ebook img

Encyclopedia of polymer science and technology PDF

9408 Pages·106.297 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Encyclopedia of polymer science and technology

ACETYLENIC POLYMERS, SUBSTITUTED Introduction PolymerizationofacetylenewasfirstachievedbyNattaandhisco-workersusing a Ti-based catalyst (1). Because of the lack of processability and stability, early studies on polyacetylenes were motivated by theoretical and spectroscopic inter- ests only. Then the discovery of the metallic conductivity of doped polyacetylene (2–6)stimulatedresearchintothechemistryofpolyacetylene,andnowpolyacety- leneisrecognizedasoneofthemostimportantconjugatedpolymers.Thefinding by Natta and co-workers was followed by the modification of their catalytic sys- tem. An explosive expansion in polyacetylene chemistry has been caused by the entryoftheShirakawacatalystTi(O-n-C H ) –(C H ) Al.Itsveryuniqueability 4 9 4 2 5 3 to give a thin film of polyacetylene (7,8) has attracted the interest of solid-state physicists, which has significantly contributed to the fundamental chemistry of conjugatedmacromolecules. Unfortunately,theintractabilityandunstabilityofpolyacetylenestrictlyin- hibit its practical applications. Thus, an introduction of substituents onto poly- acetylene backbone has been investigated to improve its processability. Early attempts led to the conclusion that only sterically unhindered monosubstituted acetylenes can be polymerized with the Ti-based Ziegler–Natta catalysts. Tradi- tional ionic and radical initiators also lack the ability to provide high molecular weight polymers from substituted acetylenes. In 1974 the first successful poly- merizationofsubstitutedacetylenewasachievedwhenitwasfoundthat“Group 6”transitionmetalsarequiteactiveforthepolymerizationofphenylacetyleneto a polymer with molecular weight over 104 (9). After this finding, there has been muchefforttodevelophighlyactivecatalysts,totunethepolymerproperties,and 1 EncyclopediaofPolymerScienceandTechnology.CopyrightJohnWiley&Sons,Inc.Allrightsreserved. 2 ACETYLENICPOLYMERS,SUBSTITUTED Vol.1 alsotopreciselycontrolthepolymerstructure.Theseenergeticstudieshavepro- ducedawidevarietyofpolymersfromacetylenederivativesincludingmono-and disubstitutedacetylenes,α,ω-diynes,and1,3-diacetylenes.Thecarbon–carbonal- ternatingdoublebondsinmainchainsofthesepolymersprovideanopportunityto obtainuniquepropertiessuchasconductivity,nonlinearopticalproperties,mag- netic properties, permeability, photo- and electroluminescent properties, and so on,whicharenotaccessiblefromthecorrespondingvinylpolymers. ManypapersintheliteraturehavefollowedthefindingbyMasudaandco- workers(9).Thisarticlecoverstheliteraturefromthemid-1980suptomid-2000. Asaresultoftherapidgrowthinthearea,thechemistryofpolymersfromacety- lene, 1,3-diacetylenes, and α,ω-diacetylenes are excluded (see POLYACETYLENE; DIACETYLENE and TRIACETYLENE POLYMERS). The first focus is on the polymeriza- tion reaction of substituted acetylenes with various transition metal catalysts. Thesynthesisoffunctionallydesignedpolyacetylenesisalsocovered.Readersare encouragedtoaccessotherreviewsandmonographsonpolyacetylene(10–14),on 1,3-diacetylenes (15–19), and on α,ω-diynes (20,21). Previous review articles are alsohelpfultosurveythechemistryofsubstitutedpolyacetylenes(10,13,22–29). Polymerization Catalysts Avarietyoftransitionmetalcatalystshavebeenfoundtopolymerizesubstituted acetylenes.EffectivecatalystsrangefromGroup3toGroup10metals.Activityof catalystsgreatlydependsonmonomerstructure;therefore,itisquiteimportant torecognizethecharacteristicsofeachcatalyst.Table1listsrecentrepresentative examplesforthepolymerizationofsubstitutedacetyleneswithvarioustransition metal catalysts, which will help readers to understand the general features of catalysts. Group 3 Transition Metals. Examples for the polymerization of sub- stituted acetylenes with “Group 3” transition metals are rather limited (134). Ziegler–NattacatalystsbasedonGroup3transitionmetalspolymerizeacetylene and its derivatives (32,33,62). The combination of Sc or lanthanide transition metals with trialkylaluminum, eg, M(naphthenate)– and M(phosphonate)–i- (C H ) Al, has been proven to provide high molecular weight polymers from 4 9 3 terminal aliphatic and aromatic alkynes. High molecular weight polymers (M > 30,000) are available from aliphatic linear alkynes such as 1-hexyne n and 1-pentyne, whereas 1-alkynes with branching at α or β-position, eg, 3-methyl-1-pentyne and 4-methyl-1-pentyne, result in polymers in low yields (32,33).Inasimilarway,phenylacetylenepolymerizesinthepresenceofaternary Table1. SubstitutedAcetylenesThatFormHighMolecularWeightPolymerswithTransitionMetalCatalysts Monomer Catalyst M ,103 Reference n [A]Monosubstitutedaliphatic acetylenes[HC CR] R=n-C H W(dmp) Cl –C H MgBr(a) 170 30,31 4 9 4 2 2 5 Nd(naphthenate) –i-(C H ) Al 35 32,33 3 4 9 3 CH(CH )C H Fe(acac) –(C H ) Alb 27 34 3 2 5 3 2 5 3 MoCl –(C H ) Sn 13 34 5 6 5 4 C(CH ) MoCl 33 35 3 3 5 MoOCl -n-Bu Sn-C H OH 149 36 4 4 2 5 MoCl (CO) (AsC H ) ) 335 37 2 3 6 5 2 2 (nbd)Rh+[(η6-C H )B−(C H ) ]c 28 38 6 5 6 5 3 (S)-(CH ) C(CH )C H Fe(acac) –i-(C H ) Alb [η]=1.22 39 2 2 3 2 5 3 4 9 3 Fe(acac) –(C H ) Alb 610 40 3 2 5 3 3 MoCl –(C H ) Sn 15 40 5 6 5 4 [(nbd)RhCl] –(C H ) Nc 96 41 2 2 5 3 Fe(acac) –(C H ) Alb 121 41 3 2 5 3 WCl –(C H ) Sn 14 42 6 6 5 4 Table1. (Continued) Monomer Catalyst M ,103 Reference n Si(CH ) -n-C H WCl –(C H ) Sn 17 44 3 2 6 13 6 6 5 4 NbCl 39 44 5 CH(n-C H )Si(CH ) Mo(CO) –CCl –hν 105 45 5 11 3 3 6 4 n-C F WCl –(C H ) Sn [η]=0.08 46 6 13 6 6 5 4 CO -n-C H [(nbd)RhCl] 20 47 2 4 9 2 CO CH MoCl –(C H ) Sn [η]=0.063 48 2 3 5 6 5 4 CO H MoCl [η]=0.047 48 2 5 (Cp∗RuCl ) 4 49 2 2 CO -(−)-menthyl [(nbd)RhCl] c 250 50 2 2 MoOCl –n-(C H ) Sn 18 50 4 4 9 4 CH N(CH ) Ni(NCS) (P(C H ) ) 16 51 2 3 2 2 6 5 3 2 Pd(P(C H ) ) [C CCH N(CH ) ] 15 52 6 5 3 2 2 3 2 2 CH OH Pd(P(C H ) ) (C CCH OH) 53 52 2 6 5 3 2 2 2 CH -N-indolyl [(nbd)RhCl] –(C H ) Nc 71 53 4 2 2 2 5 3 CH CH(CO C H )PO(OC H ) WCl –C H AlCl 9 54 2 2 2 5 2 5 2 6 2 5 2 CH +P(C H ) B(C H ) − MoCl -(C H ) Sn 12 55 2 6 5 3 6 5 4 5 6 5 4 [B]Monosubstitutedaromaticacetylenes Phenylacetylenes[HC CC H R] 6 4 R=H WCl –(C H ) Sn 15 56 6 6 5 4 W(CO) –CCl -hν 77 57 6 4 WCl (CO) (As(C H ) ) 33 37 2 3 6 5 3 2 W(CO) –(C H ) CCl -hν 21 58,59 6 6 5 2 2 Fe(acac) -(C H ) Alb 4.2 60,61 3 2 5 3 Sm(naphthenate) -i-(C H ) Al 184 62 3 4 9 3 (cod)Rh(L)PF –NaOHd 8.7 63 6 [(nbd)RhCl] –(C H ) Nc 160 64 2 2 5 3 p-n-C H Fe(acac) -(C H ) Alb 39 65 4 9 3 2 5 3 [(nbd)RhCl] –(C H ) Nc 240 65 2 2 5 3 MoCl -n-(C H ) Sn 9.2 65 5 4 9 4 p-Adme [(nbd)RhCl] –(C H ) Nc >1000 65 2 2 5 3 p-OCH [(nbd)RhCl] –(C H ) Nc 60(Mw) 66 3 2 2 5 3 p-Cl [(nbd)RhCl] –(C H ) Nc 260(Mw) 66 2 2 5 3 p-NO [(cod)RhCl] d 15.5 67 2 2 m-CH NC H [(nbd)RhCl] –(C H ) Nc 588 68 6 5 2 2 5 3 p-I WOCl 19 69 4 p-CO CH (nbd)Rh+[(η6-C H )B−(C H ) ]c 218 38 2 3 6 5 6 5 3 [(nbd)RhCl] –(C H ) Nc 158 70 2 2 5 3 [(nbd)RhCl] –(C H ) Nc 122 71 2 2 5 3 5 p-CO -(-)-menthyl [(nbd)RhCl] –(C H ) Nc 1260 72 2 2 2 5 3 p-(+)-OCONHC∗H(CH )C H [(nbd)RhCl] –(C H ) Nc 320 73 3 6 5 2 2 5 3 [(nbd)RhCl] –(C H ) Nc 51 74 2 2 5 3 p-(1R,2S)CH NHC∗H(CH )C∗H(OH)C H [(nbd)RhCl] c 48 75 2 3 6 5 2 p-N-n-(C H ) [(nbd)RhCl] –(C H ) Nc >1000 76 4 9 2 2 2 5 3 p-N-i-(C H ) [(nbd)RhCl] –(C H ) Nc – ∼ 3 7 2 2 2 5 3 Table1. (Continued) Monomer Catalyst M ,103 Reference n o-CH W(CO) –CCl –hν 170 78 3 6 4 WCl –(C H ) Sn 57 78 6 6 5 4 o-CF W(CO) –CCl -hν 260 79 3 6 4 WCl –(C H ) Sn 190 80 6 6 5 4 MoCl -(C H ) Sn 280 80 5 6 5 4 2,5-(CF ) W(CO) –CCl -hν [η]=0.352 81 3 2 6 4 o-Si(CH ) W(CO) –CCl -hν 1200 82 3 3 6 4 MoCl -n-(C H ) Sn-C H OH 43 83 5 4 9 4 2 5 Mo[OCH(CF ) ] ( N-Adm) CHC(CH ) C H (7g)e 14 84 3 2 2 3 2 6 5 o,o,m,m,p-F WCl –(C H ) Sn [η]=0.61 85 5 6 6 5 4 o,o,m,m,-F -p-n-C H WCl –(C H ) Sn 110 85 4 4 9 6 6 5 4 m-N NC H [(nbd)RhCl] –(C H ) Nc 110 86 6 5 2 2 5 3 o-Fc(14)f 7j 16 87 p-CH CHFc(15) f 7j 19 87 6 p-N NFc(16)f 7j 11 87 p-C CC H -p-C CFc(17)f 7j 18 88 6 4 Otheraromaticacetylenes[HC CAr] Ar=1-Naphthyl 95 89 (3) WCl –(C H ) Bi 46 90 6 6 5 3 WCl /dioxane 36 91 6 2-Naphthyl WCl –(C H ) Sn 9 92 6 6 5 4 1-Anthryl WCl –(C H ) Sn 37 93 6 6 5 4 2-Anthryl WCl –(C H ) Sn 9 93 6 6 5 4 9-Anthryl WCl Insoluble 90 6 [(nbd)RhCl] –(C H ) Nc 340 97 2 2 5 3 7 [(nbd)RhCl] –(C H ) Nc 11.7 98 2 2 5 3 Table1. (Continued) Monomer Catalyst M ,103 Reference n [(cod)RhCl] d 95.3 99 2 [(nbd)RhCl] –(C H ) Nc 11 100 2 2 5 3 (cod)Rh(NH )Cld 150 101 3 8 Ferrocenyl[(η6-C H )Fe(η6-C H )](12) 7j 16.4 102 5 4 5 5 Ruthenocenyl[(η6-C H )Ru(η6-C H )](13) 7j 16 102 5 4 5 5 [C]Disubstitutedaliphaticacetylenes[R1C CR2] R1=CH R2=n-C H MoCl 1100(M ) 103 3 3 7 5 w C H C H WCl –(C H ) Sn Insoluble 104 2 5 2 5 6 6 5 4 (OAr) Ta[C(CH )C(CH )CH-t-C H ](py)g(3) 17.9 105 3 3 3 4 9 Cln-C H MoCl –n-(C H ) Sn 510 106 6 13 5 4 9 4 Brn-C H WCl 7.1 107 4 9 6 CH S-n-C H MoCl -(C H ) SiH 71 108 3 4 9 5 6 5 3 CH Fcf WCl –(C H ) Sn 16 109 3 6 6 5 4 CH Si(CH ) (18) TaCl 130 110 3 3 3 5 NbCl 210 110 5 TaCl -(C H ) Bi 1800 111 5 6 5 3 CH TaCl -(C H ) Bi 80 112 3 5 6 5 3 CH Si(CH ) C H TaCl -(C H ) Sn 150 113 3 3 2 6 5 5 6 5 4 CH Ge(CH ) TaCl 809 114 3 3 3 5 TaCl Insoluble 115 5 [D]Disubstitutedaromaticacetylenes[RC CAr] R=CH Ar=C H TaCl [η]=2.70 116 3 6 5 5 9 TaCl -n-(C H ) Sn 600 117 5 4 9 4 ClC H MoCl -n-(C H ) Sn 690(M ) 118 6 5 5 4 9 4 w ClC H -p-Adme MoCl -n-(C H ) Sn 110 119 6 4 5 4 9 4 C H C H WCl –(C H ) Sn Insoluble 120 6 5 6 5 6 6 5 4 C H C H -p-Si(CH ) TaCl -n-(C H ) Sn 750 121 6 5 6 4 3 3 5 4 9 4 122 C H C H -p-Si(C H ) TaCl -n-(C H ) Sn 1900 123 6 5 6 4 6 5 3 5 4 9 4 C H TaCl -n-(C H ) Sn >100 124 6 5 5 4 9 4 Table1. (Continued) Monomer Catalyst M ,103 Reference n C H C H -p-OC(CF ) C[CF(CF ) ] TaCl -n-(C H ) Sn [η]=0.87 125 6 5 6 4 3 3 2 2 5 4 9 4 C H C H -p-C H TaCl -n-(C H ) Sn Insoluble 126 6 5 6 4 6 5 5 4 9 4 C H C H -p-N-Carbazolyl TaCl -n-(C H ) Sn 190 127 6 5 6 4 5 4 9 4 C H C H -p-Ge(CH ) TaCl -9-BBN 1000 128 6 5 6 4 3 3 5 C H C H -p-t-C H TaCl -n-(C H ) Sn 460 129 6 5 6 4 4 9 5 4 9 4 C H C H -p-CH C H TaCl -n-(C H ) Sn 350 126 6 5 6 4 2 6 5 5 4 9 4 C H C H -p-Adme TaCl -n-(C H ) Sn 2200 119 6 5 6 4 5 4 9 4 [E]Cyclicacetylenes Cyclooctyne (CO) W=C(C H )OCH (4) Insoluble 130 1 5 6 5 3 0 (t-C H O) Mo C-n-C H g Insoluble 131 4 9 3 3 7 W (O-t-C H ) g Insoluble 132 2 4 9 6 PdCl (C H CN) Insoluble 133 2 6 5 2 admp=OC H -o,o-(CH ) . 6 3 3 2 bacac.=acetyleacetonate. cnbd=bicyclo[2.2.1]hepta-2,5-diene(2,5-norbornadiene). dcod=1,5-cyclooctadiene, eAdm=1-adamantyl. fpy=pyridine,Ar=o,o-i-(C H ) C H . 3 7 2 6 3 gRing-openingpolymerization.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.