidedenergycostofmanure(AEC )=Reusedmanure(kgLSU−1) M (8) ×Nmanure(kgNkg−1)×IndirectenergyofN(MJkg−1) Avoidedenergycostofnaturalpastureconsumedduringgrazing(AEC ) P =Energycontributionofnaturalpastureconsumedduringgrazing(ECNP)(MJLSU−1orL−1) (9) +IndirectenergyofsubstitutingtheECNPbycultivatedcrops(IEECNP)(MJLSU−1orL−1) Livestockconsumebiomasstomeettheirmetabolicneedsandmaintaingrowthandproductivity. Asarguedbefore,thebiomassconsumedbylivestockcanbedividedintothatwhichhasabiophysical opportunitycost(grainsandotherfeedconcentrates)becauseitcanbeusedashumanfood,andthat whichhasnosuchcost(fodderandnaturalpasture). The“food/feedEROI”indicator(Equation(10)) measurestheenergyefficiencyoftransformingediblehumanfoodintoedibleenergyintheformof meatandmilk. Theuseofnaturalpasturetofeedlivestockreducescompetitionongrainsandother feedconcentratesthatcanbeincludedinthehumandiet,reducingthepressureonthecroplandaswell. Inthissense,Equation(11)allowsestimationofthelastindicator,“avoidedlandcostofnaturalpasture consumedduringgrazing”(ALC ),intermsofusableagriculturalarea(hectares)underextensive P livestock management. This avoided land cost has been calculated based on the agricultural area requiredtoproducethefeed(grains,feedconcentrates,andcultivatedfodder)thatwouldbenecessary tosubstitute,intermsofenergy,thecontributionofnaturalpastureconsumedbygrazing. Food/feedEROI(F/FEROI)=Socializedoutput(EO)(MJLSU−1) (10) ×Grossenergyofgrains/feedconcentrates−1(MJLSU−1) Avoidedlandcostofnaturalpastureconsumedduringgrazing(ALC )(ha) P =ECNP(MJLSU−1orL−1) (11) ×Energyyieldofthesubstitutedcrops(j)−1(MJha−1) where(j)=compositionofthesubstitutingcrops;andenergyyield=yieldofthesubstitutingcrops(j) (kgha−1)×energyequivalent(j)(MJkg−1). 2.3. CaseStudy,InformationGathering,andElaborationoftheInventory Andalusia(southofSpain)isthefirstgoatmilk-producingregioninSpainandthesecondin Europe. According to data provided by the Spanish Ministry of Agriculture, Fisheries, Food and environment[44],ithasapopulationof489,814milkinggoats(39%ofthenationalpopulation)and the205millionlitersofgoatmilktheyproducerepresent42.8%ofthetotalSpanishproduction[44]. InSpain,themanagementofdairygoatfarmshasbeennotablyintensified,althoughtherearestilla Sustainability2018,10,2838 7of20 greatvarietyofproductionmodels,rangingfromhighlyintensiveindoorsystemstopastoralsystems withdifferentlevelsofextensiveness[45]. AndalusiaisoneoftheSpanishregionswherethereare still an important number of pastoral dairy goat farms. This production model is predominant in theSierradeCádiz,inparticular. Thesierra,whichincludesanaturalparkwithinitsterritory,lies between36◦55(cid:48) and36◦41(cid:48) latitudeNorthand5◦33(cid:48) to5◦11(cid:48) longitudeWest. Itsreliefincludescraggy areaswithsteepinclinesandundulatingareaswithshallowinclines. TheclimateisMediterranean, withombroclimatesrangingfromsub-humid(C2B’3s2a’)tohumid(B2B’2s2a’). Theaverageannual rainfallis1221mm,andtheaverageannualtemperatureis16.9◦C. In this area, farms are mostly family-run and have an average population of 371 goats (theautochthonousPayoyabreedisthegeneticbase). Goatskidonceayearandhaveanaverage lactationperiodofbetweensixandeightmonths. Theanimalsaremilkedonceaday,accordingto theirproductionlevel. Independentoftheavailabilityofpastureandthestockingrate,thegoatsofthis areagrazethroughoutthewholeyear,althoughgrazingintensityishigherinthespring. Herdfeeding managementisbasedonthegrazingofnaturalgrasslands,namelypastures,shrubs,andtrees,butthe annualaverageofenergyrequirementscoveredbyfeedprovidedindoors(concentratesplusfodders) variesgreatly,presentingvaluesof41%forhigh-intensitygrazingfarms,61%formedium-intensity grazingfarms,and91%forlow-intensitygrazingfarms[46]. Toperformacomparativeanalysiswiththemethodologypresentedintheprevioussectionand toshowtheanalyticalpotentialofthismethodology,threegoatfarmslocatedintheSierradeCádiz, Andalusiawereselectedaccordingtoexpertcriteriafocusedonthenon-statisticalrepresentationofthe area. Farm1(F1)isasemi-intensivelivestockfarmthatdependsonfeedpurchasedoutsidethefarm andprovidedindoors,eventhoughitsgoatsaretakenouttograzeincultivatedpasture. Farm2(F2) isasemi-extensivefarmwherethedependenceonpurchasedfeedprovidedindoorsisnotsohighand which,inaddition,growsitsowncropstobeconsumedbythelivestockthroughgrazing. Farm3(F3) is a semi-extensive farm that does not grow its own crops. Data were collected through monthly monitoringandpersonalvisitstothefarmersduring2011. Thisinformationwascompletedwithdata providedbythecooperativesandassociationstowhichthefarmerspurchasetheirconsumablegoods andselltheirproducts. Theareas,livestockdensity,andinventoryofthethreefarmsaresynthesized inTables1and2. Naturalpastureareasarethosecoveredwithnaturalgrassland,whilemountain areasarehigherandmainlycoveredwithshrub. Table1.Areasandlivestockdensityofthegoatfarmsanalyzed. Particular Unit Farm1 Farm2 Farm3 Areaofnaturalpasture ha 7 70 70 Mountainarea ha 15 665 20 Crops(1) ha 6 96 - LSU(2) unit 34 108 39 Where(1)cultivatedareaforgrazing;(2)LSU=livestockstandardunit,onegoatequals0.15LSU. Farm 1 has six hectares cultivated with a commercial blend of seeds, including Avena sativa, Hordeumvulgare,andTriticosecaleaestivium.Farm2has96hectareswhereamixofAvenasativaandVicia angustifoliaisgrown. Regardingexternalfeeding,F1providestheanimalsamixed-grainconcentrate withahighproteinvalueduringthekiddingperiod(DecembertoFebruary). Thismixconsistsmainly ofcorn(25%),limabeans(21.8%),sunflowerseeds(20%),andoats(20%). Duringtherestoftheyear, thefarmerusesahigh-fiberconcentratemainlycomposedofshort-fiberdehydratedalfalfa(25%),corn distillate(15.5%), andsoybeanhulls(15%). Asforthefodder, hayisprovidedbetweenDecember andMay,whentheintensityofgrazingislowerduetothekiddingperiod,whenthegrazinghours arereduced,andtolowervegetationproductivity. Duringthekiddingperiod,cerealstrawisalso provided. Theshort-fiberdehydratedalfalfaincludedinthehigh-fiberconcentratesuppliedduring thewholeyearshouldalsobeconsideredasfodder. Farm2providesthesametypeofconcentrateas Sustainability2018,10,2838 8of20 Farm1allyearround,althoughduringthesummer(whentheenergyrequirementsarelowerbecause thegoatsareattheendofthelactationperiodoralreadydry),thecontributionofthisconcentrate isreducedandbroadbeansaresupplied. Withrespecttotheuseoffodder,thisfarmprovideshay betweenJanuaryandJune,themonthsduringwhichgrazingislessintensive. Farm3providestwo typesoffeedduringmostoftheyear: Thesameconcentrateusedintheothertwofarmsandanother onemainlycomposedofbarley(24.4%),wheat(20%),corndistillate(15%),soybeanhulls(10%),and soy(9%),exceptduringthespring,whenpasturesaremostproductiveandonlythesecondtypeof feedissupplied. Thisfarmerdoesnotprovideanyfodderthroughouttheyear. Table2.Inputsandcapitalusedduringoneyearfortheproductionofthegoatlivestockanalyzed. Particular Unit Farm1 Farm2 Farm3 (a)Output Litersofmilk LLSU−1 3236 2558 2350 Kilogramsofmeat kgLSU−1 47.2 40.8 43.0 (b)Livestockinputs Feedconcentrates(1) kggoat−1 453 282 330 Fodder(1) kggoat−1 147 33 - Electricity kW 12,458 6209 5630 Diesel(Management+Crops) L 702 2140 669 Lubricants L 30 53 38 Phytosanitarymaterial Kg 375 264 90 Plastics Kg 20 15 16 Tools € 2401 3711 2593 Fertilizers(46-15-15) Kg 1410 2334 - Seeds Kg 2520 825 - Labor hLSU−1 120 235 101 (c)Capital TractorI(amortizationin10years) Hp 90 90 100 TractorII(amortizationin10years) Hp 64 - - Othermachinery(trailer,harrow,others) Kg 150 1500 963 Where(1)referstofeedconcentrates/fodderprovidedindoors. For reasons of space, the additional information, methodological assumptions, and energy convertersusedtoestimatetheoutput,input,andenergysustainabilityindicatorsofthelivestock farmsanalyzedarepresentedinthemethodologicalAppendixsA–C. 3. ResultsandDiscussion 3.1. MakingtheHiddenOutputsandInputsofGoatRearingVisible Theresultsshowhowthesemi-intensivefarm(F1)istheonethatobtainedthelargestenergy output,bothtotalandsocialized(33.08and10.79GJLSU−1),whilethesemi-extensivefarmwithnatural pastureconsumedthroughgrazing(F3)producedthesmallestoutputs(25.01and7.76GJLSU−1for, respectively,thetotalandthesocializedoutput)(Table3). Thesemi-extensivefarmgrowingitsown crops(F2)occupiedanintermediateposition. Inthethreecasesstudied,manuremultipliedbythree the value of the energy output of milk and meat, and represented, on average, 68.8% of the total energyoutput(Figure2). Theremaining32.2%correspondedtothemarketedoutput: Mostofitas milk(95.8%)andtherest,inamuchsmalleramount,asmeat(4.2%). Aspointedoutbefore,manure isafundamentalenergyandbiomasscontributioninextensivepastoralsystems;ithelpsmaintain the long-term ecological balance and the production capacity of these agroecosystems. However, conventionalenergyanalysesusuallyexcludemanurefromtheaccountsbecauseitisnotmarketed. Sustainability2018,10,2838 9of20 SuTsthaiinsabeicliotyn 2o0m18i,c 1i0s,t xb FiaOsRd PiEstEoRr tRsEtVhIeEWun d erstandingofbiophysicalprocessesbynotincludingoneoft9h oef 20 maininternalenergyflowsoflivestockhusbandrysystems[16]. TTaabblele 33. .EEnneerrggyy oouuttppuuttss aanndd iinnppuuttsso offg gooaatth huusbsabnadnrdyryin inA nAdnadluasluias.ia. Farm 1 Farm 2 Farm 3 Farm1 Farm2 Farm3 Particulars/Units GJ LSU−1 % GJ LSU−1 % GJ LSU−1 % Particulars/Units GJLSU−1 % GJLSU−1 % GJLSU−1 % (A) Total energy output (a + b + c) 33.08 100 27.23 100 25.01 100 (A)Totalenergyoutput(a+b+c) 33.08 100 27.23 100 25.01 100 (a) Socialized output 10.79 32.6 8.36 30.7 7.76 31.0 (a)Socializedoutput 10.79 32.6 8.36 30.7 7.76 31.0 (b) Livestock increase/decrease −0.17 −0.5 −0.02 −0.1 −0.09 −0.4 (b)Livestockincrease/decrease −0.17 −0.5 −0.02 −0.1 −0.09 −0.4 (c()cR) eRueseudsebdio mbiaossm(masasn u(mre)anure) 22.45 22.45 67.967.9 18.8198.89 696.49.4 117.73.434 6699.3.3 (B()BC) ECDE(Dd +(de )+ e) 123.93123.93 100 100 94.2964.26 100100 885.56.464 110000 (d) External inputs 94.10 75.9 58.37 61.9 50.69 59.2 (d)Externalinputs 94.10 75.9 58.37 61.9 50.69 59.2 (e()eI)n Itenrtnearlninapl uintsputs 29.84 29.84 24.124.1 35.8395.89 38.318.1 334.49.595 4400.8.8 NRExternalinput 26.48 21.4 15.15 16.1 13.09 15.3 NR External input 26.48 21.4 15.15 16.1 13.09 15.3 a) 100 90 80 70 67.9% 69.4% 69.3% 60 50 40 30 20 32.6% 30.7% 31.0% 10 0 Farm 1 Farm 2 Farm 3 Socialized output Manure b) c) 100 8 0.1% 0.1% 90 24.1% 7 80 38.1% 40.8% 6 1.6% 2.5% 70 5 0.08% 60 50 4 3400 75.9% 61.9% 59.2% 3 5.4% 2.2% 5.3% 2 20 10 1 1.8% 0 0 Farm 1 Farm 2 Farm 3 Farm 1 Farm 2 Farm 3 External inputs Intenal inputs Energy (electricity + diesel) Capital and others Labor d) e) 100 100 90 90 24.5% 22.7% 80 80 70 46.9% 70 8.8% 51.1% 25.7% 60 73.5% 60 50 100% 50 - 40 40 66.8% 30 30 53.1% 51.7% 48.9% 20 20 10 26.5% 10 0 - Farm 1 Farm 2 Farm 3 Farm 1 Farm 2 Farm 3 Natural pasture consumed during grazing Cultivated pasture consumed during grazing Outside the farm Cultivated pasture Natural pasture Figure 2. Composition of the: (a) Total energy output (excluding the variation in the number of Figure 2. Composition of the: (a) Total energy output (excluding the variation in the number of livlievsetsotcokc kuunniittss));; ((bb)) ccuummuulaltaivtieveen eerngeyrgdye mdaenmd;a(ncd);e x(tce)r neaxltienrpnuatls i(nexpculutsd i(negxcalnuidmianlgf eaend)im;(da)l ifneteedrn)a; l(d) initnerpnuatsl ;inanpdut(se;) aanndim (ea)l faeneidm(aglr ofessede n(egrrgoyssc oennseurgmye dco)n(%su).mUendi)t :(%%.). Unit: %. When grazing is not accounted, the total CED is estimated at 123.93, 94.26, and 85.64 GJ LSU−1 for F1, F2, and F3, respectively. After including the internal inputs of the livestock husbandry system, the CED increases very significantly between 31.7%, in the case of F1, and 69%, in that of F3, rendering the energy contribution of grazing visible. The data per unit of the three cases show that, despite the higher intensity of grazing in F3, this farm is the one presenting the lowest CED LSU−1 (Table 3). Consequently, high-intensity grazing may be associated with lower energy Sustainability2018,10,2838 10of20 Whengrazingisnotaccounted,thetotalCEDisestimatedat123.93,94.26,and85.64GJLSU−1 forF1,F2,andF3,respectively. Afterincludingtheinternalinputsofthelivestockhusbandrysystem, theCEDincreasesverysignificantlybetween31.7%,inthecaseofF1,and69%,inthatofF3,rendering the energy contribution of grazing visible. The data per unit of the three cases show that, despite thehigherintensityofgrazinginF3,thisfarmistheonepresentingthelowestCEDLSU−1(Table3). Consequently,high-intensitygrazingmaybeassociatedwithlowerenergyrequirements,evenwhen the energy contribution of pastures is accounted. This is a relationship worth studying in greater detail. The most intensive farm (F1) presented a CED LSU−1 that was 44.7% higher than that of thesemi-extensivefarmwithnaturalpastures(F3). F1alsorequiredmoreenergyperliterofmilk producedthanF2andF3,althoughthedifferencebetweenthefarmsanalyzedwassmallerinthiscase (38.29,36.86,and36.44MJL−1,respectively)(seealsoTable4). Theinternalenergyflowsderivedfrom thecontributionofgrazingtofeed,whetherpasturesarecultivatedornot,rangedfrom24%(F1)to 40.8%(F3)oftheCEDLSU−1 (Figure2). Likemanure,theseinternalflowsareusuallyneglectedin conventionalenergyanalyses,thus,distortingtheunderstandingoftheenergymetabolismoflivestock husbandrysystems. Likewise,theresultsobtainedinthefarmsstudiedshowhowtheuseofpastures,whethernatural orcultivated,canreducedependenceonexternalenergy,especiallyonthemostimportantenergy input: Animalfeedpurchasedoutsidethefarm. Theenergycostassociatedwiththeexternalpurchase offeedisestimatedat87.43,55.98,and46.69GJLSU−1,representing70.5,59.4,and46.7%oftheCED ofF1,F2andF3,respectively. ThisresultisconsistentwiththoseobtainedbyPérezNeiraetal.[40], whoestimatedtheweightofanimalfeedat71.3%oftheCEDfororganicgoatrearinginAndalusia. Theuseofnaturalandcultivatedpasturesisalsorelatedwithsmallerrequirementsofnon-renewable energy,whichinF3andF2arecomparativelylowerthaninthemoreintensiveF1(13.09and15.15, as compared to 26.48 GJ LSU−1). The NR CED accounted for 21.4, 16.1, and 15.3% of the total energy consumed in F1, F2, and F3, respectively. These data point to the possibility of reducing theneedfornon-renewableenergyastheuseofgrazingincreases. Infutureanalyses,thispositive relationshipshouldbeoneofthemostimportantsustainabilitycriteriaappliedfortheassessmentof livestocksustainability. Table4.EnergyefficiencyindicatorsofgoathusbandryinAndalusia. Particulars Unit Farm1 Farm2 Farm3 1.Economicapproach Externalinput MJL−1 29.07 22.82 21.57 NRExternalinput MJL−1 8.18 5.92 5.57 ExternalEROI - 0.11 0.14 0.15 NRExternalEROI - 0.41 0.55 0.59 2.Agroecologicalapproach CED MJL−1 38.29 36.86 36.44 NRCED MJL−1 8.18 5.92 5.57 FinalEROI - 0.27 0.29 0.29 NRFinalEROI - 1.25 1.80 1.91 3.2. EnergyEfficiencyfromaConventionalandAgroecologicalApproach The measurement of the energy efficiency of livestock breeding systems changes, both in quantitative and conceptual terms, when the hidden flows of manure and grazing are considered (Table 4 and Figure 3). Conventional energy analysis, which integrates an economic-mercantile approach[20],focusesontheenergyvaluationoftheexternalinputandtheexternalEROIaccording tothesocializedoutput. Inrelationtotheseindicators,thedataperliterofmilkandperLSUevidence that the semi-extensive system (F3) and the semi-extensive system with cultivated pastures (F2) demands less external inputs than the more intensive farm (F1) (21.57 and 22.82 as compared to

Description:
energy cost of using this alternative to inorganic fertilizers (AECM). Keywords: sustainability; EROI; avoided costs; food/feed competition; pastoral farming; ecological . The analysis is articulated into three levels of study (adapted.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.