ebook img

Encyclopedia of Marine Natural Products (3-Volume Set) PDF

1865 Pages·2016·62.78 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Encyclopedia of Marine Natural Products (3-Volume Set)

1 Systems of Classification of Living Organisms: Great Steps in Chemical and Biological Evolution Westartbydescribingthegeneralprinciplesoftheclassificationoflivingorganisms.Thetaxonomicsystemisarranged as a hierarchy going from the kingdom (the most general) down to the species level (the most particular), which comprises the following main groupings, illustrated by the example below (the succession should be read from left to right):1 Kingdom Phylum Class Order Family Genus Species Animal Chordata Mammals Primates Hominoidea Homo sapiens Consideringthebiodiversityoflifeformsonthisplanet,it 1.1 is sometimes necessary to consider intermediate group- Whittaker’s Five Kingdoms System (1959) ingsaswell.Thus,onemaysometimesrefertoa“super- class” (or subphylum), “superorder” (or subclass), and The traditional dichotomy between the animal kingdom subspecies (sometimes called a race). and the plant kingdom has been completely abandoned This latter concept is especially useful in chemo- sincethe1960s.Systemsofclassificationhavenotstopped taxonomy,whichisthestudyoftherelationshipbetween evolving in the face of advances in microbiology and the membership of a species in a given biological group molecular biology, and it is probable that an “absolute and the chemical composition of this same species in classificationsystem,”basedonthegenome,willbeavail- relation to other members of the taxonomic group; one maythenspeakofa“chemicalrace.”2Thisconceptmakes able before the end of the twenty-first century. The merit of Whittaker was to construct a coherent it possible to distinguish between species that are classification system based on two fundamental criteria: indistinguishable in terms of traditional systematics but the degree of cellular evolution; and the mode of repro- which nevertheless exhibit different biochemical, and duction.Astudyofthefirstcriterionmakesitpossibleto oftenbiological,characteristics.Ontheotherhand,some- divide the living world into two great “groups”: Monera times a thorough chemical analysis of an organism per- mits it to be “repositioned” in the traditional taxonomic and Eukaryotes. Monera consist only of primitive cells without a true nucleus, and for this reason they are also system.Thisprocesswouldseemtohavegreatpotentialin thesearchforvariousspecificchemicalstructureswhichit called Prokaryotes. Monera are thus almost exclusively representedbyunicellularorganismsorbycertaincolonial wouldbefruitlesstoseekingroupsoforganismsinwhich forms of these primitive cells; the most well-known of they are lacking; however, one should nevertheless be cautious in the use of these relationships – it should theseaggregatedformsaretheCyanobacteria(Cyanophy- cea or blue-green algae). In contrast, Eukaryotes always always be remembered that in the majority of cases “one only finds what one is looking for.” consist of “advanced” cells containing a nucleus and, unlike Monera, they can be either unicellular or multi- cellular organisms (see Table 1.1). After the distinction between prokaryotes and eukar- yoteshasbeenmade,thesecondcriterioncanbeapplied. 1TheLatin“genus–species”unitisalwayswritteninitalics;thenameof According to their mode of reproduction, the eukaryotes thegenusalwaystakesacapitalinitialletter,whereasthenameofthe can be divided into three separate “groups”: Fungi, Plan- speciesneverdoes(e.g.,Homosapiens). tae,andAnimalia.Fungihaveonlynon-flagellatecellsand 2However,severaldifferenttermsareused,suchascohort,suborder, reproduce by spores, either sexually or asexually. Plantae superfamily,tribe,orsubgenus. EncyclopediaofMarineNaturalProducts,SecondEdition.Jean-MichelKornprobst. #2014Wiley-VCHVerlagGmbH&Co.KGaA.Published2014byWiley-VCHVerlagGmbH&Co.KGaA. 4 1 SystemsofClassificationofLivingOrganisms:GreatStepsinChemicalandBiologicalEvolution Table1.1 Summaryofthemaincharacteristicsofprokaryoteand The third edition of Five Kingdoms by Margulis and eukaryotecells.a Schwartz (1998) gives an excellent presentation of the evolution of the concepts underlying various systems Characteristic Prokaryotes Eukaryotes for the classification of living organisms. Dimensions 1–10mm;almostallare 10–100mm;unicellular unicellularorganisms andmulticellular organisms 1.2 DNA Includedinanucleoid, Thepresenceofanucleus Discovery of Archaea: Ternary Model of withoutamembrane equippedwitha Living Organisms (Woese and Fox, 1977) ornucleus;no membrane.Thenucleus chromosomes containschromosomes madeofDNA,RNAand Intheearly1970s,biologistsdiscoveredanunusualgroup proteins(histones). ofprokaryoticorganismslivingin“extreme”habitats,such Cellular Absent Present as underwater and terrestrial hydrothermal vents or in organelles hypersaline water. It soon became apparent that certain Cytoskeleton No Yes,withmicrotubules biochemical characteristics of these new bacteria – in andactin Enzymesfor Associatedin Gatheredinstructures particular, the structure of their membrane lipids – photosynthesis chromatophores equippedwitha wereverydifferentfromthoseof“traditional”prokaryotes, boundtothecell membrane:the andin1977thebiochemistCarlWoesedescribedthemas membrane. chloroplasts Archaebacteria.4Aternaryclassificationofthelivingworld Photosynthesismaybe therefore became possible by considering only one crite- anaerobicoraerobic rion: the fundamental characteristics of the cell. There Anaerobic/ Themajorityare Almostallareaerobic Aerobicb anaerobic thus remain two kingdoms of prokaryotes and a single Nitrogen-fixing Yes No kingdom of eukaryotes. Thanks to the techniques of organisms molecularbiology–andhencethestudyofthenucleotide sequences of ribosomal RNA 16S5 – very reliable results aAdaptedfromMargulisandSchwartz(1998)andNelsonandCox(2000). arebeingobtainedontheevolutionaryrelationshipsofthe bObligateorfacultative. organisms of the three kingdoms. It is generally agreed that there was an “ancestor” common to all of the orga- developfromanembryowithalternationofgenerations:a nisms now living – LUCA (Last Universal Common haploidgametophyteandadiploidsporophyte.Asforthe Ancestor) – which led to the first separation between Animalia,theyhavesexualreproduction,withtwohaploid theEubacteriaandasecond“ancestor,”whichlaterdiver- gametesgivingrisetoadiploidzygote,anddevelopfroma sifiedintoArchaebacteriaontheonehand,andEukaryotes blastula (aclusterofcells equippedwithacentral cavity). on the other hand (see Figure 1.1). The fifth kingdom of Protoctista, is defined only by Withinthesethreekingdoms,biologistscurrentlyagree exclusion (Whittaker, 1959). Protoctista are unicellular thatthefollowingprincipaldivisionscanbedistinguished, or multicellular eukaryotes which are not fungi, plants, which all have marine representatives: or animals; it is in this kingdom that the marine algae (cid:1) Archaebacteria: Methanogens, Extreme Halophiles, reside.Thisfifthkingdom,whichisdefinedbyexclusion Hyperthermophiles. ratherthanhavingacleardefinition,istheweakpointof (cid:1) Eubacteria: Proteobacteria, Cyanobacteria, Prochloro- Whittaker’ssystem,whichwastoevolveintoanewsystem phyta. –basedontheternaryconcept–whichiscurrentlyused. (cid:1) Eukaryotes: Protista, Fungi, Plantae, Animalia. Whittaker’sfivekingdomssystemwasslightlymodifiedby the American biologist Stephen Jay Gould in the mid- 1970s (Gould, 1977). In this case, the first criterion remains unchanged, but the second criterion – based on the mode of reproduction – is replaced by a “degree of cell complexity” criterion, which consists simply of separating unicellular from multicellular eukaryotes. The first group are then called Protista,3 and the second 4ThetermArchaeaiscurrentlypreferredtoArchaebacteria, group remains divided into fungi, plants, and animals. Archaeobacteria,ArchebacteriaorArcheobacteria,butallfivetermscan befoundintheliterature. 5SstandsfortheSvedbergunitofsedimentationvelocityby ultracentrifugation(1S¼10(cid:3)13second).TheodorSvedberg(1884–1971) wontheNobelPrizeinChemistryin1926forhisinventionofthe 3Inordertoavoidanyconfusionwiththe“Protoctista”ofWhittaker. ultracentrifuge. 5 1.3CharacteristicsofCellMembranes Eubacteria Eubacteria Prokaryotes LUCA ? Archaea LUCA ? Archaea Eukaryotes Eukaryotes Figure1.1 “Evolutionarydiagramsofthethree“kingdomsoflife.”Theright-handdiagramillustratescertainuncertaintiesabouttheparaphilyof Archaea(seeChapter2;seealsoLangworthy,1982;Grantetal.,1985;Mancusoetal.,1985;Woese,1987;Forterre,1990,1991,1999;Madiganand Marrs,1997;Woese,1987;Purvesetal.,1998a,1998b;Schleper,1999;Martin,2005). 1.3 is in this case bound to the hydrophobic part by ester Characteristics of Cell Membranes bonds. The stabilizing element of Eubacteria is either a carotenoid – the central part is thus always terpenic, but Atthephysicalinterfacebetweenthelivingandnonliving, formedbytwicetimesfourunitsbound“tail-to-tail”–ora cell membranes are essentially composed of phospholi- hopanoid. These polycyclic triterpenes are considered to pids,whichgloballyexhibitastructurewithapolarhydro- be ancestors of the sterols, which we find as stabilizing philicendandanonpolarhydrophobicend.Theassembly elementsinalleukaryotecellmembranes.Morethan100 constitutes a kind of “bi-dimensional liquid,” sometimes sterolsareknown,whichallderivefromhopane,apenta- calleda“fluidmosaicmodel.”Thehydrophilic“heads”are cyclichydrocarbonfoundinallsediments,coalsandfossil immersedintheaqueousmedium(water)oneachsideof hydrocarbons, everywhere on Earth (Ourisson, Albrecht, the double layer, and the hydrophobic “tails” congregate andRohmer,1984;Ourisson,1986;Ourissonetal.,1994). inside the membrane. The thermodynamic stability of Therefore, the three fundamental types of cell – Archae- such a “liquid” is maximal for a thickness of 40A(cid:4) bacteria,Eubacteria,andEukaryotes–whosemembranes (4nm),andthemechanicalpropertiesofthemembranes are entirely formed by a bilayer of phospholipids, differ resultfromthecombinationofthelipidswithstabilizing chemically by the nature of the stabilizing elements of elements, which maintain the cohesion of the assembly. these double layers. There is, however, a “chemical con- Thechemicalstudyofthesestabilizingelementsallowsa stancy”inallthis:isoprenicunitswhichwefindassociated cleardistinctionbetweenthecellmembranesofthethree in different arrangements, but which are present from fundamental types of organism. archaebacterial lipids tosterols, byway of hopanoidsand For archean membranes, the stabilizing elements are carotenoids. Figure 1.2 summarizes the role of these glycerol ethers, mostly tetraethers, with the hydrophobic membrane-stabilizing elements. central partbeing terpenic,andthus branched out(twice ThemembranephospholipidsofArchaeaareverycom- times four units bound “head-to-head”). For the mem- plexandcontainstructuralelementsthatareunknownin branesofotherprokaryotecells(Eubacteria)andalleukar- the other membranes, such as gulose, aminopentanete- yotecells,thehydrophilicpartofthestabilizingelements trol,sulfuricestersandsulfonicacids,amongothers(Koga Archaebacteria Prokaryotes Eukaryotes glycerol tetraethers bacterial carotenoids hopanoids sterols (cables) (rivets) (nails) (nails) Figure1.2 Stabilizingelementsofthethreefundamentalmodelsofcellmembranes(accordingtoOurisson,1986). 6 1 SystemsofClassificationofLivingOrganisms:GreatStepsinChemicalandBiologicalEvolution and Morii, 2005). Some more detailed information on particularly the case for benthic organisms, which live theseaspectsispresentedinChapter6,whichdealswith anchored to the seabed or submerged structures, and the Archaea (see also Kates, 1986; de Duve, 1987; whose nutrients come from the circulation of seawater Bretscher, 1988; Sargent, 1989; Moldoveanu et al., 1990; throughtheirbodies;theseincludeallthespongesanda Prasad,1996;Purvesetal.,1998c;VandeVossenbergetal., largenumberofcnidarians(e.g.,corals).Glycerolethers 1999;Barenholz,2002;Ohvo-Rekil€aetal.,2002;andVigh and hopanoids have thus been pinpointed in sponges, et al., 2005). themostprimitivepluricellulareukaryotes;itistherefore Chemists know how to extract membrane phospholi- possible to deduce from their presence that these pids in order to study their diverse constituents: these sponges are accommodating Archaebacteria and/or include classes of phospholipids, fatty acids and unsa- Eubacteria. It is, on the other hand, more complicated ponifiable elements. The chemical study of membrane todeterminetheoriginofthesesubstances,whichcould phospholipids thus allows confirmation, in a multi- beasymbioticrelationshiporcouldresultfromthefood cellularorganism,ofthepresenceofcellscharacterizing Web.Figure1.3presentssomeexamplesofthesevarious prokaryotic or archaebacterial symbionts. This is membrane stabilizers. OH O O O O OH hydrophilic head central hydrophobic chain hydrophilic head (glycerol) (glycerol) two regular (head to tail) diterpenic chains linked head to head Glycerol tetraethers Archaebacterial membranes HO OH hydrophilic head central hydrophobic chain hydrophilic head two regular (head to tail) diterpenic chains linked tail to tail OH OH OH HO OH HO HO HO bacteriohopanetetrol bacteriohopanetetrol Bacterial carotenoids and hopanoids Prokaryote membranes HO OH cholesterol cholesterol sterols Eukaryote membranes Figure1.3 Examplesofvariousstabilizersofcellmembranes. 7 1.5MainStagesofEvolution 1.4 Rohmer,1999,2003,2008;Bocharetal.,1999;Eisenreich, Some Recent Data on Terpenes Rohdich, and Bacher, 2001; Fellermeier et al., 2001; Rohdich et al., 2001; Dubey, Bhalla, and Luthra, 2003; Terpenes (i.e., all the components formed starting from Kuzuyama and Seto, 2003; Meyer et al., 2003; Kashman isoprene units) are very numerous in Nature, and their and Rudi, 2004; Dudareva et al., 2005; Oldfield, 2010). numberisestimatedatapproximately23000.Terpenesare Lastly,athirdpathwayleadingtothebiologicalisoprene stilldefinedasproductsofthemetabolismofisopentenyl units startingfrom leucine ishighlightedinthe parasitic diphosphate (ex-pyrophosphate), which comes from ace- ProtozoanLeishmaniamexicanaandinbothMyxobacteria, tylcoenzymeAbymeansofametabolicpathwaythathas MyxococcusxanthusandStigmatellaaurantiaca.ForEugle- been studied in great detail: the mevalonic acid (MVA) nobiont, leucine is a constituent of sterols (Ginger et al., pathway. This definition has become ambiguous since 2001) and, for the two bacteria, leucine labeled with 1988, when Rohmer and his team showed that another deuterium was found to be a component in a sesqui- pathway of biosynthesis of biological isoprene units – terpene and one of its degraded derivatives, geosmin isopentenyl diphosphate (IPP) and dimethylallyl (Dickschat et al., 2005; see also Chapter 8). Myxobacteria diphosphate (DMAPP)6 – was carried out by certain alsoincorporateleucine,isoleucine,andvalineiniso-and Eubacteria by way of pyruvic acid and 3-phosphate D- anteiso- long-chain fatty acids, which occur frequently in glyceraldehyde.Thecondensationofthesetwoprecursors, sponges (Bode et al., 2005; see also Chapter 19). followedbythelossofacarbondioxidemolecule,leadsto These three biosynthetic pathways leading to terpenes an intermediate with five carbon atoms, 1-deoxy-D- andsterolsaresummarizedinFigures1.4and1.5,which xylulose-5-phosphate (DXP or DOXP). This is later show, as a concrete example, the biosynthesis of phytol transformed into another five-carbon derivative, 2-C- followingtheMEPpathwaybytheCyanobacteriaSynecho- methyl-D-erythritol-4-phosphate(MEP),whichfinallygives cystis sp. isopentenyl diphosphate. This new pathway for the bio- Let us remember that the isopreneunit is traditionally synthesisofterpenesissummarizedbytheinitialsDXP/ represented according to the diagram below, with two MEP or DOXP/MEP, and is now simplified as MEP. “heads”(h)andone“tail”(t),althoughsomeauthorsadopt Duringthelastdecadeofthetwentiethcentury,thisnew the reverse convention (one “head” and two “tails”): biosyntheticpathwayhasbeenintensivelystudied,anditis h t now established that it is not limited to Eubacteria (Pro- t h h t karyotes), but that it also occurs in many eukaryote orga- nisms such as Plasmodium falciparum, the agent of Commonlyusedconvention Less-usedconvention malaria. The MEP pathway is present in the majority of bacteria, and some of them – such as Streptomyces sp. – have both the MEP and the MVA pathways, which are 1.5 expressed differently from each other. The MEP pathway Main Stages of Evolution leads to the production of menaquinone prenylated chains, and the MVA pathway leads to the prenylated chainsofthesecondarymetabolites,whichhaveantibiotic In a synthetic way, one can distinguish three principal activity(Rohmer,2003).Inthealgaeandhigherplants,the phases of evolution: MVA pathway is localized in the cytoplasm and leads to (cid:1) From the formation of the ocean to the first eukaryote ubiquinones, to triterpenes, and to sterols, whereas the cell: chemical evolution. MEP pathway is localized in the chloroplasts. Among (cid:1) From monocellular eukaryotes to humans: biological nonphotosynthetic organisms, the MEP pathway has evolution. been shown to occur in some Apicomplexa such as Plas- (cid:1) The human “adventure:” cultural evolution. modiumfalciparum,whichmakesitreasonabletosuppose thatthe searchfor enzyme inhibitorsof thestages ofthe The common thread joining these three stages is the MEPpathwaycouldleadtonewantimalarialcompounds progressive control of the environment: from organisms (Casseraetal.,2004).Manyarticlesanddevelopmentson thatdonothaveanymeansofperceivingtheenvironment these two biosynthetic pathways of terpenes have been inwhichtheylive,tohumanbeingswhohavetheabilityto published (in particular, those of Ourisson et al., 1987; modify and, to some extent, control their environment, OurissonandAlbrecht,1992a,1992b;Rohmeretal.,1993; ranging from some local improvements to the total destruction of the planet. We illustrate the great stages of chemical and biological evolution by using the visual time scale of the vulcanologist Haroun Tazieff (1914– 6TheacronymsIPPandDMAPParewellknownandarestillused, althoughtheyrefertothetermpyrophosphateinsteadofdiphosphate. 1998), whereby time is represented by imagining a stack 8 1 SystemsofClassificationofLivingOrganisms:GreatStepsinChemicalandBiologicalEvolution DXP / MEP pathway MVA pathway leucine pathway O O O NH2 2 C3 CO2 H O P 3 C2 Co-A C6 CO2H OH (a) (b) (c) O C6 CO2H (d) C5 COSCoA (e) C5 COSCoA (f) OH OH C5 O O P C6 C6 HO2C COSCoA (g) OH CoA DXP (h) HO2C O S 1-deoxy- D-xylulose-5-P OH OH OH C5 O P MVA mevalonic ac./ MEP OH OH HO2C OH O O mevalonolactone 2C-methyl- C6 D-erythritol-4-P O O C5 O P OOPOO C6 HO2C OH O-PP (i) OH OH O-PP O-PP IPP C5 DMAPP (a): acetylcoenzyme A ; (b): glyceraldehyde-3-phosphate ; (c): leucine ; (d) α-ketoisocaproic acid (e): isovalerylcoenzyme A ; (f): 3-methylcrotonylcoenzyme A ; (g): 3-methylglutaconylcoenzyme-A (h): 3-methyl-3-hydroxy-glutarylcoenzyme A ; (i) 2-C-methyl-D-erythritol-2,4-diphosphate Figure1.4 Biosyntheticpathwaysforterpenes. of sheets of paper each 0.1 mm thick, where each sheet oxygen that the anaerobic primitive cells evolved into represents 10 000 years – that is, the entirety of human aerobic Prokaryotes, and the Cyanobacteria (which for a historysincetheNeolithicRevolution.Usingthisimagery, longtimeweretermedblue-greenalgae)canberegarded the principal stages of evolution are visualized in as our true ancestors. Figure 1.6. The aerobic Prokaryotes then evolved into Eukaryotes Although theories explaining the appearance of water thanks to another spectacular “invention,” the cell onEartharestillthesubjectofmuchdebate,thewholeof nucleus, which nevertheless required one billion the oceans appeared soon after the formation of our years. At that stage one can consider that the chemical planet, and it took even less time – approximately 200 evolution stage is complete and the biological evolution millionyears–untilthe first prokaryoticcellsappeared. stage is about to begin. However, nearly two-and-a-half These were obviously strict anaerobes, since oxygen did billionyearswillhavebeennecessarytotakeusfromthe not yet exist in the atmosphere. Approximately 400 first anaerobic Prokaryotes to the first pluricellular million years later, certain Prokaryote cells “invented” organisms that are entirely composed of eukaryote cells theprocessofphotosynthesisthat,veryslowly,produced and are all aerobes. This stage was the longest of all the oxygen,whichnowseemstohavestabilizedatabout21% stagesinthehistoryoflife,andoneofthereasonswhyit of the atmospheric gases. It is undoubtedly thanks to took so long is perhaps related to the fundamental 9 1.6ExceptionalResourcesofMarineBiodiversity CHO paper heights Ages OH (meters) (millions years) 13C 2D HO human story (0.1 mm) 0,01 OH 45.5 first human traces (8 cm) 8 OH OH D-glucose HO O O2C OH HO 35.5 first pluricellular organisms 1 000 OH mevalonate DXP O-P first eukaryotes 1 500 30.5 OPP OPP IPP IPP 20,5 aerobic photosynthetic bacteria 2 500 14.5 photosynthesis 3 000 phytol OH first unicellular organisms 3 400 Figure1.5 Biosynthesisofphytolbythenon-mevalonicpathwayin 11,5 theCyanobacteriumSynechocystissp.UTEX24707(accordingto Proteau,1998). 7.5 formation of the ocean 3 800 5.5 first rocks 4 000 problem of the recognition of self-awareness, or at least formation of the Earth 4 550 the recognition of the distinction between self and non- All "human story" is represented by the last page (0.1 mm) on the top of the stack (45.5 meters) self. The biological evolution started in the ocean with the (0.1 mm = 10,000 years, 1 million years = 1cm, 1 billion years = 10 meters of paper) diversification of all eukaryotes, after which these orga- Figure1.6 Mainstagesofevolution:scaleoftimeaccordingtoH. Tazieff.Formoredetaileddataonthedates,see:LeGal(1991);De nismsgraduallybecameadaptedtofreshwatersbymeans Reviers(2002,Vol.1,p.105);PintiandMarty(2002);Selosse(2005); oftheestuaries,thenrivers.Finally,someorganisms“left andLecointreandLeGuyader(2006). thewater,”adaptedtoanair-breathingwayoflife,andwent ontoconquertheterrestrialrealm.Despitetheimmense diversityofmulticellularorganismsonEarth,thekingdom oftheEukaryotesis,infact,veryrecentbecausetheyhave Cairns-Smith, 1985; Brack, 1990; Brack and Raulin, all appeared in the last billion years, although many of 1991; Gould, 1994; Orgel, 1994; Blandin, 1996; Forterre, them – like the dinosaurs – have now completely disap- 1997;Levinton,1997;deDuve,1998;Purvesetal.,1998b; peared.Ontheotherhand,aconsiderablediversityofvery Doolittle, 2000; Knoll, 2000; Hazen, 2001; Rossello-Mora primitive organisms – the two Kingdoms of Archaebac- and Amann, 2001; Maurette, 2002; De Ricql(cid:2)es, 2005. teria and Eubacteria – appeared nearly three-and-a-half billion years ago, are still very much present, and are widely distributed throughout the globe. Many articles 1.6 anddevelopmentshavebeenpublished,andthefollowing Exceptional Resources of Marine coveronlyaminorpartoftheavailableliteratureconcern- Biodiversity ing Evolution: Dickerson, 1978; Schopf, 1978; Valentine, 1978; Schwartz, 1981; Dejours, 1982; Halstead, 1984; All formsof life first appeared inthe oceans and arestill there, from Archaea to mammals – which explains why marine biodiversity is much richer than terrestrial and 7TheabbreviationUTEXmeansthatthestockcomesfromtheUniversity freshwaterbiodiversity.Thismarinebiodiversityisexam- ofTexas;Figure1.5summarizeslabelingexperimentscarriedoutwith 13C-labeled1-13C-D-glucose,6,6-2H2-D-glucose,and2-13C-D-glucose. ined in more detail in the following chapters although, 10 1 SystemsofClassificationofLivingOrganisms:GreatStepsinChemicalandBiologicalEvolution generally speaking, it can be observed that there is a Dickschat, J.S., Bode, H.B., Mahmud, T., Mu€ller, R., and Schulz, S. greater biodiversity in phyla and genera in the marine (2005)Anoveltypeofgeosminbiosynthesisinmyxobacteria.J.Org. environment than in the terrestrial environment. At the Chem.,70,5174–5182. Doolittle,F.(2000)L’arbreduvivant:unbuissonfoisonnant.Pourla species level it is a different story, however, and bio- Science,270,84–89. diversity within species is greater on the ground than in Dubey,S.,Bhalla,R.,andLuthra,R.(2003)Anoverviewofthenon- theoceans.Thereasonusuallyputforwardforthisisthat mevalonatepathway forterpenoidbiosynthesis in plants. J. Biosci., the marine environment is, overall, more constant, and 28,637–646. therefore species have evolved very littlewithin the same Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., and Gershenzon, J. (2005) The phylum. On the other hand, the very large variety of nonmevalonate pathway supports both monoterpene and biotopes on the ground has resulted in a vast amount of sesquiterpeneformationinsnapdragonflowers.Proc.NatlAcad.Sci. adaptation in species belonging to the same order or the USA,102,933–938. same family, or even the same genus. Eisenreich, W., Rohdich, F., and Bacher, A. (2001) Deoxyxylulose phosphatepathwaytoterpenoids.TrendsPlantSci.,6,78–84. Fellermeier,M.,Raschke,M.,Sagner,S.,Wungsintaweekul,J.,Schuhr, C.A., Hecht, S., Kis, K., Radykewicz, T., Adam, P., Rohdich, F., Selection of Documentary Resources Eisenreich, W., Bacher, A., Arigoni, D., and Zenk, M.H. (2001) Studiesonthenon-mevalonatepathwayofterpenebiosynthesis:the roleof2C-methyl-D-erythritol2,4-cyclodiphosphateinplants.Eur.J. References Biochem.,268,6302–6310. Forterre,P.(1990)Rencontredutroisi(cid:2)emetype:lesArchaebact(cid:3)eries. Barenholz, Y. (2002) Cholesterol and other membrane active sterols: ScienceetVie,173,30–42. frommembraneevolutionto“rafts”.Prog.LipidRes.,41,1–5. Forterre,P.(1991)Lesoriginesdelavie.Biofutur,November,14–17. Blandin, P. (ed.) (1996) L’Evolution, Bordas, Mus(cid:3)eum National Forterre,P.(1997)Alarecherchedel’anc^etredetouteslescellules,in d’HistoireNaturelle,Paris,96pp. L’Evolution,vol.14,DossierPourlaScience,pp.88–92. Bochar,D.A.,Friesen,J.A.,Stauffacher,C.V.,andRodwell,V.W.(1999) Forterre, P. (1999) Les hyperthermophiles sont-ils nos anc^etres? La Biosynthesis of mevalonic acid from acetyl-CoA, in Comprehensive Recherche,317,36–43. Natural Products Chemistry, vol. 2 (eds D.H. Barton and K. Ginger, M.L., Chance, M.L., Sadler, I.H., and Goad, L.J. (2001) The Nakanishi),Elsevier,Amsterdam,Oxford,NewYork,pp.15–44. biosyntheticincorporationoftheintactleucineskeletonintosterolby Bode, H.B., Dickschat, J.S., Kroppenstedt, R.M., Schulz, S., and thetrypanosomatidLeishmaniamexicana.J.Biol.Chem.,276,11674– Mu€ller,R.(2005)Biosynthesisofiso-fattyacidsinmyxobacteria:iso- 11682. evenfattyacidsarederivedbya-oxidationfromiso-oddfattyacids.J. Gould, S.J. (1977) Ever since Darwin: Reflections in National History, Am.Chem.Soc.,127,532–533. NortonandCompany,NewYork;see,inparticular,Chapter13. Brack,A.(1990)Lespremierssignesdevie,inL’Evolution,laNaissance Gould,S.J.(1994)L’(cid:3)evolutiondelaviesurlaTerre.PourlaScience,206, desEsp(cid:2)eces,SciencesetVie,vol.173,pp.22–29. 90–98. Brack,A.andRaulin,F.(1991)L’(cid:3)evolutionChimiqueetlesOriginesdela Grant,W.D.,Pinch,G.,Harris,J.E.,DeRosa,M.,andGambacorta,A. vie,Masson,Paris,181pp. (1985)Polarlipidsinmethanogenictaxonomy.J.Gen.Microbiol.,131, Bretscher,M.(1988)Lesmol(cid:3)eculesdelamembranecellulaire,inLes 3277–3286. Mol(cid:3)ecules de la vie, Biblioth(cid:2)eque Pour la Science, Diffusion Belin, Halstead, L.B. (1984) A la Recherche du Pass(cid:3)e: La vie sur le Terre, des Paris, pp. 62–71. This work contains a whole series of articles on OriginesauxPremiersHommes,Hachette,207pp. cellularmembranes. Hazen,R.(2001)Lesmin(cid:3)erauxetlanaissancedelavie.PourlaScience, Cairns-Smith, A. (1985) Les premiers organismes vivants. Pour la 284,38–44. Science,August,24–33. Kashman, Y. and Rudi, A. (2004) On the biogenesis of marine Cassera, M.B., Gozzo, F.C., D’Alexandri, F.L., Merino, E.F., del isoprenoids.Phytochem.Rev.,3,309–323. Portillo,H.A.,Peres,V.J.,Almeida,I.C.,Eberlin,M.N.,Wunderlich, Kates,M.(1986)TechniquesofLipidology,Elsevier,Amsterdam,Oxford, G., Wiesner, J., Jomaa, H., Kimura, E.A., and Katzin, A.M. (2004) NewYork,464pp. Themethylerythritolphosphatepathwayisfunctionallyactiveinall Knoll,A. (2000)Delavieprimitiveaux^etresmacroscopiques,inLa intraerythrocyticstagesofPlasmodiumfalciparum.J.Biol.Chem.,279, ValsedesEsp(cid:2)eces,vol.28,DossierPourlaScience,pp.28–35. 51749–51759. Koga,Y.andMorii,H.(2005)Recentadvancesinstructuralresearch de Duve, C. (1987) La surface cellulaire, avec une introduction aux on ether lipids from Archaea including comparative and membranesetauxlipides,inUneVisiteGuid(cid:3)eedelaCelluleVivante, physiologicalaspects.Biosci.Biotechnol.Biochem.,69,2019–2034. Biblioth(cid:2)equePourlaScience,Belin,Paris,pp.41–52. Kuzuyama,T.andSeto,H.(2003)Diversityofthebiosynthesisofthe deDuve,C.(1998)Lanaissancedescellulescomplexes,inLesSoci(cid:3)et(cid:3)es isopreneunits.Nat.Prod.Rep.,20,171–183. Cellulaires,vol.19,DossierpourlaScience,pp.14–21. Langworthy, T.A. (1982) Lipids of bacteria living in extreme De Reviers, B. (2002) Biologie et Phylog(cid:3)enie des Algues, vol. 1, Belin, environments.Curr.Top.Membr.Trans.,17,45–77. Paris,352pp. LeGal,Y.(1991)Diversit(cid:3)edesorganismesmarins.Biofutur,November, De Ricql(cid:2)es, A. (2005) L’(cid:3)evolution selon Gould. Les Dossiers de La 12–13. Recherche:L’histoiredelavie,19,14–21. Lecointre,G.andLeGuyader,H.(2006)ClassificationPhylog(cid:3)en(cid:3)etiquedu Dejours,P.(1982)Laviedansl’eauetdansl’air,inLaPhysiologiedes Vivant,3rdedn,Belin,Paris,560pp. Animaux, Biblioth(cid:2)eque Pour la Science, Diffusion Belin, Paris, Levinton,J.(1997)LeBigBangdel’(cid:3)evolutionanimale,inL’Evolution, pp.18–26. DossierPourlaScience,pp.48–55. Dickerson, R. (1978) L’(cid:3)evolution chimique et l’origine de la vie, in Madigan,M.andMarrs,B.(1997)Lesorganismesdel’extr^eme.Pourla L’Evolution,Biblioth(cid:2)equePourlaScience,DiffusionBelin,pp.17–35. Science,236,86–92. 11 SelectionofDocumentaryResources Mancuso, C.A., Odham, G., Westerdahl,G., Reeve, J.N., and White, Purves,W.K.,Heller,H.C.,Orians,G.H.,andSadava,D.(1998c)Life: D.C. (1985) C , C and C isoprenoid homologues in glycerol TheScienceofBiology,5thedn,SinauerAssociates,SunderlandMA; 15 20 25 dietherphospholipidsofmethanogenicarchaebacteria.J.LipidRes., see,inparticular,Chapters4(OrganizationofCells)and5(Cellular 26,1120–1125. Membranes). Margulis,L.andSchwartz,K.V.(1998)FiveKingdoms,3rdedn,W.H. Rohdich,F.,Kis,K.,Bacher,A.,andEisenreich,W.(2001)Thenon- FreemanandCo.,SanFrancisco,520pp.Thisbookisaccompanied mevalonate pathway of isoprenoids: genes, enzymes and byaCDROM. intermediates.Curr.Opin.Chem.Biol.,5,535–540. Martin, W. (2005) Archaebacteria (Archaea) and the origin of the Rohmer, M. (1999) A mevalonate-independent route to isopentenyl eukaryoticnucleus.Curr.Opin.Microbiol.,8,630–637. diphosphate,inComprehensiveNaturalProductsChemistry,vol.2(eds Maurette,M.(2002)L’originecosmiquedel’airetdesoc(cid:3)eans.Pourla D.H. Barton and K. Nakanishi), Elsevier, Amsterdam, Oxford, Science,291,36–43. NewYork,pp.45–67. Meyer, O., Grosdemange-Billiard, C., Tritsch, D., and Rohmer, M. Rohmer, M. (2003) Mevalonate-independent methylerythritol (2003) Isoprenoid biosynthesis via the MEP pathway: synthesis of phosphate pathway for isoprenoid biosynthesis: elucidation and (3R,4S)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric distribution.PureAppl.Chem.,75,375–387. analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1- Rohmer, M. (2008)From molecularfossils of bacterial hopanoids to deoxy-D-xylulose5-phosphatereducto-isomerase.Org.Biomol.Chem., the formation of isoprene units: discovery and elucidation of the 1,4367–4372. methylerythritolphosphatepathway.Lipids,43,1095–1107. Moldoveanu, N., Kates, M., Montero, C.G., and Ventosa, A. (1990) Rohmer,M.,Knani,M.,Simonin,P.,Sutter,B.,andSahm,H.(1993) Polar lipids of non-alkaliphilic Halococci. Biochim. Biophys. Acta, Isoprenoid biosynthesis in bacteria: a novel pathway for the early 1046,127–135. stepsleadingtoisopentenyldiphosphate.Biochem.J.,295,517–524. Nelson,D.L.andCox,M.M.(2000)Chapter2,inLehninger,Principlesof Rossello-Mora, R. and Amann, R. (2001) The species concept for Biochemistry,3dedn,WorthPublishers,NewYork,pp.20–52. prokaryotes.FEMSMicrobiol.Rev.,5,39–67. Ohvo-Rekil€a,H.,Ramstedt,B.,Leppim€aki,P.,andSlotte,J.P.(2002) Sargent, J.R. (1989) Ether-linked glycerides in marine animals, in Cholesterol interactions with phospholipids in membranes. Prog. MarineBiogenicLipids,Fats,andOils,vol.1(ed.R.G.Ackman),CRC LipidRes.,41,66–97. Press,BocaRaton,pp.175–198. Oldfield, E. (2010) Targeting isoprenoid biosynthesis for drug Schleper,C.(1999)LesArchaebact(cid:3)eriessontparminous.LaRecherche, discovery:Benchtobedside.Acc.Chem.Res.,43,1216–1226. 317,30–33. Orgel,L.(1994)L’originedelaviesurlaTerre.PourlaScience,206, Schopf, W. (1978) L’(cid:3)evolution des premi(cid:2)eres cellules, in L’Evolution, 80–88. Biblioth(cid:2)equePourlaScience,DiffusionBelin,pp.65–83. Ourisson, G. (1986) Des p(cid:3)etroles (cid:2)a l’(cid:3)evolution des biomembranes. Schwartz, A.W. (1981) Chemical evolution: the genesis of the first L’actualit(cid:3)eChimique,May,23–30. organiccompounds,in MarineOrganicChemistry,vol.31(edsE.K. Ourisson, G. and Albrecht, P. (1992a) Hopanoids. 1. Geohopanoids: Duursma and R. Dawson), Elsevier Oceanographic Series, themostabundant naturalproductsonearth?Acc.Chem.Res.,25, Amsterdam,Oxford,NewYork,pp.7–30. 398–402. Selosse,M.A.(2005)Quelleparent(cid:3)eentrelestroisgrandeslign(cid:3)eesdu Ourisson,G.andAlbrecht,P.(1992b)Hopanoids.2.Biohopanoids:A vivant?LesDossiersdeLaRecherche,19,42–45.Thisarticleisapartof novelclassofbacteriallipids.Acc.Chem.Res.,25,403–408. averyinterestingspecialissuededicatedtoTheHistoryofLife. Ourisson, G., Albrecht, P., and Rohmer, M. (1984) L’origine Valentine, J. (1978) L’(cid:3)evolution des plantes et des animaux microbienne des combustibles fossiles. Pour la Science, October, pluricellulaires, in L’Evolution, Biblioth(cid:2)eque Pour la Science, 56–66. DiffusionBelin,pp.84–97. Ourisson, G., Rohmer, M., and Poralla, K. (1987) Prokaryotic VandeVossenberg,J.,Driessen,A.J.-M.,andKonings,W.N.(1999)La hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. survie(cid:2)al’abridesmembranes.LaRecherche,317,54–56. Microbiol.,41,301–333. Vigh, L., Escrib(cid:3)a, P.V., Sonnleitner, A., Sonnleitner, M., Piotto, S., Ourisson, G., Nakatani, Y., Plobeck, N., Brisson, A., Schmutz, M., Maresc,B.,Horv(cid:3)ath,I.,andHarwood,J.L.(2005)Thesignificanceof Birault, V., Pozzi, G., and Eifler, S. (1994) Comment (cid:3)etaient lipidcompositionformembraneactivity:newconceptsandwaysof constitu(cid:3)ees les membranes les plus primitives? in Les Syst(cid:2)emes assessingfunction.Prog.LipidRes.,44,303–344. Mol(cid:3)eculaires Organis(cid:3)es, Imagesde la Recherche, 2, CNRS,pp. 83–86. Whittaker, R.H. (1959) On the broad classification of organisms. Q. This work also contains many other articles relating to cellular Rev.Biol.,34,210–226. membranes. Woese,C.R.(1987)Bacterialevolution.Microbial.Rev.,51,221–271. Pinti,D.L.andMarty,B.(2002)Lameresttomb(cid:3)eeduciel,inLaMer, Woese, C.R. and Fox, G.E. (1977) Phylogenetic structure of the No.sp(cid:3)ecial335,LaRecherche,pp.14–17. prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. Prasad, R. (1996) Manual on Membrane Lipids, Springer-Verlag, USA,74,5088–5090. Heidelberg,Germany,224pp. Proteau, P.J. (1998) Biosynthesis of phytol in the cyanobacterium Synechocystis sp. UTEX 2470: Utilization of the non-mevalonate Websites pathway.J.Nat.Prod.,61,841–843. Purves,W.K.,Heller,H.C.,Orians,G.H.,andSadava,D.(1998a)Life: TheScienceofBiology,5thedn,SinauerAssociates,SunderlandMA; http://eaps.mit.edu/geobiology/biomarkers/hopanoids.html see, in particular, Chapters 24 (Origins of the Life on Earth), 25 Aboutbiomarkers.PartofasiteoftheMIT(MassachusettsInstituteof (Bacteria and Archaea: Domain Prokaryotes), and 26 (Protists and Technology,Boston,MA)dedicatedtogeobiology. theDawnofEukaryotes). http://www-archbac.u-psud.fr/meetings/lestreilles/treilles_frm.html Purves,W.K.,Heller,H.C.,Orians,G.H.,andSadava,D.(1998b)Life: AlarecherchedeLUCA. TheScienceofBiology,5thedn,SinauerAssociates,SunderlandMA; http://www.ucmp.berkeley.edu/archaea/archaeasy.html see,inparticular,PartsIII(ProcessofEvolution)andIV(Evolution Archaea:Systematics. andVariety). http://library.thinkquest.org/C004367/be.shtml

Description:
2-nd Edition. - Wiley, 2014. - 1865 p. - Now in its second edition and further expanded by 15%, this encyclopedic work is one of the largest resources on marine natural products. It contains an exhaustive and systematic listing of more than 9,000 formulae and 10,000 references with around 650 releva
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.