ebook img

Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 1 - Univariate Orthogonal Polynomials PDF

401 Pages·13.859 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 1 - Univariate Orthogonal Polynomials

ENCYCLOPEDIAOFSPECIALFUNCTIONS: THEASKEY–BATEMANPROJECT Volume1:UnivariateOrthogonalPolynomials ThisisthefirstofthreevolumesthatformtheEncyclopediaofSpecialFunctions,anextensive updateoftheBatemanManuscriptProject. Volume 1 contains most of the material on orthogonal polynomials, from the classical orthogonalpolynomialsofHermite,LaguerreandJacobitotheAskey–Wilsonpolynomials, which are the most general basic hypergeometric orthogonal polynomials. Separate chap- ters cover orthogonal polynomials on the unit circle, zeros of orthogonal polynomials and matrixorthogonalpolynomials,withdetailedresultsaboutmatrix-valuedJacobipolynomials. Achapteronmomentproblemsprovidesmanyexamplesofindeterminatemomentproblems. Athoroughbibliographyroundsoffwhatwillbeanessentialreference. mourade.h.ismail isResearchProfessorattheUniversityofCentralFlorida. ENCYCLOPEDIA OF SPECIAL FUNCTIONS: THE ASKEY–BATEMAN PROJECT Volume 1: Univariate Orthogonal Polynomials Editedby MOURADE.H.ISMAIL UniversityofCentralFlorida withassistanceby WALTERVANASSCHE KULeuven,Belgium UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9780521197427 DOI:10.1017/9780511979156 (cid:2)c CambridgeUniversityPress2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Title:Encyclopediaofspecialfunctions:theAskey-Batemanproject. Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2020-| Includesbibliographicalreferencesandindex.|Contents:VolumeI. Univariateorthogonalpolynomials/editedbyMouradE.H.Mourad-- Identifiers:LCCN2020007276|ISBN9780521197427(hardback;v.1) Subjects:LCSH:Functions,Special--Encyclopedias. Classification:LCCQA351.E632020|DDC515/.503--dc23 LCrecordavailableathttps://lccn.loc.gov/2020007276 ISBN–3VolumeSet978-1-108-88244-6Hardback ISBN–Volume1978-0-521-19742-7Hardback ISBN–Volume2978-1-107-00373-6Hardback ISBN–Volume3978-0-521-19039-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Listofcontributors pageix Preface xi 1 Preliminaries 1 1.1 AnalyticFacts 1 1.2 HypergeometricFunctions 2 1.3 SummationTheoremsandTransformations 7 1.4 q-Series 8 1.5 ThetaFunctions 15 1.6 Orthogonality 15 2 GeneralOrthogonalPolynomials 16 2.1 BasicFacts 16 2.2 NumeratorsandQuadratures 22 2.3 TheSpectralTheorem 24 2.4 ContinuedFractions 27 2.5 ModificationsofMeasuresandRecursions 30 2.6 LinearizationandConnectionRelations 34 2.7 AdditionTheorems 37 2.8 DifferentialEquations 39 2.9 DiscriminantsandElectrostatics 44 2.10 FunctionsoftheSecondKind 47 2.11 DualSystems 48 2.12 MomentRepresentationsandDeterminants 50 3 JacobiandRelatedPolynomials 51 3.1 RecursionsandRepresentations 51 3.2 GeneratingFunctions 56 3.3 JacobiFunctionsoftheSecondKind 59 3.4 Routh–JacobiPolynomials 63 3.5 Ultraspherical(Gegenbauer)Polynomials 63 3.6 ChebyshevPolynomials 67 vi Contents 3.7 LegendrePolynomials 71 3.8 LaguerreandHermitePolynomials 74 3.9 TheComplexHermitePolynomials 82 3.10 HermiteFunctions 84 3.11 MultilinearGeneratingFunctions 85 3.12 IntegralRepresentations 88 3.13 Asymptotics 90 3.14 RelativeExtremaofClassicalPolynomials 95 3.15 TheBesselPolynomials 96 4 RecursivelyDefinedPolynomials 100 4.1 BirthandDeathProcessPolynomials 100 4.2 PolynomialsofPollaczekType 102 4.3 AssociatedLaguerreandHermitePolynomials 108 4.4 AssociatedJacobiPolynomials 109 4.5 SievedPolynomials 114 5 WilsonandRelatedPolynomials 119 5.1 TheMeixner–PollaczekPolynomials 119 5.2 WilsonPolynomials 121 5.3 ContinuousDualHahnPolynomials 124 5.4 ContinuousHahnPolynomials 126 6 DiscreteOrthogonalPolynomials 129 6.1 MeixnerandCharlierPolynomials 129 6.2 Hahn,DualHahn,andKrawtchoukPolynomials 131 6.3 DifferenceEquations 138 6.4 LommelPolynomialsandRelatedPolynomials 141 6.5 AnInverseOperator 145 6.6 q-Sturm–LiouvilleProblems 146 6.7 TheAl-Salam–CarlitzPolynomials 148 6.8 q-JacobiPolynomials 151 6.9 q-HahnPolynomials 154 6.10 AFamilyofBiorthogonalRationalFunctions 156 7 Someq-OrthogonalPolynomials 157 7.1 q-HermitePolynomials 157 7.2 q-UltrasphericalPolynomials 161 7.3 Asymptotics 168 7.4 IntegralsandtheRogers–RamanujanIdentities 168 7.5 AGeneralizationoftheSchurPolynomials 170 7.6 Associatedq-UltrasphericalPolynomials 172 7.7 TwoSystemsofq-OrthogonalPolynomials 175 Contents vii 8 TheAskey–WilsonFamilyofPolynomials 178 8.1 Al-Salam–ChiharaPolynomials 178 8.2 TheAskey–WilsonPolynomials 181 8.3 TheAskey–WilsonEquation 185 8.4 Continuousq-JacobiPolynomialsandDiscriminants 187 8.5 q-RacahPolynomials 190 8.6 LinearandMultilinearGeneratingFunctions 192 8.7 AssociatedAskey–WilsonPolynomials 195 9 OrthogonalPolynomialsontheUnitCircle 199 L.Golinskii 9.1 DefinitionsandBasicProperties 199 9.2 Szego˝ RecurrenceRelationsandVerblunskyCoefficients 202 9.3 Szego˝’sTheoryandItsExtensions 207 9.4 ZerosofOPUC 217 9.5 CMVMatrices–UnitaryAnaloguesofJacobiMatrices 221 9.6 DifferentialEquations 224 9.7 ExamplesofOPUC 226 9.8 ModificationofMeasures 231 10 ZerosofOrthogonalPolynomials 242 A.Laforgia&M.Muldoon 10.1 Introduction 242 10.2 GeneralResultsonZeros 242 10.3 JacobiPolynomials 249 10.4 UltrasphericalPolynomials 255 10.5 LegendrePolynomials 259 10.6 LaguerrePolynomials 260 10.7 HermitePolynomialsandFunctions 264 10.8 OtherOrthogonalPolynomials 267 11 TheMomentProblem 269 C.Berg&J.S.Christiansen 11.1 HamburgerMomentProblems 269 11.2 StieltjesMomentProblems 280 11.3 ExamplesofIndeterminateMomentProblems 285 12 Matrix-ValuedOrthogonalPolynomialsandDifferentialEquations 307 A.Dura´n&F.A.Gru¨nbaum 12.1 MatrixPolynomialsandMatrixOrthogonality 307 12.2 Matrix-Valued Orthogonal Polynomials Satisfying Second-Order DifferentialEquations 315 viii Contents 13 SomeFamiliesofMatrix-ValuedJacobiOrthogonalPolynomials 334 F.A.Gru¨nbaum,I.Pacharoni,&J.A.Tirao 13.1 Introduction 334 13.2 SphericalFunctions 334 13.3 Matrix-ValuedSphericalFunctionsAssociatedtoP (C) 337 2 13.4 TheSphericalFunctionsasMatrix-ValuedHypergeometricFunctions 340 13.5 MatrixOrthogonalPolynomialsArisingfromSphericalFunctions 344 13.6 TheMatrixJacobiPolynomialsArisingfromP (C) 348 d 13.7 Miscellanea 354 References 357 Index 385 Contributors LeonidGolinskii InstituteforLowTemperaturePhysicsandEngineering,UkrainianAcad- emyofSciences,47LeninAvenue,Kharkov61103,Ukraine AndreaLaforgia DepartmentofMathematics,Universita` degliStudiRomaTre,LargoSan LeonardoMurialdo1,IT–00146Rome,Italy. Martin Muldoon Department of Mathematics & Statistics, York University, Toronto, On- tarioM3J1P3,Canada. Christian Berg Institute for Mathematical Sciences, University of Copenhagen, DK–2100 Copenhagen,Denmark. Jacob S. Christiansen Lund University, Centre for Mathematical Sciences, Box 118, SE– 22100,Lund,Sweden. Antonio J. Dura´n Departamento de Ana´lisis Matema´tico, Universidad de Sevilla, Apdo (P.O.Box)1160,ES–41080Sevilla,Spain. F.AlbertoGru¨nbaum DepartmentofMathematics,UniversityofCalifornia,Berkeley,CA 94720,USA. InesPacharoni CIEM-FaMAF,UniversidadNacionaldeCo´rdoba,5000Co´rdoba,Argentina JuanA.Tirao CIEM-FaMAF,UniversidadNacionaldeCo´rdoba,5000Co´rdoba,Argentina

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.