ebook img

Ends, fundamental tones, and capacities of minimal submanifolds via extrinsic comparison theory PDF

0.9 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ends, fundamental tones, and capacities of minimal submanifolds via extrinsic comparison theory

ENDS, FUNDAMENTAL TONES, AND CAPACITIES OF MINIMAL SUBMANIFOLDS VIA EXTRINSIC COMPARISON THEORY VICENTGIMENOANDS.MARKVORSEN ABSTRACT. Westudythevolumeofextrinsicballsandthecapacityofextrinsicannuli in minimal submanifolds which are properly immersed with controlled radial sectional curvaturesintoanambientmanifoldwithapole. Thekeyresultsareconcernedwiththe comparisonofthosevolumesandcapacitieswiththecorrespondingentitiesinarotation- 4 allysymmetricmodelmanifold. Usingtheasymptoticbehaviorofthevolumesandca- 1 pacitieswethenobtainupperboundsforthenumberofendsaswellasestimatesforthe 0 fundamentaltoneofthesubmanifoldsinquestion. 2 n a J 1. INTRODUCTION 7 Let M be a completenon-compact Riemannian manifold. Let K ⊂ M be a compact ] set with non-empty interior and smooth boundary. We denote by E (M) the number of G K connected components E ,··· ,E of M \K with non-compact closure. Then M D 1 EK(M) hasE (M)ends{E }EK(M)withrespecttoK(seee.g.[GSC09]),andtheglobalnumber . K i i=1 h ofendsE(M)isgivenby t a (1.1) E(M)= sup E (M) , K m K⊂M [ whereK rangesonthecompactsetsofM withnon-emptyinteriorandsmoothboundary. The number of ends of a manifold can be bounded by geometric restrictions. For ex- 1 ample, in the particular setting of an m−dimensional minimal submanifold P which is v 9 properlyimmersedintoEuclideanspaceRn,thenumberofendsE(P)isknowntobere- 2 latedtotheextrinsicpropertiesoftheimmersion.Indeed,V.G.Tkachevprovedin[Tka94, 3 Theorem 2] (see also [Che95]) that for any properly immersed m−dimensional minimal 1 submanifold P in Rn with finite volume growth V (P) < ∞ the number of ends is . w0 1 boundedfromaboveby 0 4 (1.2) E(P)≤CmVw0(P) , 1 whereC =1(C =2mintheoriginal[Tka94])andthevolumegrowthV (P)is : m m w0 v Vol(cid:0)P ∩BRn(o)(cid:1) i (1.3) V (P)= lim R . X w0 R→∞ Vol(cid:0)BRm(o)(cid:1) R r a HereVol(cid:0)BRm(o)(cid:1)isthevolumeofageodesicballBRm(o)ofradiusRcenteredatoin R R Rm.Theinequality(1.2)thusshowsasignificantrelationbetweenthenumberofends(i.e. atopologicalproperty)andthebehaviorofaquotientofvolumes(i.e. ametricproperty). MotivatedbyTkachev’sapplicationofthevolumequotientappearinginequation(1.3), wewillconsiderthecorrespondingfluxquotientandcapacityquotientoftheminimalsub- manifolds. These quotients are constructed in the same way as indicated by the volume quotient but here we generalize the setting as well as Tkachev’s result to minimal sub- manifolds in more general ambient spaces as alluded to in the abstract. Specifically we assumethattheminimalimmersiongoesintoanambientmanifoldN withapoleandwith 2010MathematicsSubjectClassification. Primary53A,53C. Keywordsandphrases. FirstDirichleteigenvalue,Capacity,Effectiveresistance,Minimalsubmanifolds. WorkpartiallysupportedbyDGIgrantMTM2010-21206-C02-02. 1 2 V.GIMENOANDS.MARKVORSEN sectionalcurvaturesK boundedfromabovebytheradialcurvaturesK ofarotationally N w symmetricmodelspaceMn =R+×Sn−1,withwarpedmetrictensorg constructedus- w 1 Mwn ingapositivewarpingfunctionw :R+ →R+insuchawaythatg =dr2+w(r)2g Mn Sn−1 w 1 isalsobalancedfrombelow(see[MP06]and§3foraprecisedefinitions). Ourgeneralizationofinequality(1.2)isthencethefollowing: Theorem 1.1. Let ϕ : Pm → Nn be a proper minimal and complete immersion into a n−dimensional ambient manifold Nn which possesses a pole o ∈ Nn and its sectional curvaturesK atanypointp ∈ N areboundedbyabovebytheradialcurvaturesK of N w abalancedfrombelowmodelspaceMn w w(cid:48)(cid:48) (1.4) K (p)≤K (r(p))=− (r(p)) . N Mwn w Supposemoreover,thatw(cid:48) >0andthereexistR suchthatK (R)≤0foranyR>R . 0 Mn 0 w Then,thenumberofendsE (P)withrespecttotheextrinsicballD =P ∩BN(o)for DR R R R>R isboundedfromaboveby 0 (cid:32) 2 (cid:33)m(cid:32)(cid:82)tw(s)m−1ds(cid:33) Vol(D ) (1.5) E (P)≤ 0 t , DR 1− R tm/m Vol(Bw) t t foranyt>R. Usingtheabovetheoremwecanestimatetheglobalnumberofendsasfollows: Corollary1.2. Undertheassumptionsoftheorem1.1,supposemoreover (cid:32)(cid:82)tw(s)m−1ds(cid:33) (1.6) limsup 0 =C <∞ , tm/m w t→∞ andsupposealsothatthesubmanifoldhasfinitevolumegrowth,namely Vol(D ) (1.7) Vol (P)= lim t <∞ . w t→∞Vol(Bw) t Then (1.8) E(P)≤2mC Vol (P) . w w Remarka. Ifwechoosew(t) = w (t) = t,themodelspacebecomesRm,whichisbal- 0 ancedfrombelow,andthehypothesisoftheorem1.1arethereforeautomaticallyfulfilled foranycompleteminimalsubmanifoldproperlyimmersedinaCartan-Hadamardambient manifold. Inequality(1.5)becomes (cid:32) (cid:33)m 2 Vol(D ) (1.9) E (P)≤ t , DR 1− R V tm t m ForanyR>0andanyt>R,beingV thevolumeofageodesicballofradius1inRm. m Frominequality(1.6)weget (1.10) C =1 . w0 Thusinequality(1.8)becomes Vol(D ) (1.11) E(P)≤2m lim t , t→∞ Vmtm whichistheoriginalinequalityobtainedbyTkachev(inequality(1.2)),butnowinequality (1.11) is valid for any minimal submanifold properly immersed in a Cartan-Hadamard ambientmanifoldwithfinitevolumegrowth. ENDS,FUNDAMENTALTONES,ANDCAPACITIES 3 FIGURE 1. TwoexamplesofextrinsicannuliinR3: Acatenoidonthe left and the singly periodic Scherk surface on the right. The extrinsic annuliareconstructedbycuttingthesurfaceswithtwospheres(withthe same center but of different radii) in the ambient manifold (R3). The catenoidhastwoendsandfinitetotalcurvature. Hence,bytheorem1.4, the capacity of the extrinsic annulus of the catenoid is greater than the capacity of the corresponding annulus of the Euclidean 2-plane but is smaller than two times that capacity. The same is true for the extrinsic annulusofthesinglyperiodicScherksurface(wereferthereadertothe introductionof[MW07]fortheareagrowthofthesinglyperiodicScherk surface). In[GP12,Che95]arealsoobtainedlowerboundsforthenumberofends,butwenote that those lower bounds seem to need stronger assumptions: Dimension greater than 2, orembeddednessoftheendsandcodimension1,decayonthesecondfundamentalform, andarotationallysymmetricambientmanifold. Asacounterpart,thoselowerboundsare associatedtotheso-calledgaptypetheorems. Combining the results of [GP12, Theorem 3.5] and corollary 1.2, and taking into ac- counttheroleofsectionalcurvaturesofthemodelspace(see[GP12,Proposition2.6])we have Corollary1.3. Letϕ : Pm → Mn beaminimalandproperimmersionintoabalanced w frombelowmodelspaceMn withincreasingwarpingfunctionw satisfyingthefollowing w conditions: (cid:32)(cid:82)tw(s)m−1ds(cid:33) limsup 0 =C <∞ , tm/m w t→∞ thereexistR suchthatforanyR>R (1.12) 0 0  −w(cid:48)(cid:48)(R) ≤0 w(R) 1−(w(cid:48)(R))2  ≤0 w(R)2 Suppose moreover that m > 2, that the center o of Mn satisfies ϕ−1(o ) (cid:54)= ∅ and w w w thatthenormofthesecondfundamentalform(cid:107)BP(cid:107)oftheimmersionisboundedforlarge rby (cid:15)(r) (1.13) (cid:107)BP(cid:107)≤ , w(cid:48)(r)w(r) where(cid:15)isapositivefunctionsuchthat(cid:15)(r)→0whenr →∞. Thenthenumberofendsisboundedfrombelowandfromaboveby (1.14) Vol (P)≤E(P)≤2mC Vol (P) . w w w Byusingourresultsaboutthebehaviorofthecomparisonquotientswecanalsoestimate thecapacityofanextrinsicannulusA = P ∩(cid:0)BN(o)\BN(o)(cid:1)(seefigure1and,§2 ρ,R R ρ and§3foraprecisedefinitionofcapacityandextrinsicannulus): 4 V.GIMENOANDS.MARKVORSEN Theorem1.4. Letϕ : Pm → Rn denoteacompleteandproperminimalimmersioninto theEuclideanspaceRn. Then,foranyR > ρ > 0,thecapacityoftheextrinsicannulus A isboundedby ρ,R Vol(D ) Cap(A ) Vol(D ) (1.15) ρ ≤ ρ,R ≤ R , V ρm Cap(ARm) V Rm m ρ,R m where Cap(ARm) is the capacity of the geodesic annulus ARm in Rm of inner radius ρ ρ,R ρ,R andouterradiusR. Remarkb. Since,fromTheorem2.1,thequotient Vol(Ds) isanon-decreasingfunctionon Vmsm s,wecanstateTheorem1.4inthelimitcase(ρ → 0andR → ∞)andinequality(1.15) therebecomes Cap(A ) Vol(D ) (1.16) 1≤ ρ,R ≤ lim R =V (P) . Cap(ARρ,mR) R→∞ VmRm w0 When we deal with a minimal surface Σ ⊂ R3 which is properly embedded into the EuclideanspaceR3thelimit Vol(Σ∩BR3(o)) (1.17) V (Σ)= lim R w0 R→∞ πR2 iswellunderstood. Forinstance,theabovelimitcorrespondstothenumberofendsifthe surfaceΣhasfinitetotalcurvature. Remarkc. Inordertoboundthecapacityquotient,ourtheoremsdonotmakeuseofthe volume quotient as in Theorem 1.4, but instead they make use of the flux quotient (see Theorems 2.2 and 2.3). In the special case when the ambient manifold is Rn (such as inTheorem1.4)thevolumequotientagreeshoweverwiththefluxquotient(seeequation (6.28)andtheorem6.1). 1.1. Outline of the paper. In §2 we show our main theorems concerning the flux quo- tients, the volume quotients, and the capacity quotients. In §3 we state the preliminary concepts in order to prove the main theorems of §2 in §4. This allows us then to prove Theorem 1.1 and Corollary 1.2 in §5. Finally, in §6, we present several corollaries and examplesofapplicationsoftheextrinsictheoryandresultswhichhavebeenestablishedin §2. 2. EXTRINSICTHEORY: FLUX,CAPACITYANDVOLUMECOMPARISONFOR EXTRINSICBALLS Let (Mn,g) be a Riemannian manifold. For any oriented hypersurface Σ ⊂ M with unitnormalvectorfieldν,wedefinethefluxF (Σ)ofthevectorfieldX throughΣby X (cid:90) (2.1) F (Σ):= (cid:104)X,ν(cid:105)dµ , X Σ Σ wheredµ istheassociatedRiemanniandensitydeterminedbythemetricg =i∗g(being Σ Σ i:Σ→M theinclusionmap). By the divergence theorem (see [Cha93] for instance), if one has an oriented domain Ω in M with smooth boundary ∂Ω, and the vector field X is C1 in Ω and with compact supportinΩ,thefluxofX through∂ΩisrelatedtothedivergenceofX by (cid:90) (cid:90) (2.2) divXdµ= (cid:104)X,ν(cid:105)dµ =F (∂Ω) . ∂Ω X Ω ∂Ω Given a smooth function u : M → R, we can also define the flux of a function u, but then the flux J (t) is the flux of the gradient ∇u (i.e. the metric dual vector to du, u du(X)=(cid:104)∇u,X(cid:105))throughthelevelsetΣu :={x∈M|u(x)=t}sothat: t ENDS,FUNDAMENTALTONES,ANDCAPACITIES 5 (2.3) J (t):=F (Σu) . u ∇u t Takingintoaccountthattheunitnormalvectorfieldν ofΣu isν = ∇u ,itiseasyto t |∇u| seethat (cid:90) (2.4) Ju(t)= |∇u|dµΣu . t Σt Observe moreover, that by the Sard theorem and by the regular set theorem we need nofurtherrestrictionsonthesmoothnessofΣu andonthesmoothnessoftheunitnormal t vectorfieldν. The overall goal of this work is to characterize the isoperimetric inequalities for ex- trinsic balls, and the capacity of minimal submanifolds in terms of the flux of extrinsic distancefunctions. Actuallyweareinterestedonthefluxoftheextrinsicdistancefunction on minimal submanifolds in an ambient manifold N which possesses a pole and has the radial curvatures bounded form above by the radial curvatures of rotationally symmetric modelspaceK ≤ K = −w(cid:48)(cid:48),see[MP06]orsection3ofthispaperforprecisedef- N Mwn w initions. Itisthebehaviorofthisparticularfluxthatallowsustostudythemeanexittime function,thecapacity,theconformaltype,thefundamentaltone,andinspecialcasesalso thenumberofendsofthesubmanifold. 2.1. Fluxandvolumecomparison: isoperimetricinequalitiesandthemeanexittime function. Givenanisometricimmersionϕ:P →(N,o)intoamanifoldwithapoleo∈ N, thefluxJ oftheextrinsicdistancefunctionr (i.e., therestrictionbytheimmersion r o oftheambientdistancefunctiontothesubmanifold)isgivenby (cid:90) J (R)= |∇Pr |dµ , r o ∂DR where ∂D is the level set ∂D = r−1(R), and therefore, D = r−1([0,R)) is the R R o R o extrinsicballofradiusR. Whentheimmersionisminimalandtheambientmanifoldhasitsradialsectionalcurva- turesK boundedfromabovebytheradialsectionalcurvaturesofarotationallysymmet- N ricmodelspaceMnthatisbalancedfrombelow(see[MP06]andsection3),K ≤K , w N Mwn we can compare the volume quotient Vol(DR) and the flux quotient Jr(R) . The volume Vol(Bw) Jw(R) quotient is the quotient between the volumRe of a extrinsic ball D rof radius R in Pm R andthevolumeofageodesicballBw ofthesameradiusRinMm. Thefluxquotientis R w thequotientbetweenthefluxoftheextrinsicdistanceinPm andthefluxofthegeodesic distanceinMm. Thesetwoquotientsarerelatedbythefollowingtheorem w Theorem2.1. Letϕ : Pm −→ Nn beanisometric,proper,andminimalimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nn withapoleo ∈ N . Letussupposethattheo−radialsectionalcurvaturesofN are boundedfromaboveby w(cid:48)(cid:48)(r) K (σ )≤− (ϕ(x)) ∀x∈P , o,N x w(r) andthemodelspaceMmisbalancedfrombellow. Then w (1) J (R)isrelatedwithVol(D )by r R Vol(D ) J (R) (2.5) R ≤ r . Vol(Bw) Jw(R) R r (2) Thefunctions Vol(DR) and Jr(R) arenondecreasingfunctionsonR. Vol(Bw) Jw(R) R r 6 V.GIMENOANDS.MARKVORSEN (3) DenotingbyEP(x)themeantimeforthefirstexitfromtheextrinsicballD (o) R R foraBrownnianparticlestartingato ∈ Pm,anddenotingbyEw themeanexit R timefunctionfortheR−ballBwinthemodelspaceMm,ifequalityholdsin(2.5) R w forsomefixedradiusR > 0, thenforanyx ∈ D , EP(x) = Ew(r(x)), where R R R r(x)theextrinsicdistancefromotothepointx∈P. 2.2. Capacityandfluxcomparison: conformaltype. GivenacompactsetF ⊂M ina RiemannianmanifoldM andanopensetG⊂M containingF,wecallthecouple(F,G) acapacitor. Eachcapacitorthenhasitscapacitydefinedby (cid:90) (2.6) Cap(F,G):=inf (cid:107)∇u(cid:107)dµ , u G\F wheretheinf istakenoverallLipschitzfunctionsuwithcompactsupportinGsuchthat u=1onF. When G is precompact, the infimum is attained for the function u = Ψ which is the solutionofthefollowingDirichletprobleminG−F:  ∆Ψ=0  (2.7) Ψ| =0 ∂F Ψ| =1 ∂G Fromaphysicalpointofview,thecapacityofthecapacitor(F,G)representsthetotal electriccharge(generatedbytheelectrostaticpotentialΨ)flowingintothedomainG−F throughtheinteriorboundary∂F. Sincethetotalcurrentstemsfromapotentialdifference of 1 between ∂F and ∂G, we get from Ohm’s Law that the effective resistance of the domainG−F is 1 (2.8) R (G−F)= . eff Cap(F,G) Theexactvalueofthecapacityofasetisknownonlyinafewcases,andsoitsestima- tioningeometricaltermsisofgreatinterest,notonlyinelectrostatic,butinmanyphysical descriptionsofflows,fluids,heat,orgenerallywheretheLaplaceoperatorplaysakeyrole, see[CFG05,HPR12]. Givenacapacitor(F,G),ifwehaveasmoothfunctionuwithu=aon∂F andu=b on∂G. Thecapacityandthefluxarethenrelatedby(see[Gri99b]): (cid:32) (cid:33)−1 (cid:90) b ds (2.9) Cap(F,G)≤ . J (s) a u Inthispaperweareinterestedontheo-centeredextrinsicannulusA (o) ⊂ Pm for ρ,R 0<ρ<Rgivenby (2.10) A (o):=D (o)−D (o) . ρ,R R ρ Tobemoreprecise,weareinterestedonthebehaviorofthefluxandthecapacityofthose extrinsicdomains. Inthefollowingtheoremsweprovideupperandlowerboundsforthe capacityquotientintermsofthefluxquotient. Theorem2.2. Letϕ : Pm −→ Nn beanisometric,proper,andminimalimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nn with a pole o ∈ N and satisfying ϕ−1(o) (cid:54)= ∅. Let us suppose that the o−radial sectionalcurvaturesofN areboundedfromaboveby w(cid:48)(cid:48)(r) K (σ )≤− (ϕ(x)) ∀x∈P , o,N x w(r) ENDS,FUNDAMENTALTONES,ANDCAPACITIES 7 andthewarpingfunctionwsatisfies w(cid:48) ≥0 . Then J (ρ) Cap(A ) (2.11) r ≤ ρ,R , Jw(ρ) Cap(Aw ) r ρ,R whereAw istheintrinsicannulusinMm. ρ,R w Theorem2.3. Letϕ : Pm −→ Nn beanisometric,proper,andminimalimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nn withapoleo ∈ N . Letussupposethattheo−radialsectionalcurvaturesofN are boundedfromaboveby w(cid:48)(cid:48)(r) K (σ )≤− (ϕ(x)) ∀x∈P , o,N x w(r) andthemodelspaceMmisbalancedfrombellow. Then w Cap(A ) J (R) (2.12) ρ,R ≤ r , Cap(Aw ) Jw(R) ρ,R r whereAw istheintrinsicannulusinMm. Moreover,ifequalityholdsin(2.12)forsome ρ,R w fixedR>0,thenD isaminimalconeinNn. R Geometric estimates of the capacity are sufficient to obtain large scale consequences suchasastheparabolicorhyperboliccharacterofthemanifold, [Ich82b,Ich82a,MP03, MP05]. Wenoteherethefollowingimportantequivalentconditionsabouttheconformal type: Theorem A. Let (M,g) be a given Riemannian manifold, Then the following conditions areequivalent • ThereisaprecompactopendomainK inM,suchthattheBrownianmotionX t startingfromK doesnotreturntoK withprobability1,i.e. (2.13) P {ω|X (ω)∈K forsomet>0}<1 x t • M haspositivecapacity: ThereexistinM acompactdomainK,suchthat (2.14) Cap(K,M)>0 • M has finite resistance to infinity: There exist in M a compact domain K, such that (2.15) R (M −K)<∞ eff Amanifoldsatisfyingtheconditionsoftheabovetheoremwillbecalledahyperbolic manifold,otherwiseitiscalledaparabolicmanifold. Asaconsequenceoftheabovetheoremwecanstatethefollowingcorollaryforminimal submanifolds: Corollary2.4. Letϕ:Pm −→Nn beanisometric,proper,andminimalimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nn withapoleo ∈ N . Letussupposethattheo−radialsectionalcurvaturesofN are boundedfromaboveby w(cid:48)(cid:48)(r) K (σ )≤− (ϕ(x)) ∀x∈P , o,N x w(r) andthewarpingfunctionwsatisfies w(cid:48) ≥0 . Then 8 V.GIMENOANDS.MARKVORSEN (1) IfMmisahyperbolicmanifold,thenP isahyperbolicmanifold. w (2) Inconsequence,ifP isparabolic,thenMmisalsoparabolic. w Since Jr(R) and Vol(DR) are non-decreasing functions under our hypothesis, we can Jw(R) Vol(Bw) r R define two expressions which are analogous to the projective volume defined by V. G. Tkachevin[Tka94] Definition2.5. Givenϕ:Pm →NnanimmersionintoamanifoldN withapoleo∈N. Thew-fluxFlux (P)andthew-volumeVol (P)ofthesubmanifoldP aredefinedby: w w J (R) Flux (P):= sup r , w Jw(R) R∈R+ r (2.16) Vol(D ) Vol (P):= sup R . w Vol(Bw) R∈R+ R WewillsaythatP hasfinitew−flux(resp. finitew−volume)ifandonlyifFlux (P)< w ∞(orVol (P)<∞). w We refer to theorem 6.1 for the relation between the w−flux and the w−volume of a submanifold. FromtheoremAandtheorem2.3wecannowstatethatforminimalsubmanifoldswith finitew−fluxwehave: Corollary2.6. Letϕ : Pm −→ Nn beanisometric,properandminimalimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nn withapoleo∈Nn. Letussupposethattheo−radialsectionalcurvaturesofNn are boundedfromaboveasfollows w(cid:48)(cid:48)(r) K (σ )≤− (ϕ(x)) ∀x∈P , o,N x w(r) andthatthemodelspaceMmisbalancedfrombelow. SupposemoreoverthatP hasfinite w w−flux. Then (1) IfMmisaparabolicmanifold,thenP isaparabolicmanifold. w (2) IfP isanhyperbolicmanifold,thenMnisanhyperbolicmanifold. w Joiningtheprevioustwocorollariestogetherweget: Corollary2.7. Letϕ : Pm −→ Nn beanisometric,properandminimalimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nnwithapoleo∈Nn. Letussupposethattheo−radialsectionalcurvaturesofNnare boundedfromabove, w(cid:48)(cid:48)(r) K (σ )≤− (ϕ(x)) ∀x∈P , o,N x w(r) thatthewarpingfunctionwsatisfies w(cid:48) ≥0 , andthatthemodelspaceMmisbalancedfrombelow,andthatP hasfinitew−flux. Then w P ishyperbolic(parabolic)ifandonlyifMmishyperbolic(parabolic). w 3. PRELIMINAIRES Weassumethroughoutthepaperthatϕ : Pm −→ Nn isanisometricimmersionofa completenon-compactRiemannianm-manifoldPmintoacompleteRiemannianmanifold Nnwithapoleo∈Nn. Recallthatapoleisapointosuchthattheexponentialmap exp : T Nn →Nn o o isadiffeomorphism. ENDS,FUNDAMENTALTONES,ANDCAPACITIES 9 For every x ∈ Nn −{o} we define r(x) = r (x) = dist (o,x), since o is a pole o N thisdistanceisrealizedbythelengthofauniquegeodesicfromotox,whichistheradial geodesicfromo. Wealsodenotebyr| orbyr thecompositionr◦ϕ : P → R ∪{0}. P + ThiscompositioniscalledtheextrinsicdistancefunctionfromoinPm. WiththeextrinsicdistancewecanconstructtheextrinsicballD (o)ofradiusRcen- R teredatoas D (o):={x∈P :r(ϕ(x))<R} . R Since∂D (o)=Σr,thefluxoftheextrinsicdistancefunctionronP is t t (cid:90) J (t)= |∇Pr|dρ , r ∂Dt wherethegradientsofrinN andr| inP aredenotedby∇Nrand∇Pr,respectively. P Thesetwogradientshavethefollowingbasicrelation,byvirtueoftheidentification,given anypointx∈P,betweenthetangentvectorfieldsX ∈T P andϕ (X)∈T N x ∗x ϕ(x) (3.1) ∇Nr =∇Pr+(∇Nr)⊥, where(∇Nr)⊥(ϕ(x))=∇⊥r(ϕ(x))isperpendiculartoT P forallx∈P. x Wenowpresentthecurvaturerestrictionswhichconstitutethegeometricframeworkof thepresentstudy. Definition3.1. LetobeapointinaRiemannianmanifoldN andletx ∈ N −{o}. The sectionalcurvatureK (σ )ofthetwo-planeσ ∈T N isthencalledao-radialsectional N x x x curvatureofN atxifσ containsthetangentvectortoaminimalgeodesicfromotox. x WedenotethesecurvaturesbyK (σ ). o,N x 3.1. Model spaces. Throughout this paper we shall assume that the ambient manifold Nn has its o-radial sectional curvatures K (x) bounded from above by the expression o,N K (r(x)) = −w(cid:48)(cid:48)(r(x))/w(r(x)), whicharepreciselytheradialsectionalcurvaturesof w thew-modelspace Mm wearegoingtodefine. w Definition3.2(See[O’N83,Gri99a,GW79]). Aw−modelMmisasmoothwarpedprod- w uctwithbaseB1 = [0,Λ[⊂ R(where0 < Λ ≤ ∞), fiberFm−1 = Sm−1 (i.e. theunit 1 (m−1)-spherewithstandardmetric),andwarpingfunctionw: [0,Λ[→ R ∪{0},with + w(0) = 0, w(cid:48)(0) = 1, and w(r) > 0 for all r > 0. The point o = π−1(0), where π w denotestheprojectionontoB1,iscalledthecenterpointofthemodelspace. IfΛ = ∞, theno isapoleofMm. w w Proposition 3.3. The simply connected space forms Km(b) of constant curvature b are w−modelswithwarpingfunctions √ √1 sin( br) ifb>0  b w (r)= r ifb=0 b √ √1 sinh( −br) ifb<0. −b √ Notethatforb>0thefunctionw (r)admitsasmoothextensiontor =π/ b. b Proposition3.4(See[O’N83,GW79,Gri99a]). LetMmbeaw−modelspacewithwarp- w ingfunctionw(r)andcentero . Thedistancesphereofradiusrandcentero inMm is w w w thefiberπ−1(r). Thisdistancespherehastheconstantmeancurvatureη (r)= w(cid:48)(r) On w w(r) theotherhand,theo -radialsectionalcurvaturesofMmateveryx∈π−1(r)(forr >0) w w areallidenticalanddeterminedby w(cid:48)(cid:48)(r) K (σ )=− . ow,Mw x w(r) 10 V.GIMENOANDS.MARKVORSEN Remarkd. Thew−modelspacesarecompletelydeterminedviawbythemeancurvatures ofthesphericalfibersSw: r η (r)=w(cid:48)(r)/w(r) , w bythevolumeofthefiber Vol(Sw) =V wm−1(r) , r 0 andbythevolumeofthecorrespondingball,forwhichthefiberistheboundary (cid:90) r Vol(Bw) = V wm−1(t)dt . r 0 0 HereV denotesthevolumeoftheunitsphereS0,m−1, (wedenoteingeneralasSb,m−1 0 1 r thesphereofradiusr intherealspaceformKm(b)). Thelattertwofunctionsdefinethe isoperimetricquotientfunctionasfollows q (r) = Vol(Bw)/Vol(Sw) . w r r Weobservemoreoverthatthefluxofthegeodesicdistancefunctionr fromthecenterto o themodelspaceis (cid:90) Jw(R)= |∇r|dσ =Vol(Sw) . r R Sw R Besidesthealreadydefinedcomparisoncontrollersfortheradialsectionalcurvaturesof Nn,weshallneedtwofurtherpurelyintrinsicconditionsonthemodelspaces: Definition3.5. Agivenw−modelspace Mm iscalledbalancedfrombelowandbalanced w fromabove,respectively,ifthefollowingweightedisoperimetricconditionsaresatisfied: Balancefrombelow: q (r)η (r) ≥1/m forall r ≥0 ; w w Balancefromabove: q (r)η (r) ≤1/(m−1) forall r ≥0 . w w Amodelspaceiscalledtotallybalancedifitisbalancedbothfrombelowandfromabove. 3.2. Laplacian comparison for radial functions. Let us recall the expression of the Laplacianonmodelspacesforradialfunctions Proposition3.6(See[O’N83],[GW79]and[Gri99a]). LetMn beamodelspace,denote w byr : Mn−{o } → R+ thegeodesicdistancefromthecentero ,letf : R → Rbea w w w smoothfunction,then (3.2) ∆Mwn(f ◦r)=f(cid:48)(cid:48)◦r+(n−1)(f(cid:48)·ηw)◦r . ApplyingtheHessiancomparisontheoremsgivenin[GW79]wecanobtain(see[MP06] forinstance) Proposition 3.7. Let ϕ : Pm → Nn be an immersion into a manifold N with a pole. Suppose the the radial sectional curvatures K of N are bounded from above by the N radialsectionalcurvaturesofamodelspaceMmasfollows: w w(cid:48)(cid:48) (3.3) K ≤− ◦r . N w Let f : R → R be a smooth function with f(cid:48) ≥ 0, and dennote by r : P → R+ the extrinsicdistancefunction. Then ∆P (f ◦r)≥|∇Pr|(f(cid:48)(cid:48)−f(cid:48)·η )◦r w (3.4) +m(f(cid:48)·η )◦r+m(cid:104)∇Nr,H (cid:105)f(cid:48)◦r , w P whereH denotesthemeancurvaturevectorofP inN. P

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.