ebook img

Energy and potential enstrophy flux constraints in quasi-geostrophic models PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Energy and potential enstrophy flux constraints in quasi-geostrophic models

Energy and potential enstrophy flux constraints in quasi-geostrophic models EleftheriosGkioulekasa aUniversityofTexas-PanAmerican,DepartmentofMathematics,1201WestUniversityDrive,Edinburg,TX78539-2999 Abstract We investigate an inequality constraining the energy and potential enstrophy flux spectra in two-layer and multi- 3 layerquasi-geostrophicmodels. Itsphysicalsignificanceisthatitcandiagnosewhetheranygivenmulti-layermodel 1 thatallowsco-existingdownscalecascadesofenergyandpotentialenstrophycanallowthedownscaleenergyfluxto 0 2 becomelargeenoughtoyieldamixedenergyspectrumwherethedominantk−3scalingisovertakenbyasubdominant k−5/3contributionbeyondatransitionwavenumberk situatedintheinertialrange. Thevalidityofthefluxinequality n t implies that this scaling transition cannotoccurwithin the inertial range, whereas a violation of the flux inequality a J beyondsomewavenumberk impliestheexistenceofascalingtransitionnearthatwavenumber. Thisfluxinequality t 1 holdsunconditionallyintwo-dimensionalNavier-Stokesturbulence,however,itisfarfromobviousthatitcontinuesto 2 holdinmulti-layerquasi-geostrophicmodels,becausethedissipationratespectraforenergyandpotentialenstrophy nolongerrelateinatrivialway,asintwo-dimensionalNavier-Stokes. Wederivethegeneralformoftheenergyand ] D potential enstrophy dissipation rate spectra for a generalized symmetrically coupled multi-layer model. From this result,weprovethatinasymmetricallycoupledmulti-layerquasi-geostrophicmodel,wherethedissipationtermsfor C eachlayerconsistofthesameFourier-diagonallinearoperatorappliedonthestreamfunctionfieldofonlythesame . n layer,thefluxinequalitycontinuestohold.Itfollowsthatanecessaryconditiontoviolatethefluxinequalityistheuse li ofasymmetricdissipationwheredifferentoperatorsareusedondifferentlayers. We exploredissipationasymmetry n furtherin the context of a two-layer quasi-geostrophicmodel and derive upper bounds on the asymmetry that will [ allowthefluxinequalitytocontinuetohold.AsymmetryisintroducedbothviaanextrapolatedEkmanterm,basedon 1 a1980modelbySalmon,andviadifferentialsmall-scaledissipation. Theresultsgivenaremathematicallyrigorous v and require no phenomenologicalassumptions about the inertial range. Sufficient conditionsfor violating the flux 1 inequality,ontheotherhand,requirephenomenologicalhypotheses,andwillbeexploredinfuturework. 3 7 Keywords: two-dimensionalturbulence,quasi-geostrophicturbulence,two-layerquasi-geostrophicmodel,flux 4 inequality . 1 0 3 1 : 1. Introduction v i X Itisnowwell-knownthatintwo-dimensionalNavier-Stokesturbulence,mostoftheenergytendsto gotowards r largesscalesandmostoftheenstrophytendstogotowardssmallscales,sometimesforminganupscaleinverseenergy a cascade with energy spectrum scaling as k−5/3 and a downscale enstrophycascade with k−3 scaling [1–3], where k isthe wavenumber. Kraichnan[1] argued,differentlyfrom Fjørtøft [4], thatthe directionof the two cascadescan bejustifiedviaathermodynamicargumentinwhichweintroduce,withoutproof,theassumptionthattheenergyand enstrophyfluxesshouldtendtoreverttheenergyspectrumfromacascadeconfigurationtotheabsoluteequilibrium configuration. The existence of forcing and dissipation arrests this tendency, thus keeping the system locked in a steady-stateforced-dissipativeconfigurationawayfromabsoluteequilibrium. Less well-knownis the fact that there is a serious error with the original Fjørtøft argument: Fjørtøft claimed that the twin detailed conservationlaws of energy and enstrophy alone imply that in every triad interaction group, more energyis transferredupscale than downscale. However, a more rigorousanalysis shows that there exist triad Emailaddress:[email protected](EleftheriosGkioulekas) PreprintsubmittedtoPhysicaD January22,2013 interaction groups in which more energy is sent downscale than upscale, and it is not obvious, without additional considerations,whichgroupisdominant[5,6]. Asidefromthismatter,thefundamentalproblemthatunderliesevery other proof that utilizes only the twin conservation laws of enstrophyand energy, is that an additional assumption needstobeintroducedto overcomethesymmetryoftheEulerequationsundertimereversal. Typicalassumptions, suchasthetendencyofthe energyspectrumtoreverttoabsoluteequilibrium,orthetendencyofan energypeakto spread,typifyadhocconstraintsimposedimplicitlyontheinitialconditionsthatareneededtobreakthetimereversal symmetry[7]. InRef.[7]wecounterproposedaverysimpleandmathematicallyrigorousproofthatavoidstheneed foranyadhocassumptionsbyconsideringthecombinedeffectoftheNavier-Stokesnonlinearityandthedissipation terms. Theonlyassumptionusedbythisproofisthattheforcingspectrumisrestrictedtoafiniteinterval[k ,k ]of 1 2 wavenumbers,howevereventhatassumptioncanberelaxedtosomeextent,althoughnotentirelyeliminated[8,9]. The essence of the argument in Ref. [7] is to show that for every wavenumber k not in the forcing range, the energyfluxΠ (k)andtheenstrophyfluxΠ (k)satisfytheinequalityk2Π (k)−Π (k)≤0.Here,Π (k)representsthe E G E G E amountofenergyperunitvolumetransferredfromthewavenumbersinthe(0,k)intervaltothewavenumbersinthe (k,+∞)interval,andΠ (k)isdefinedsimilarlyfortheenstrophy. Fromthisinequalitywethenderivethefollowing G integralconstraintsforΠ (k)andΠ (k): E G k qΠ (q)dq≤0, ∀k∈(k ,+∞), (1) E 2 Z 0 +∞ q−3Π (q)dq≥0, ∀k∈(0,k ). (2) G 1 Z k These constraints imply a predominantlyupscale transferof energyand a predominantlydownscale transferof en- strophy. Theoriginalfluxinequalityk2Π (k)−Π (k) < 0itselfcanalsobedirectlyinterpretedasatightconstraint E G onthedownscaleenergyflux. Thefluxinequalityisdirectlyrelevanttothecascadesuperpositionhypothesisthatwasinitiallyproposedinthe contextoftwo-dimensionalNavier-Stokesturbulence[10, 11],accordingtowhich,forthecaseoffinitesmall-scale dissipation viscosity, the downscale enstrophy cascade is accompanied with a hidden downscale energy cascade, associatedwithanaccompanyingsmalldownscaleenergyflux. Westressthattheexistenceofthissmalldownscale energyfluxisnotindoubt.Thehypothesisliesinthenotionthatitispartofasubdominantdownscaleenergycascade withbothcascadescontributingak−3 andak−5/3 termtotheenergyspectrum E(k),thatarecombinedlinearly,with similar linear combinationsof terms to the generalized structure functionsfor all orders. This linear superposition principlecan be provedforthird-ordervelocity structure functions[12]. A generalconsequenceof this hypothesis isthat, if the downscaleenergyfluxassociated withthe k−5/3 termisstrongenough,thena scalingtransitionin the energyspectrumfromk−3 tok−5/3 shouldoccurnearatransitionwavenumberk ≈ η /ε ,withη thedownscale t uv uv uv enstrophyflux and εuv the downscale energyflux. The validity of the flux inequalpity for all wavenumbers k in the downscaleinertialrangeoftwo-dimensionalNavier-Stokesturbulenceimpliesthatthedownscaleenergyflux ε is uv too weak to cause an observable scaling transition anywhere within the inertial range. On the other hand, it is far fromobviousthatthefluxinequalitywillremainunconditionallyvalidin quasi-geostrophicmodels. A violationof thefluxinequalitybeyondsomewavenumberk inquasi-geostrophicmodelswouldimplytheoccurrenceofascaling t transitionnearthatwavenumber.Arecentnumericalsimulationofatwo-layerquasi-geostrophicmodelhasindicated thatascalingtransitionisindeedpossible[13].Coexistingdownscalecascadesofenergyandpotentialenstrophyhave also beenobservedin morerealistic modelsof atmosphericturbulence,the mostrecentbeinga primitiveequations numericalsimulation[14]. The goalof the presentpaperis to extendthe flux inequalityto quasi-geostrophicmodels. We will specifically focusonverticaldiscretizationsofthequasi-geostrophicmodel,namelythen-layermodel,andthespecialcaseofthe two-layermodel,withalllayershavingthesamethickness, intermsofpressurecoordinates,onbothmodels. From aphysicalstandpoint,bothmodelssacrificethesurfacequasi-geostrophicdynamicsatthebottomboundary,butthey are otherwise good models of atmospheric turbulence for scales down to an estimated length scale of 100km [15]. I should like to emphasize from the beginning that in spite of any mathematical or phenomenologicalsimilarities, extending the flux inequality to quasi-geostrophic models is neither obvious nor straightforward. An overlooked fundamentaldifferencebetweentwo-dimensionalNavier-Stokesturbulenceandquasi-geostrophicturbulenceisthat thereare manymorepossibleconfigurationsforthe dissipationtermsinquasi-geostrophicmodelsthanthere arein 2 two-dimensionalNavier-Stokes. Dissipationtermsareusuallyignoredbecausephysicalintuitionalonemaysuggest thattheyshouldnothavean effectonthe nonlineardynamicsininertialranges. Thisline ofreasoningignoresthat theactualconfigurationofthedissipationtermscanstillhaveunexpectedeffectsonthemagnitudeoftheenergyand potentialenstrophyfluxesintheinertialrange. Thesefluxeffectsaretheunderlyingmatterofinterestmotivatingthe investigationinitiatedbythepresentpaper. Theoriginalmotivationunderlyingtheaforementionednumericalinvestigation[13]ofthetwo-layerquasi-geostrophic modelwastoshowthatitcanreproducetheNastrom-Gageenergyspectrumoftheatmosphere[16–19].However,the Nastrom-Gagecontroversy,reviewedtosomeextentinpreviouspapers[6,20],isnotthemainconcernormotivation of this paper. Our main interest in this problem stems from the following considerations: first, quasi-geostrophic modelsaresimpleenoughthattheycouldbeaccessibletoinvestigationviatheoreticaltechniquesdevelopedfortwo- dimensional turbulence [21–26]. Furthermore, the possibility of being able to study a downscale energy cascade arising in the context of a two-dimensionalmodel is particularly exciting from the point of view of the turbulence theorist,becauseittiesintotheopenquestionofwhythedownscaleenergycascadeofthree-dimensionalturbulence has intermittencycorrectionsbut the inverse energycascade of two-dimensionalturbulence doesnot [27, 28]. Is it antheeffectofdimensionnumberorcascadedirection? Inlightofsuchquestions,anobservabledownscaleenergy cascadeinatwo-dimensionalsystemisinterestinginandofitself. Mathematicalresults concerningthe flux inequalityin quasi-geostrophicmodelscan be organizedinto two cat- egories: (a) sufficient conditions for the satisfaction of the flux inequality within the entire inertial range; and (b) sufficientconditionsforviolatingthefluxinequalitybeyondsometransitionwavenumberk withintheinertialrange. t Resultsofthefirsttypecanbeprovedrigorouslywithoutadhocphenomenologicalassumptionsonthebehaviorof theenergyandpotentialenstrophyspectra. Resultsofthesecondtyperequiretheintroductionofphenomenological assumptionsaboutthedistributionofenergyandpotentialenstrophybetweenlayers. Consequently,thescopeofthis paperhasbeenlimitedtowhatwecanproverigorously. Morepowerfulresultsthatcanbeobtainedbyintroducing phenomenologicalhypotheseswillbeexploredinfuturepublications. Becausethedetailsofourargumentarevery technical,wewillnowsummarizethemainargumentofthepaperasfollows. Forthe generalizedcase ofan n-layermodel, we considerthe generalcase of a streamfunctiondissipationcon- figuration,whereforeachlayerthedissipationtermsaregivenbyalineardifferentialoperatorappliedonthestream- functionofthesamelayer,withoutentanglinganystreamfunctionsofanyotherlayers. Thedissipationratespectra forbothenergyandpotentialenstrophyarederivedunderthisgeneralconfiguration. Then,wespecializetothecase ofsymmetricstreamfunctiondissipation,whereweassumethatthecorrespondingdissipationoperatorsareidentical layer-by-layer. We willshow thatundersymmetricstreamfunctiondissipation the fluxinequalityis satisfied forall wavenumbersin the inertialanddissipation range. We notethatthis resultis non-trivialsince, beyondestablishing cascadedirections, it also impliesboundson the subdominantdownscaleenergyflux, thataretightenoughto keep theunderlyingdownscaleenergycascadehidden. Forthecaseofthetwo-layerquasi-geostrophicmodelweconsider anasymmetricconfigurationofdissipationtermsandestablishresultsoftheformthatiftheasymmetryissufficiently small, the fluxinequalitywillremainvalid. As waspreviouslyexplained,we limitourselvestoresultsof thisform becausethisisasfarasonecangowithrigorousproofsfromfirstprinciples. From a physical standpoint, asymmetry in the dissipation between the two layers usually originates from the Ekman term, modeling the effect of friction with the surface boundary layer. However, for reasons that will be discussedmoreextensivelyattheconclusionofthispaper, wewillintroduceanadditionalsourceofasymmetryvia thesmall-scaledissipationtermsbyemployinganincreasedviscosityorhyperviscositycoefficientatthebottomlayer relative to the coefficient at the top layer. We believe that this asymmetric small-scale dissipation can facilitate a breakdownofthefluxinequality,therebyallowingthedownscaleenergyfluxratetobesufficientlystrongtoyieldthe transitiontok−5/3scalingintheinertialrange.Wewillseethatasymmetricsmall-scaledissipationindeedtightensthe boundsontheparameterspacewhereinthefluxinequalityissatisfied. Another aspect of the dissipation term configuration, that will be shown to have significant impact on the flux inequality, concerns the modeling of the Ekman term. In a typical formulation of the two-layer quasi-geostrophic model,itisusuallyassumedthatEkmandissipationisdependentonlyonthestreamfunctionfieldofthebottompo- tentialvorticitylayer. However,analternateformulationofthetwo-layerquasi-geostrophicmodelbySalmon[29], requiresthattheEkmantermatthelowerlayerbedependentonthestreamfunctionfieldsofbothlayers. Toexplain why,onemustrecallthatthetwo-layermodelisanextremeverticaldiscretizationofthefullquasi-geostrophicmodel, whichconsists of a relative vorticityequation, a temperatureequation, and additionalconstrainingconditions. In a 3 generalmulti-layermodel,therelativevorticityequationsarediscretizedinhorizontallayersthatareinterlaced with thediscretizationlayersofthetemperatureequations. Thus,forthecaseofthetwo-layermodelwehavealtogether 5 physically relevant layers: the surface boundary layer corresponding approximately to 1Atm, the lower relative vorticitylayerat0.75Atm,thetemperaturemidlayerat0.5Atm,theupperrelativevorticitylayerat0.25Atm,andthe top boundary layer at 0Atm. The potential vorticity equations are derived from the relative vorticity equations by eliminatingthe temperaturefield fromthe system of equations, thereby placing the potentialvorticity field and the correspondingstreamfunctionfield atthe 0.25Atmand0.75Atmlayers. AsnotedbyRef. [29], the Ekmandissipa- tion term is dependenton the streamfunction field at the surface boundarylayer near 1Atm, which can be linearly extrapolated from the streamfunction field at the lower and upper layer (0.75Atm and 0.25Atm correspondingly). Consequently,eventhoughtheEkmantermisstillplacedonthelower-layer,owingtothelinearextrapolationofthe surfacestreamfunctionfield,itisdependentonthestreamfunctionfieldofboththelowerandupperlayers. It should be noted that for physical reasons, the potential vorticity layers need to remain fixed at 0.25Atm and 0.75Atm respectively. This correspondsto the physical assumption that the two fluid layers have equal thickness, whichisanecessaryassumptionforatmosphericmodeling[30]. ThesurfacelayerdrivingEkmandissipation,onthe otherhand, can be placed anywherebetween the surface layer at 1Atm and the lower streamfunctionfield layer at 0.75Atm. Whenthesurfacelayerandthelowerstreamfunctionlayercoincide,thiscorrespondstotheusualstandard Ekmanterm. When the two layersdo not coincide, itcorrespondsto the moregeneralcase of extrapolatedEkman dissipation.Forthepresentpaper,weretaingeneralitybyparameterizingtheplacementofthesurfaceboundarylayer viaanadjustableparameterµ,andshowthatourmainpropositionsarevalidfortheentire rangeoftheparameterµ. Wewillseethatanincreasingseparationbetweenthesurfacelayerandthebottompotentialvorticitylayertightensthe boundsontheparameterspacewhereinthefluxinequalityissatisfied. Foroceanographicmodeling,aswellasforthe purposeofsatisfyingbasicscientificcuriosity,itwouldbeinterestingtoconsidertwo-layerquasi-geostrophicmodels withlayershavingunequalthickness. Duetomathematicalcomplications,wewillnotpursuethisgeneralizationin the present paper. Nevertheless, the importance of symmetric vs. asymmetric Ekman dissipation in the context of oceanographicmodellingisarelevantproblemthathasbeeninvestigatedbyapreviousstudy[31]. Admittedly, both Salmon’s idea of extrapolated Ekman dissipation and my idea of differential small-scale dis- sipation can be considered controversial. On the other hand, in the context of investigating the flux inequality, it is importantto be thoroughaboutconsideringeveryinterestingconfigurationof the dissipation terms, to determine how much impact various choices of dissipation term configurations have on the robustness of the flux inequality. Furthermore,aswillbecomeapparentfromtheresultsofthispaper,thedissipationconfigurationsexploredhereare goodcandidatesforadissipationfilterthatcouldviolatethefluxinequalityandensureacontrolleddownscaleenergy dissipationrateinnumericalsimulationsthatexceedstherestrictionsthataretypicalintwo-dimensionalturbulence. The paperis organizedasfollows. Insection 2 we givethegoverningequationsforthe generalizedmulti-layer model and discuss its conservation laws, the definition of the energy spectrum E(k), potential enstrophy spectrum G(k), and theirrelationshipvia the streamfunctionspectrum C (k). In section 3, aftera brief recapitulationof the αβ flux inequality for the simple case of two-dimensional Navier-Stokes turbulence, we establish the flux inequality forageneralizedmulti-layerquasi-geostrophicmodelundersymmetricstreamfunctiondissipation. Insection4,we considerasymmetricdissipationconfigurationsforthespecialcaseofatwo-layerquasi-geostrophicmodel,wherewe derivevarioussufficientconditionsforsatisfyingthefluxinequality. Conclusionsandabriefdiscussionaregivenin section5. 2. Thegeneralizedmultilayermodelandconservationlaws Following my previous paper [20], we write the governing equations for the generalized multi-layer model in matrixform: ∂q α +J(ψ ,q )=d + f , (3) α α α α ∂t d = D ψ . (4) α αβ β Xβ Hereψ representsthestreamfunctionattheα-layer,q representsthepotentialvorticityattheα-layer,D isalinear α α αβ operatorencapsulatingthedissipationterms,and f istheforcingtermactingontheα-layer. Theindexαtakesthe α 4 valuesα=1,2,...,nrepresentingthelayernumber,foramodelinvolvingnlayers. Sumsoverindices,suchasinthe sumovertheindexβinthedissipationtermsabove,areassumedtorunoveralllayers1,2,...,n,unlessweindicate otherwise.Itisalsoassumedthatthestreamfunctionψ andthepotentialvorticityq arerelatedviaalinearoperator α α L accordingto: αβ q (x,t)= L ψ (x,t). (5) α αβ β Xβ The above equations encompass both the two-layer quasi-geostrophic model and the multilayer quasi-geostrophic model,ontheassumptionthatweneglecttheβ-effect,arisingfromthelatitudinaldependenceoftheCoriolispseud- oforce. This is a reasonableassumptionforEarth, especially if we restrictourinterestto a thin strip of the Earth’s surface,orientedparalleltotheequator. Baroclinicityinstabilityisaccountedforbytheforcingterm f ,andimplicit α intheentireargumentistheassumptionthatitforcesthesystematlargescalesonly.Thisassumption,originallypro- posedbySalmon[29,32],istheonlyphysicalassumptionimplicitinthetheoreticalframeworkofthefluxinequality, andithasbeencorroboratednumerically[13,33]. For the sake of simplifying our analysis, we assume that all fields are defined in an infinite two-dimensional domain.ThenwecanwritetheFourierexpansionsforthestreamfunctionψandthepotentialvorticityqasfollows: ψ (x,t)= ψˆ (k,t)exp(ik·x)dk, (6) α α ZR2 q (x,t)= qˆ (k,t)exp(ik·x)dk. (7) α α ZR2 WeassumethattheoperatorL isdiagonalinFourierspace.Thismeansthattherelationbetweenthestreamfunction αβ andthepotentialvorticity,inFourierspace,reads: qˆ (k,t)= L (kkk)ψˆ (k,t). (8) α αβ α Xβ Here kkk represents the 2-norm of the vector k. We also assume that L is symmetric with L = L . This αβ αβ βα impliesthatL (k) = L (k)forallwavenumbersk. Forquasi-geostrophicmodels,thematrix L (k)isnon-singular αβ βα αβ for all wavenumbers k > 0, due to being diagonally dominant, and we assume that to be the case in our abstract formulationgivenabove.Consequently,thereisaninversematrixL−1(k)whichdefinestheinverseoperatorL−1. To αβ αβ accommodateapossiblesingularityatk=0weassumethatatwavenumberk =0,inFourierspace,thecorresponding field component is 0 for all fields. This is equivalent to subtracting the mean field and considering only the field fluctuationaroundthemean. 2.1. Conservationlaws We will now show that the generalizedlayermodel, in the absenceof dissipation, conservesthe total energy E andthetotalpotentialenstrophyG underverygeneralconditionsontheoperator L , Foranyarbitraryscalarfield αβ f(x,y)wewritethecorrespondingvolumeintegralusingthefollowingnotation: hhfii= f(x,y)dxdy. (9) ZZR2 We definethetotalenergy E overalllayers, andthelayer-by-layertotalpotentialenstrophyG forlayer α, as E = α − hhψ q ii andG = hhq2ii. The purposeof the minussign in ourdefinitionof the total energy E is to maintain α α α α α coPnsistencywiththenotationandsignconventionsusedbymypreviouspaper[20]. Specifically,wewillshowthat thepotentialenstrophyisconservedonalayer-by-layerbasisunconditionallyregardlessofthedetailsoftheoperator L .ConservationofthetotalenergyE,overalllayers,ontheotherhand,requiresthattheoperatorL besymmetric αβ αβ andself-adjoint. Bysymmetricwemeanthattheoperatorsatisfies L = L . To definethe self-adjointproperty, αβ βα consider two arbitrary two-dimensional scalar fields f(x,y) and g(x,y). We require that every component of the operatorL mustsatisfyhhf(L g)ii = hh(L f)giiforanytwofields f(x,y)andg(x,y). Thisself-adjointproperty, αβ αβ αβ 5 so defined, follows as an immediate consequence of our previous assumption that the operator L is diagonal in αβ Fourierspace.Intheproofgivenbelow,however,thereisnoneedtousethestrongerassumptionofdiagonality. The proof is based on the following properties of the nonlinear Jacobian term. If a(x,y) and b(x,y) are two- dimensionalscalarfieldsthatsatisfyahomogeneous(DirichletorNeumann)boundarycondition,thenwecanshow thathhJ(a,b)ii=0,usingintegrationbyparts. Then,wenotethat,asanimmediateconsequenceoftheproductruleof differentiation,giventhreetwo-dimensionalscalarfieldsa(x,y),b(x,y),andc(x,y)wehave hhJ(ab,c)ii=hhaJ(b,c)ii+hhbJ(a,c)ii=0, (10) fromwhichweobtaintheidentity hhaJ(b,c)ii=hhbJ(c,a)ii=hhcJ(a,b)ii. (11) Now,letusgoaheadanddropthedissipationandforcingtermsandwritethetime-derivativeofthepotentialvorticity q asq˙ =−J(ψ ,q ). Then,thetimederivativeofthestreamfunctionψ reads: α α α α α ψ˙ = L−1q˙ =− L−1J(ψ ,q ). (12) α αβ β αβ β β Xβ Xβ Differentiating the total potential enstrophy G for the α layer with respect to time and employing the identity α givenbyEq.(11)immediatelygives: G˙ =2hhq q˙ ii=−2hhq J(ψ ,q )ii=−2hhψ J(q ,q )ii=0. (13) α α α α α α α α α Here,wenotethatfromthedefinitionoftheJacobian J(q ,q ) = 0. Thisestablishesthelayer-by-layerconservation α α law of potential enstrophy, unconditionally, as claimed. To show the energy conservationlaw, we differentiate the totalenergyE withrespecttotimeandobtain: E˙ =−(d/dt) hhψ q ii=− hhψ˙ q ii− hhψ q˙ ii (14) α α α α α α Xα Xα Xα = hhq L−1J(ψ ,q )ii+ hhψ J(ψ ,q )ii (15) α αβ β β α α α Xαβ Xα = hhJ(ψ ,q )L−1q ii+ hhq J(ψ ,ψ )ii (16) β β αβ α α α α Xαβ Xα = hhJ(ψ ,q )L−1q ii= hhJ(ψ ,q )ψ ii (17) β β βα α β β β Xαβ Xβ = hhJ(ψ ,ψ )q ii=0. (18) β β β Xβ Note that the self-adjoint property is applied at Eq. (16), and the symmetric property is applied at Eq. (17). This concludestheproof. 2.2. Definitionofspectra FollowingFrisch[34],wedefinespectrafortheenergyandpotentialenstrophyusingthebracketnotationintro- duced in my previous paper [20]. Consider, in general, two arbitrary two-dimensional scalar fields a(x) and b(x). Leta<k(x)andb<k(x)bethefieldsobtainedfroma(x)andb(x)bysettingtozero,inFourierspace, thecomponents correspondingtowavenumberswhosenormisgreaterthan k. Formally,a<k(x)isdefinedas H(k−kk k) a<k(x)= dx dk 0 exp(ik ·(x−x ))a(x ), (19) ZR2 0ZR2 0 4π2 0 0 0 withH(x)theHeavisidefunction,definedastheintegralofadeltafunction: 1, ifif x∈(0,+∞) x H(x)= δ(τ)dτ= 1/2, ifif x=0 . (20) Z0  0, ifif x∈(−∞,0)  6 Obviously,b<k(x)isdefinedsimilarly.Wenowusethetwofilteredfieldsa<k(x)andb<k(x)todefinethebracketha,bi k as: d ha,bi = dx a<k(x)b<k(x) (21) k dk ZR2 D E 1 = dΩ(A) [aˆ∗(kAe)bˆ(kAe)+aˆ(kAe)bˆ∗(kAe)] . (22) 2ZA∈SO(2) D E Here,aˆ(k)andbˆ(k)aretheFouriertransformsofa(x)andb(x),SO(2)isthesetofallnon-reflectingrotationmatrices intwodimensions,dΩ(A)isthemeasureofasphericalintegral,eisatwo-dimensionalunitvector,andh·irepresents takinganensembleaverage. Thestarsuperscriptrepresentstakingthecomplexconjugate. NotethatEq.(21)isthe definitionof the bracket, and Eq. (22) followsfrom Eq. (21) as a consequence. The bracketsatisfies the following properties: ha,bi =hb,ai , (23) k k ha,b+ci =ha,bi +ha,ci , (24) k k k ha+b,ci =ha,ci +hb,ci . (25) k k k Moreover,every(αβ)-componentoftheoperatorL isself-adjointwithrespecttothebracket,whichgives αβ L a,b = a,L b = L (k)ha,bi , (26) αβ αβ αβ k k k D E D E andthesamepropertyisalsosatisfiedbyeverycomponentoftheinverseoperatorL−1: αβ L−1a,b = a,L−1b = L−1(k)ha,bi . (27) αβ k αβ k αβ k D E D E Using the bracket, we define the energyspectrum E(k) = − hψ ,q i , and we also define the layer-by-layer α α α k potentialenstrophyspectrumGα(k) = hqα,qαik andthetotalpotePntialenstrophyspectrumG(k) = αGα(k). Unlike the case of two-dimensional Navier-Stokes, where the enstrophy and energy spectra G(k) and E(Pk) are related via a simple equation,G(k) = k2E(k), in the generalizedlayermodel, the potentialenstrophyspectrumand the energy spectrumarerelatedindirectly,asshownbelow: DefinethestreamfunctionspectrumC (k)= ψ ,ψ . Then,viathepropertiesofthebracketabove,theenergy αβ α β k spectrumE(k)reads D E E(k)=− hψ ,q i =− ψ , L ψ =− L (k) ψ ,ψ (28) α α k * α αβ β+ αβ α β k Xα Xα Xβ k Xαβ D E =− L (k)C (k), (29) αβ αβ Xαβ andthepotentialenstrophyspectrumG (k)reads α G(k)= hq ,q i = L ψ , L ψ (30) α α k * αβ β αγ γ+ Xα Xα Xβ Xγ k = L (k) ψ , L ψ = L (k)L (k) ψ ,ψ (31) αβ β αγ γ αβ αγ β γ * + k Xαβ Xγ k Xαβγ D E = L (k)L (k)C (k). (32) αβ αγ βγ Xαβγ Thus,theyarerelatedonlyindirectlyviathestreamfunctionspectrumC (k). αβ We note that for α , β, C (k) may take positive or negative values. For the case α = β we define U (k) = αβ α hψ ,ψ i ,whichisalwayspositive(i.e.,U (k) ≥ 0). Thenwenotethat2|C (k)| ≤ U (k)+U (k). We canusethis α α k α αβ α β inequalitytoshowthatifthematrixL (k)satisfiesthediagonaldominancecondition αβ L (k)≥0, forα,β, (33) αβ 7 L (k)≤0, (34) αβ Xβ then the energy spectrum E(k) is always positive. We give the proof in Appendix A. Both the two-layer quasi- geostrophic model and the multi-layer quasi-geostrophicmodel satisfy this diagonal dominance condition. As for thelayer-by-layerpotentialenstrophyspectra G (k), it isimmediatelyobviousthattheyare unconditionallyalways α positive,regardlessoftheformofthematrix L (k),sincebydefinitionG (k)=hq ,q i . αβ α α α k 3. Fluxinequalityforthen-layermodel We now turn to the main issue of identifying sufficient conditions for satisfying the flux inequality k2Π (k)− E Π (k) ≤ 0forquasi-geostrophicmodels. LetusrecallthattheenergyfluxspectrumΠ (k)isdefinedastheamount G E ofenergytransferredfromthe(0,k)intervaltothe(k,+∞)intervalperunittimeandperunitvolume. Likewise,the potentialenstrophyfluxspectrumΠ (k)istheamountofpotentialenstrophytransferredfromthe(0,k)intervaltothe G (k,+∞)interval,againperunittimeandvolume.Assumingaforced-dissipativeconfigurationatsteadystateandthat thewavenumberkisnotintheforcingrange,theenergyandpotentialenstrophytransferredintothe(k,+∞)interval eventuallyaredissipatedsomewhereinthatinterval.ItfollowsthatwemaywritethefluxspectraΠ (k)andΠ (k)as E G integralsoftheenergyandpotentialenstrophydissipationratespectraD (k)andD (k): E G +∞ Π (k)= D (q)dq, (35) E E Z k +∞ Π (k)= D (q)dq, (36) G G Z k whichimpliesthat +∞ +∞ k2Π (k)−Π (k)= [k2D (q)−D (q)]dq= ∆(k,q)dq. (37) E G E G Z Z k k Weseethatasufficientconditionforestablishingthefluxinequalityistoshowthat∆(k,q) ≤ 0forallwavenumbers k < q. Itisalsoeasytoseethat∆(k,q)> 0forallwavenumbersk < k < qissufficientforestablishingtheviolation t ofthefluxinequalityforallwavenumbersk>k. t Forthecaseoftwo-dimensionalNavier-Stokesturbulence,thedissipationratespectraD (k)andD (k)arerelated E G viaD (k)= k2D (k). Thisimmediatelygives∆(k,q)= k2D (q)−D (q)= (k2−q2)D (q)≤0forallwavenumbers G E E G E k < q(sinceD (k) ≥ 0),whichinturngivesthefluxinequalityk2Π (k)−Π (k) ≤ 0. Thephysicalinterpretationof E E G thisinequalityisthatwhenwestretchtheseparationofscalesinthedownscalerange,theenergydissipationrateat small-scalesvanishesrapidly. Asaresult,mostoftheinjectedenergycannotcascadedownscalealthough,asnoted previously[10,11],asmallamountofenergyisabletodoso. Aswehaveseenintheprevioussection,forthecase ofquasi-geostrophicmodels,theenergyandpotentialenstrophydissipationratespectranolongerhaveadirectand simplerelationwitheachother,sothevalidityofthefluxinequalityneedstobecarefullyre-examined. Forthegeneralmulti-layerquasi-geostrophicmodel,therelationshipbetweenthepotentialvorticitiesq andthe α streamfunctionsψ isgivenby α q =∇2ψ +µ k2(ψ −ψ ), 1 1 1 R 2 1 qα =∇2ψα−λαkR2(ψα−ψα−1)+µαkR2(ψα+1−ψα), for1<α<n, q =∇2ψ −λ k2(ψ −ψ ). n n n R n n−1 Here,k istheRossbywavenumberandλ andµ arethenon-dimensionalFroudenumbers,givenby R α α 1h ρ −ρ λ = 1 2 1 , for1<α≤n, α 2h ρ −ρ α α α−1 1h ρ −ρ µ = 1 2 1 , for1≤α<n, α 2hαρα+1−ρα 8 withρ theaveragedensityoflayerα,andh theaverageheightoflayerα(inpressurecoordinates).Thedefinitionof α α thenon-dimensionalFroudenumberswasadjustedwitha1/2numericalfactor,fromtheonegivenbyEvensen[35], toensureagreementwiththeformulationofthetwo-layerquasi-geostrophicmodelgivenbySalmon[29]forthecase n=2. ThecomponentsofthecorrespondingmatrixL (k)aregivenby αβ −k2−µ k2, ifα=1 1 R Lαα(k)= −k2−(λα+µα)kR2, if1<α<n  −k2−λnkR2, ifα=n, Lα,α+1(k)=µαkR2, for1≤α<n, L (k)=λ k2, for1<α≤n. α,α−1 α R Inthepresentpaperwelimitourselvestothespecialcaseof asymmetricallycoupledmulti-layerquasi-geostrophic model,wherewe assume thatthe layerthickness h isthe same foralllayers, therebyyieldinga symmetricmatrix α Lαβ(k)suchthatLα,α+1(k)= Lα+1,α(k)forall1≤α<n. Toconsiderthefluxinequalityforthisgeneral n-layermodel,webeginwith writingthedissipationrates D (k) E andD (k)fortheenergyandpotentialenstrophyintermsofthestreamfunctionspectrumC (k). Weassumethatthe G αβ dissipationoperationD isdiagonalinFourierspaceandthatthe Fourierexpansionofthedissipationterm D ψ αβ αβ β reads: (D ψ )(x,t)= D (kkk)ψˆ (k,t)exp(ik·x)dk. (38) αβ β αβ β ZR2 Then, in Appendix B we show thatthe energydissipationrate spectrum D (k) and the layer-by-layerpotentialen- E strophydissipationratespectraD (k)aregivenby Gα D (k)=2 D (k)C (k), (39) E αβ αβ Xαβ D (k)=−2 L (k)D (k)C (k). (40) Gα αβ αγ βγ Xβγ Notethatinorderforthedissipationtermstobetrulydissipative,thedissipationspectraD (k)andD (k)needtobe E G bothalwayspositiveforallwavenumbersk. Fromthegeneralformoftheaboveequationsthisisnotreadilyobvious. However,forsimplerconfigurationsofthedissipationoperators,theaboveexpressionsforD (k)andD (k)simplify E G considerably, thereby making it possible to establish that they are both always positive. These expressions also underscorethemaindifferencebetweentwo-dimensionalNavier-Stokesturbulenceandquasi-geostrophicturbulence and the reason why the flux inequality becomes a non-trivial problem in the later case. Unlike two-dimensional turbulence,andinspite ofthetwin conservationlawsofenergyandpotentialenstrophy,thedissipationrates D (k) E andD (k)arenolongerrelatedbyanysimplerelationoftheform D (k)=k2D (k). G G E Werestrictourattentiontothecasewherethedissipationoperatorsateverylayerinvolveonlythestreamfunction ofthe correspondinglayer, with noexplicitinterlayerterms. Thiscan be arrangedin termsofa linearoperator D α appliedtothestreamfunctionψ . IfD (k)isthespectrumofthepositive-definiteoperatorD ,thenforthecaseofa α α α dissipationtermd =D ψ ,wehaveD (k)=δ D (k),withδ givenby α α α αβ αβ β αβ 1, ifα=β δ = . (41) αβ ( 0, ifα,β Wedesignatethiscaseasstreamfunction-dissipation.TheD (k)andD (k)simplifyas: E Gα D (k)=2 D (k)C (k)=2 δ D (k)C (k)=2 D (k)C (k)=2 D (k)U (k), (42) E αβ αβ αβ β αβ α αα α α Xαβ Xαβ Xα Xα D (k)=−2 L (k)D (k)C (k)=−2 L (k)δ D (k)C (k)=−2 L (k)D (k)C (k). (43) Gα αβ αγ βγ αβ αγ γ βγ αβ β αβ Xβγ Xβγ Xβ 9 Note that for D (k) ≥ 0, it follows that D (k) ≥ 0, but it is not obvious that the same result extends to D (k). α E Gα However,ifwefurtherassumethatthesameoperatorisusedforalllayers,i.e. D (k)= D(k),thenwehavethemore α specialized case of symmetric streamfunction-dissipation, and the dissipation rate spectra D (k) and D (k) can be E G simplifiedfurthertogive: D (k)=2 D (k)U (k)=2D(k) U (k)=2D(k)U(k), (44) E α α α Xα Xα D (k)= D (k)=−2 L (k)D (k)C (k)=2D(k) − L (k)C (k) =2D(k)E(k). (45) G Gα αβ β αβ  αβ αβ  Xα Xαβ  Xαβ  Now,D(k)≥0impliesbothD (k)≥0andD (k)≥0. E G Itfollowsthat,undersymmetricstreamfunctiondissipation,∆(k,q)isgivenby ∆(k,q)=k2D (q)−D (q)=k2D(q)U(q)−D(q)E(q)= D(q)[k2U(q)−E(q)], (46) E G andsinceD(q)≥ 0,thevalidityofthefluxinequalityisdependentonthesignofthefactork2U(q)−E(q). Thatsign isinturnintimatelyrelatedwiththeexpressionγ (k,q)definedas: α γ (k,q)=k2+ L (q). (47) α αβ Xβ Notethatforthecaseoftwo-dimensionalNavier-Stokes,L(q)becomesa1×1matrixwithL (q)=q2,thusγ (k,q)= 11 α k2−q2,whichisnegativewhenk<q. Formoregeneralizedn-layerquasi-geostrophicmodels,theexpressionγ (k,q) α continuestobegivenbyγ (k,q) = k2−q2 whichremainsnegativewhenk < qforalllayersα. We willnowshow α that: Proposition1. Inageneralizedn-layermodel,undersymmetric streamfunctiondissipationd = +Dψ withspec- α α trumD(k)≥0,weassumethatL (q)≥0whenα,β,andL (q)= L (q),andγ (k,q)≤0whenk<qforallα. It αβ αβ βα α followsthat: ∆(k,q)≤ D(q) γ (k,q)U (q)≤0. α α Xα Proof. WebeginbyrecallingfromAppendix A,thatE(q)canberewrittenas 1 E(q)=− L (q)U (q)− L (q)[2C (q)−U (q)−U (q)]. (48) αβ α αβ αβ α β 2 Xαβ Xαβ α,β Itfollowsthatk2U(q)−E(q)satisfies: 1 k2U(q)−E(q)=k2 U (q)+ L (q)U (q)+ L (q)[2C (q)−U (q)−U (q)] (49) α αβ α αβ αβ α β 2 Xα Xαβ Xαβ α,β ≤k2 U (q)+ L (q)U (q)= k2+ L (q) U (q) (50) α αβ α αβ α Xα Xαβ Xα (cid:18) Xβ (cid:19) = γ (k,q)U (q). (51) α α Xα TheinequalityusestheassumptionL (q)≥0combinedwiththetriangleinequality2C (q)≤U (q)+U (q)ofthe αβ αβ α β streamfunctionspectra. Itfollowsthat ∆(k,q)= D(q)[k2U(q)−E(q)]≤ D(q) γ (k,q)U (q)≤0, (52) α α Xα sinceD(q)≥0,U (q)≥0,andγ (k,q)≤0,therebyconcludingtheproof. α α 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.