31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH 10.1146/annurev.micro.57.030502.090811 Annu.Rev.Microbiol.2004.58:649–90 doi:10.1146/annurev.micro.57.030502.090811 Copyright(cid:1)c 2004byAnnualReviews.Allrightsreserved FirstpublishedonlineasaReviewinAdvanceonJuly14,2004 E A E NDANGERED NTARCTIC NVIRONMENTS Don A. Cowan andLemese Ah Tow DepartmentofBiotechnology,UniversityoftheWesternCape,Bellville7535,CapeTown, SouthAfrica;email:[email protected];[email protected] g or s. KeyWords Antarctica,DryValleys,microbialcommunities,microbialendemism, w viey. climatechange,environmentalimpact,ssurRNA ualree onl ■ Abstract TheAntarcticcontinentharborsarangeofspecializedandsometimes als.annonal us hmiginhelryalloscoaillisz,erdicmhoicrrnoibthiaolgbeinoitcospoeisl.s,Tghleasceiailnacnluddseebaiiocteo,piecse-acsosvoecrieadteldakweisth,tdraenssicluccaetendt ded from arjourn9/05/07. For pers rmtAtihoosoecnkroasespu,,edpranelunivscndiiacrdgtoceieanorotsmnittoahoennenf,drtmhmainyloagpelleelxoycrtfsruhealtemalhiarneetpiestthdry(uy,isehlnooicimggllsuhei.ndcpAreienotlrigblicoiaalmdroleiwecdctirhhtvaeoaedmdrriassapci,ttetiwyeorraneiitnzuflceorutdehmx,ebeewsyse,citadlbhoneiesdoetitelmroomptwpoepostneshruieeattxitropupineoraneinontdflftssuotwacnfthrteuouesomar)e-r. a0 nloon wecanmakeanaccurateassessmentoftheimpactsofenvironmentalchange,human wY intervention,andothernaturalandunnaturalimpositions.Atpresent,itispossibleto 690. DoERSIT monalkyegreenaesroanlapbrleedipcrteiodnicstioonnspoabssoiubtlethcehapnhgyessicianlmefifcercotbsiaolfcloomcaml culnimityatsetrcuhcatunrgee.,Tbhuet 49-NIV consequencesofsomedirecthumanimpacts,suchasphysicaldisruptionofmicrobial 58:6S U soilcommunities,areobviousifnotyetquantitated.Others,suchasthedissemination 4.N ofnonindigenousmicroorganismsintoindigenousmicrobialcommunities,arenotyet 00KI understood. 2P ol. HO MicrobiOHNS CONTENTS nu. Rev. by J ICNOTLRDODDEUSCETRIOTNMI.N.E.R..A.L..S.O.I.L.S................................................................................665501 n A TheAntarcticDryValleys .............................................651 DryValleyMineralsSoils:ThePhysicalandChemicalEnvironment ...........652 ColdDesertMicrobialCommunities .....................................654 SensitivitytoEnvironmentalImpacts ....................................657 LITHICMICROBIALCOMMUNITIES ...................................659 Introduction ........................................................659 ThePhysicalandChemicalEnvironment .................................659 CompositionofLithicCommunities .....................................660 SensitivitytoEnvironmentalImpacts ....................................661 LAKECOMMUNITIES ................................................662 Introduction ........................................................662 ThePhysicalandChemicalEnvironment .................................662 0066-4227/04/1013-0649$14.00 649 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH 650 COWAN (cid:1) AHTOW MicrobialLakeCommunities ..........................................664 WaterColumnCommunities ...........................................665 MicrobialMats ......................................................665 SensitivitytoEnvironmentalImpacts ....................................667 FLOWINGWATERSYSTEMS ..........................................668 Introduction ........................................................668 MicrobialCommunitiesinAquaticSystems ...............................668 SensitivitytoEnvironmentalImpact .....................................670 ICEMICROBIOLOGY .................................................670 Introduction ........................................................670 SeaIce ............................................................671 g or PolarandGlacialIce .................................................671 s. w LakeIce ...........................................................673 e ualrevie only. CSerynosictoivniittyestoHEonlevsiro.n.m.e.n.t.a.l.Im..p.a.c.ts..........................................................................667763 als.annonal us FEILnLtrFodIEuLctDionCO.M..M..U.N..IT.I.E.S........................................................................................667777 ded from arjourn9/05/07. For pers ORITFSnNeehtlneIrlTosfiPidHethuilvOdycisttGMiiyocEnaitcoNlraoEI.nCb.ndi.vSo.iClOr.ooh.IgneL.ymm.Eei..cNn..at..Vla..lEI..RInm..vO..ipN..rao..Mcn..tms..E..eN...nT...t...S....................................................................................................................................................................666667777799997 wnloaY on 0 MSeincsriotbiviiotlyogtoyEonfvOirronnitmhoengteanlicImSpoailcsts.........................................................................668800 0. DoRSIT CONCLUSIONS ......................................................681 69E 49-NIV 58:6S U INTRODUCTION 4.N 00KI 2P ol. HO The Antarctic continent offers a range of extreme climatic conditions that con- MicrobiOHNS sattimtuotsepshoenreicohfuthmeidhiatrys,hleoswtelnivqiuriodnmwaetnetrsaovnaEilaarbtihli.tEy,xatrnedmheisgohfpteemriopdericatuinrcei,dleonwt Rev. by J rcaodnitaitnieonntwreiltahtilvoenlygipnehroiosdpsitaobflecofmorptlheeteddevaerklonpemsseanltlocfobnitorilbougtiecatlocroemndmeurinnigtieths.e u. n We must remember that the concept of an extreme environment is, in part, n A anthropogenic and therefore artificial. The discomforts and difficulties that the mesophilic mammal Homo sapiens experience in Antarctic conditions are not a good yardstick for assessing the success, or otherwise, of microbial existence. Nevertheless, the Antarctic environment does impose real thermodynamic and kineticlimitationsonmicrobialgrowth.Thisisevidentinthathighereukaryotes are restricted to the more northern latitudes (the Antarctic peninsula) and that bothmicrobialbiomasslevelsandspeciesdiversityaresignificantlylowerinthe most extreme ice-free region of Antarctica, the McMurdo Dry Valleys, than in temperateenvironments.However,wheresuitablenichesarefound,microbiallife exists. The presence of liquid water stimulates the most productive and diverse microbialcommunities:inshallowlakemargins,glacialandsnowfieldmeltwater 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH ENDANGEREDANTARCTICENVIRONMENTS 651 TABLE1 ImpactsonAntarcticmicrobialbiotopesandcommunities Source Nature Effect(s) Anthropogenic Movement,transport,physical Physicaldisturbancetosoilsurfaces; activities disseminationofnonindigenous microorganisms Productionofwastematerials Chemicalcontamination/eutrification ofsoilandwatersystems Climatic Temperaturerise Lossofice;increasedmicrobialgrowth; increasedwateravailability g or Temperaturedecrease Increaseinicecover;reducedmicrobial ws. activity;decreasedwateravailability e viy. ElevatedUVradiation Changesinmicrobialdistribution ualree onl als.annonal us streams and “flushes,” and meltwater pools in glacial ice. Elsewhere, microbial aded from arjourn09/05/07. For pers ctsoapofkamlMicingmegahsuntsinyhaniveotcliafterieytslhrasbaeutarinAlelidltnimeyntraeoasrnrrcteoodtinccpdkehemssys,,iisihccnicracocavabrtleialioyacanlkcr.chseoisienmtvriremcodtcuekandi.sfittiEnreanestdaabo,raelaliantphndoictceeevnmbetnieiactwlwrloyiebtehsineainnltshtciheoteimvliienmmttoeiutrnaestixtitiotiteeinarss-l, wnloY on nalimpacts(Table1).ThephysicalfragilityoftheDryValleysoilsandAntarctic DoT peninsular fellfields makes their microbial communities susceptible to physical 690. ERSI andclimaticdeterioration.Theextenttowhichthestructuresofthesecommuni- 49-NIV tiesmightbemodifiedbytheimpactofnonindigenousmicrobialcontamination 58:6S U remains to be evaluated. Others, such as ice, lake, and flush communities, are 4.N obviouslysusceptibletoregionaltemperaturechanges. 200PKI Itisimportanttounderstandtheimmediacy,significance,andultimateconse- ol. HO quence of these natural (climatic) and unnatural (anthropogenic) impacts. How- MicrobiOHNS elovgeirc,athlicsowmiplllebxeitpyoosfsiebalcehohnalbyiwtaht,eannwdtehheawveayaidnewtahiliecdhtuhnedceorsmtamnduinnigtyosftrtuhcetubrioes- Rev. by J andrelationshipsrespondtoenvironmentalchangesandimpositions.Wereview u. the current state of knowledge of the microbiology of major Antarctic habitats n An (seeFigure1forprincipallocations),andconsiderthesemicrobialcommunities inlightofknownandprojectedenvironmentalimpacts. COLDDESERTMINERALSOILS TheAntarcticDryValleys Ice-free regions represent less than 2% of the total land area of the Antarctic continent(35).TheMcMurdoDryValleysofEasternAntarcticacomprisemuch ofthetotalice-freeland,althoughice-freeregionsarealsofoundintheVestfold Hills, the Bunger Hills, and at various sites in the Transantarctic mountains and 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH 652 COWAN (cid:1) AHTOW g or s. w e viy. ualree onl als.annonal us ded from arjourn9/05/07. For pers a0 nloon DowTY Figure 1 Continental Antarctica, showing the most important sites for terrestrial 0. RSI microbiologicalresearch. 69E 49-NIV 4.58:6NS U oEnartthheaAndnteaxrcpteicriePnecneinasuvlaar.ieTtyheoDfhryarVshalelenyvsiraornemtheentcaollcdoenstdiatniodndsr(ieTsatbdlees2e)r.tsTohne 00KI extremelylowtemperatures,lowprecipitation,lowhumidities,highsaltcontent, 2P ol. HO katabaticwinds,steepphysicalandchemicalgradientsintheterrestrialhabitats, MicrobiOHNS asunrdvliovwalo(7rg4a,n1i6c5m).attercontentimposemajorlimitationsonmicrobialgrowthand Rev. by J TheMcMurdoDryValleysarenothomogeneoussystems.Theyofferarange u. of widely differing microbial biotopes that includes lakes (both freshwater and n n saline), freshwater streams, and at least two types of soil, moist soils that are A exposedtoglacialmeltwateranddesiccatedmineralsoils(153). DryValleyMineralSoils:ThePhysicaland ChemicalEnvironment DryValleymineralsoilsarethemostbarrensoilsofthesnow-freeregionsofthe Antarctic continent (Figure 2). The upper horizon of mineral soils typically has a low water content (0.5%–2% wt) due to the low level of precipitation and ex- posuretothedesiccatingatmosphere.Lowhumidity(<10%RHinwinter),low precipitationandstrongkatabaticwinds(especiallyduringwinter)resultinlong periods of desiccation (74). The mean annual precipitation of 15 g cm−2 year−1 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH ENDANGEREDANTARCTICENVIRONMENTS 653 TABLE2 EcologicalfactorsinAntarcticcolddeserts(reproducedfromReference165with permission) Favorableconditions Unfavorableconditions North-southorientationofvalley(across East-westorientationofvalley(along katabaticwinddirection) katabaticwinddirection) Northernexposure Southernexposure Gentlenorth-facingslope Flatorsouth-facingslope Highsolarradiation Low,sporadicsolarradiation g Microclimateabovefreezing Microclimatebelowfreezing or ws. Absenceofwind Highwinds e ualrevie only. NHoigrhthheurlmyiwdiitnidess LSoouwthheurmlyidwiitniedss als.annonal us Sloworimpededdrainage Rapiddrainage ded from arjourn9/05/07. For pers LTNAreopannpngsrstoalhulxytciymedsnuaottrieapllsteyi,bobnbnaelleouasftnraacvleadpiHliaobnliecwcoamterposition SSHOahiplgoathyrqtu(sdoeouriprllaseo,tbwiuobn)nlebposaHflaanvcaeidlabioleniwcactoemrposition nloaon 0 Organiccontamination(e.g.,skuas,seals) Noorganiccontamination wY DoT 0. RSI 58:649-69S UNIVE imhsoiredinizttoyir,ne.mlyucinhothfethfeorsmnowofssunbolwim.eHsowwitehvelirt,tlbeemcaouisseturoefptheneeltorawtinagtmthoespuhpepreicrshoui-l 4.N 00KI Acementedpermafrostlayerispresentatthebaseofthemineralsoilprofile(as 2P ol. HO littleasafewcentimetersbelowthesoilsurface)(Figure3).Despitethepresence MicrobiOHNS omfatfhreospteirnmtearffraocset(laoyweirn,gintsouftfihecisetnetelpiqdueisdicwcaatteiornisgorabdtaieinnet)dtforosmuptphoertmceoltnesdispteenr-t Rev. by J micTrhoebiDalrygrVoawlltehyisnotfhAenstuarrfcatciceaseoxilpse(r1ie6n4c)e.extremelylowtemperatures,themean nu. annualairtemperaturerangingfrom–20to–25◦C(164).Insummer,themeanair n A temperatureis∼0◦C,whilesurfacegroundtemperaturesaveragearound+15◦C duringperiodsofdirectsunlight.Prolongedperiodsofextremelylowtemperatures (−55◦C) prevail during winter (159). Cameron (27) reported that a Ross Desert soil experienced a temperature change from –15 to +27.5◦C within 3 h. Such temperaturefluctuationsleadtofreeze-thawcyclesthatarepotentiallylethaltosoil microbiota.ThesurvivalofmicroorganismsinDryValleymineralsoilsdepends ontheirhydrationstate,theircompatiblesolutecontent,andtheirabilitytoswitch metabolismtosynthesizecryoprotectants(24). Besides tolerating the desiccating conditions and extreme temperatures, mi- croorganisms inhabiting the mineral soils are subjected to osmotic stress due to highsaltconcentrationsfromaccumulatedsodium,calcium,magnesium,chloride, 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH 654 COWAN (cid:1) AHTOW sulphate, and nitrate (74). The high salt concentrations within the mineral soils resultfromupwardtransportfromthesubstratumaswellassurfacesupplementa- tion resulting from sea spray blown inland by onshore winds (153, 165). The soluble nitrogen (N) concentrations measured in desert soils range from 0 to 1250 µg g−1 soil in the form of NO−-N and from 0.3 to 40 µg g−1 soil in the 3 form of NH +-N (153). Nitrate concentrations in Antarctic mineral soils are the 4 lowest reported for terrestrial soils (such as forest and cultivated soils) and are derived primarily from atmospheric precipitation (154). Soluble phosphorus (P) concentrations in Antarctic desert soils are between <0.01 and 120 µg g−1 soil (153). g or The Dry Valley mineral soils contain low levels of organic matter (an av- ws. erage of 0.064 ± 0.035% total organic carbon) (93). Soil organic matter in e ualrevie only. tohregaTnaicylmoratVtearl,lelyacuresgtriionne-adreirsievsedfroormgasneicvepraalrtiscouulracteess,, csruycphtoaesndmoalirtihniec-adlelyrivdeed- als.annonal us roifveodrgoarngiacnmicamttearttferro,manidnlaainrsdpolarkae(s2(2l)a.cSutsrtorinnge-kdaetraibvaetdicpwaritnicduslaatieds)thaenddimspaerrisnael ded from arjourn9/05/07. For pers ebcnolovmwirmnounsnmainteidnetssa.lloonwtos tmheinderisatlrisbouitliosnurofafcoersg.aPnhicysmicaatltearbfrraosmionenodforloitchkics mbyicwroibnida-l a0 nloon ColdDesertMicrobialCommunities wY DoT 0. RSI MicrobialabundanceanddiversityinAntarcticdesertsoilsdependonanumber 58:649-69S UNIVE ohcofablslipetceatcteicdfiocfmreopcmoosloiftogiouicnradlaifnfadfcetraoesrnssto(cl2oi9act)aet(diToamnbsilce(rao1lb)l.ieaTxlhpciesormiiespneocvisinidtgieondntiffifrneormRenoctsosemdDappeashreiiscrotcnshsoaiolrs-f 4.N 00KI acteristics) (Table 3) (24, 25, 28, 165). For example, soil water content and cell 2P ol. HO numbersarepositivelycorrelated;low-organic-contentsalinesoilscontainlower MicrobiOHNS ntiuomnmbeursstobfeceuxleturcriasbeldewmhiecnroionrtgearpnriesmtinsgthqaunanntiotnatsiavleindeatsaofilrsom(29cu).ltHuroew-deevpeer,ndcaeun-t Rev. by J econnutmaienralotiwonlesvtueldsieosf,mwihcircohorhgaavneisrmepse[aet.egd.,ly10s2h–o1w0n4gth−a1;t(D2r4y,2V5a,l2le8y)]m.Hinoewraelvseoriilns u. n situATPanalysisdatahaveindicatedthatDryValleymineralsoilscontainthree n A to four orders of magnitude higher levels of microbial biomass than previously reported(41). Mostmicroorganismsisolatedfrommineralsoilsarepsychrotrophs,perhapsnot surprisinglybecausetheseorganismsarebetteradaptedtosurvivethetemperature cyclingofsurfacesoilsthantruepsychrophiles.Psychrophilesaremoreabundant inthepermafrostlayer,wheretemperaturefluctuationsarelow.Mostoftheviable (i.e., culturable) bacteria in Ross Desert soils are found in the permafrost layer andtowardthesurface(30).Chromogenicbacteriacolonizesoilsurfaces,whereas nonpigmentedbacteriaweremainlyfoundbelowthesoilsurfaces(30).Antarctic soils are largely aerobic and most microorganisms isolated from this habitat are aerobicheterotrophs.Althoughafewanaerobicbacteriahavebeenisolatedfrom 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH ENDANGEREDANTARCTICENVIRONMENTS 655 TABLE3 SoiledaphicandmicrobialcharacteristicsatfourDryValleysites(reproducedfrom References24,25,and28withpermission) Properties VictoriaValley CoalsackBluff BarwickValley WheelerValley Position 77◦20(cid:3)S 84◦14(cid:3)S 77◦20(cid:3)S 77◦12(cid:3)S Substratum Dunesand Sandon Patternground Gray-brown BergMoraine sand sand Moisture(%drywt) 0.14 1.58 1.74 4.30 pH 8.0 6.5 8.3 8.1 org OrganicC(%wt) 0.02 0.38 0.02 0.17 s. w OrganicN(%wt) 0.003 0.024 0.004 0.024 e ualrevie only. In(oprpgmandircyiownts) ded from arjournals.ann9/05/07. For personal us CFCNNSCPUOOalHO(4443G.D.W.)−1 1128064.3.00055 51007101..42010200 501130..185 042N71.105D20 a0 wnloY on Bacteria DoT 2–5◦C 50 29,000 52,000 120,000 0. RSI 10–22◦C 12,000 400 85,000 1.3×106 58:649-69S UNIVE YMAeligacasrteosfungi 000 050100 3—001000 2260.40×106 4.N 00KI 2P ND,notdetermined ol. HO MicrobiOHNS Rev. by J ADnestaerrcttsiocimlsihnaevraelbseoeilns,uantsteumccpetssstfoulis(o2l5a)t.eNanoaaenroabericobsiuclpbhaactteerrieadluocrearsrcfhroaemalR1o6sSs u. n rRNAgenesignalshavebeenobservedinextensivephylogeneticstudiesofDry n A Valleymineralsoils(J.J.Smith,L.AhTow&D.A.Cowan,unpublishedresults). Both cosmopolitan and indigenous fungal, yeast, and protozoan species have been isolated from McMurdo Dry Valley mineral soils (Table 4). Filamentous fungalcellcountsoflessthan200cfupergramofsoilwereobtainedfromRoss Desert samples, the lowest reported counts for the various Antarctic soil envi- ronments (25). Yeasts are relatively abundant in the surface horizons of certain moistAntarcticsoils(4,26).ThepredominantalgaeisolatedfromAntarcticsoil were the oscillatorioids, Microcoleus sp., Schizothrix spp., Anacystis spp., and Coccochloris spp. Flagellated and amoeboid protozoa have also been isolated from moist Antarctic soils (29). Thus while a few endemic microbial species have been isolated (78, 102, 128), most bacteria isolated from Antarctic soil 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH 656 COWAN (cid:1) AHTOW TABLE4 MicrobialspeciesisolatedfromAntarcticDryValleysoils(summarizedwith permissionfromReference153) Microorganism IndigenoustoAntarctica Cosmopolitangenera Fungi Monodictysaustrina, Acremonium,Alternaria, Chrysosporiumverrucosum, Aspergillus,Aureobasidium, Acrodontiumantarcticum, Beauveria,Botrytis,Camposporium, Chalaraantarctica,Phialophora Chrysosporium,Cladosporium, dancoii,Thelebolusmicrosporus Epicoccum,Exophiala,Fusarium, Geotrichum,Gymnascella, org Helminthosporium,Hormoconis, s. Myceliophthora,Nectria,Paecilomyces, w viey. Penicillium,Phialophora,Phoma, ded from arjournals.annualre9/05/07. For personal use onl Yeasts CCCr..ylvupisptohi,cnoCiac.ccsiuio,scLicaeolunicss,oosrptioorniidsi,um TMRSTprraoiioctcrirohtroidoaetidcrruiheecmlirhlum,aumS,am,eM,,pVTuSeerctdriecotoiphrcnh,oiilauRplnimhhuoyi,mzstSoop,pnpoWo,urairsuormdtho,rmixy,ces, a0 nloon wY DoT 0. RSI have been found to be cosmopolitan in distribution (Table 4). Bacteria isolated 58:649-69S UNIVE feMrroaicm:rAoMccohccrMocmuusor,dbPoalcaDtnerory,coAVcractluhlesryo,bPsasoceitulesdrom,mBooastnciaclsolu,msS,mtrCeopontrloyymnbeyebclaeocsn,tgearnituodmNth,oeFcalfaorvdlloioabwa(i2cnt3ge)r.giCuemno--, 4.N 00KI ryneformsarethemostabundantbacteriaisolatedfromDryValleysoils(85%of 2P ol. HO whichwererepresentedbyCorynebacteriumsepedonicum)(23). MicrobiOHNS thaIttthisew1%idetloy1a0c%cepotfemditchraotocruglatnuirsem-dsetpheantdceanntbmeedtheotedcsteadrebystrcounltgulrye-bdieapseedndaenndt Rev. by J tiencdhenpieqnudeesnt(7te0c)hnairqeunesotsurcehpraessesnmtaatlilvseuboufnitth(essnua)turRraNlApogpeunleatsieoqnue(3n)c.eCanualtluyrseis- u. n andinsituhybridization(2,3)haveprovedtobeinvaluableinphylogeneticstudies n A ofsoilmicrobiota(includingviable,nonviable,anddormantmicroorganisms).It ishighlyrevealingthatsequencesretrievedfromenvironmentalclonelibrariesare mostoftennotrepresentedbyanycultivatedorganisms(156). Althoughtherehavebeennumerousphylogeneticsurveysofmicrobialspecies presentinvarioustemperateandtropicalsoils(86,92,109),fewpublisheddata yetexistfromphylogeneticstudiesofAntarcticDryValleymineralsoilcommu- nities. Phylogenetic analysis of DNA extracts from mineral soils collected from theslopesoftheMiersValley(RossDesert)indicatedthatasmanyas50%ofthe retrievedsequencesarefromunculturedbacteria(J.J.Smith,L.AhTow&D.A. Cowan, unpublished data). Most of the remaining sequences are from bacteria 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH ENDANGEREDANTARCTICENVIRONMENTS 657 belongingtotheActinobacteria(27%),Bacteroidetes(11%),Acidobacteria(6%), and Verrucomicrobia (6%). In a separate phylogenetic study performed on min- eralsoilcollectedfromheavilyimpactedgravelsfromMcMurdostation,bacteria wereidentifiedasbelongingtothefollowingphylogeneticgroups:Actinobacte- ria(12.5%),Bacteroidetes(25%),Firmicutes(12.5%),Planctomycetes(12.5%), andProteobacteria(37.5%)(E.M.Kuhn&D.A.Cowan,unpublisheddata).The observation that a high percentage of bacteria inhabiting Antarctic mineral soils has not been assigned to a phylogenetic group, let alone identified at the genus level, is entirely consistent with phylogenetic data from many other microbial biotopes. g or s. w e viy. SensitivitytoEnvironmentalImpacts als.annualreonal use onl TofhheuDmryanVianllteeyrvseanntdioonthoefraicleit-tflreeoevreergiaocnesnotfutrhye.TAhnetacrocmticbcinoanttiionnenotfhgaevoegarahpishtiocrayl ded from arjourn9/05/07. For pers imfotshufoaerptlnshaeateirimfrtoainccpcoutaaonlcnarttdsrrslo,ymelblneesuveadtinnrlbossiytintttlihmtvehaeeetangametraaxeuilinacsessthxetatnogrscfeleomSthboieetafeslisipcnoeortroe-ffrrvreSniegdapeiteeoislconainsnaaoaldlmlcSatlercriemeipeaarantoiotteitifcsefitccachtnhieIodanAnntbegnayretgea.tashrTtice.nthsiTdcetehdcfseoiiorgrsnemnuctaimtenthrieouonins-ft a0 nloon canstillberegardedaspristine. DowTY However, our fascination with this continent results in a continued increase 0. RSI inhumanactivities(research,exploration,tourism)onthecontinent.Theimpact 58:649-69S UNIVE os(sifzuetchahebsaleesttahocwetiTvnaist,yiefiloserlidsVarbelylseenya,ortchmheecWaonnrsicgehhnottmrVaoategllseenoye,noaaunsdr:eMlRataeirsvseeaOlyrcalhsiimsb)ia,tseaednsdnnucoumwrbreecnrotnotsfotisutirutietsest 4.N 00KI activityislocalizedtositesofinterestsuchaspenguincoloniesandhistorichut 2P ol. HO sites.Alltheseactivitiesimposephysical,chemical,andbiologicalburdensonthe MicrobiOHNS locPaloesnsivbilryonthmeenmto(ssteedaTmabalgein1g).effects resulting from increases in human activ- Rev. by J iatbyrainsiothne,cicoem-fpreaectiaornea,stroamf Aplnintagr,catincdadarisetufrrobmancpehyosficsoalils(i)natnhdecfhoermmicoaflp(hfoyrsiecxa-l u. n ample, eutrification, fuels spills, chemical debris) impacts. Physical disturbance n A ofthemineralsoilsleadtosomedisruptionofstratifiedmicrobialcommunities. Inaddition,themovementofindividualsfromoneareatoanotherresultsincross- contamination of microorganisms between niches. Such impacts tend to invali- datephylogeneticstudiesperformedonso-calledpristineenvironments.Thereis alsoanincreasedriskofcontaminationatthemacroscopiclevel,forexample,by fuel-spill contamination (48). Although typically localized, such gross contami- nationisexpectedtohaveadramaticanddisruptiveeffectontheextantmicrobial community. Colddesertsoils,oncethoughttobesterile,arenowknowntobeinhabitedby a wide variety of microorganisms (55). Many of these microbial species appear 31Aug2004 11:56 AR AR224-MI58-24.tex AR224-MI58-24.sgm LaTeX2e(2002/01/18) P1:IKH 658 COWAN (cid:1) AHTOW to belong to cosmopolitan taxa (153), although some are apparently endemic. Natural vectors aid the dissemination of microbes into and within the Antarctic continent (151). These include atmospheric circulation, oceanic circulation, and migratorymammals,birds,andfish,allofwhichcontributedirectlyorindirectlyto theintroductionofnonindigenousmicroorganisms.Giventhatnaturalprocesses continuously seed nonindigenous microorganisms into the Antarctic continent, researchers might argue that additional dissemination of bacteria from human activitiesisoflittlesignificance. Thathumanactivitiesdocontributenonindigenousmicroorganismstothelocal environmenthasbeenclearlyestablishedbyanumberofrecentstudiesthatshow g or contaminationbyhumancommensalandfecalmicroorganismsofmineralsoilsand s. w aquaticsystemsinthevicinityofpermanentbasesandtemporarycamps(5,19,20, e ualrevie only. 4h9ar,s9h7e,n1v3ir2o,n1m43e)n.taRlecgoanrddilteisosnsifinthAenhtuamrcatinc-ad,ethrievseedrecsounlttasmshinoaunldtsbceacnosnusrivdievreedthine als.annonal us tohregacnoinstmexs.tNofalkaetdermalicgreonbeiatrlaDnsNfAers(uLrGviTv)esbefotwrleoenngnpoenriinoddisgiennDoursyaVnadllienydsiogielnso(uLs. ded from arjourn9/05/07. For pers AecTnaohnvdiToraooctenwc,umtr&heoenvrDteei.rsiAslaa.nrrCogeeoldawgitrieaevonceg,tlyreuavncpiophdmuiecbnmldcieiosshnfteaoednrvcLereenGsstuoT(lw5tis0ni)n,.tg7hL1etGo,A8Tpn4atb)ra.teirEtccwuvtiliecadeteenenndvbciieasrcopsthneeromrsiwaaelsni(ntt7,h1ntah,ote1rL5siGs1oT)iilt. wnloaY on 0 ctoleAarnwtahrcettihcemrsiuccrohbaiaplrococemsmswunoiutiledsb.erelevant,advantageous,ordisadvantageous 690. DoERSIT AnRtaercgtiiocneanlvoirrognlmobenaltsc.lIinmtearteestcihnagnlyg,ethheahsotlheeinpothteenStioaulthtoPdorlaarmoaztoicnaelllyayiemrpaancdt 49-NIV itsassociatedincreaseinincidentUVradiationmaynothaveadirectimpacton 58:6S U DryValleymineralsoilcommunities,whicharethoughttoavoidtheexposedupper 4.N surfacesofmineralparticles.However,thedependenceofmineralsoilcommuni- 00KI 2P tiesonlacustrine-derivedorganicmaterialasakeysourceofCorNsuggeststhat Microbiol. OHNS HO sareerggcuioomnndeaanlrtytsememfpfaeeycrtaastlusfroreobmreegcaihmpapenlsige.edAstionnealtarkcaoenogpliernogodfuocofttihEveiatrsytcemlrinmigAahttnictbaecrchitamincpagoedrstu,arininntc.glTusdhuiemnsge- Rev. by J merandautumnperiodsbetween1966and2000(47)appearstocoincidewitha u. warmingofthewesternsideoftheAntarcticPeninsula,especiallyinwinter(1951 n An to2000)(141),withanincreaseof1.09◦Cperdecadeduringwinterand0.56◦C per decade annually. Such regional differences suggest that it may be impossi- ble (and unwise) to assume any continent-wide climate changes. Nevertheless, temperatureincreasesinice-freeareasareexpectedtoincreasetheavailabilityof liquid water (from glacial and permafrost melting, and possibly from precipita- tion),withpossiblydramaticchangesinmicrobialbiomass,microbialproductiv- ity,andcommunitystructure.RossDesertsoilssubjectedtotemperaturesabove 0◦Cshowlargeincreasesinculturablebacteria(11),whiletheenclosureofDry Valley desiccated mineral soils under transparent plastic cloches resulted in the rapidgrowthofmossandcyanobacterialconsortia(D.D.Wynn-Williams,personal communication).
Description: