ebook img

Encyclopedia of Geodesy PDF

286 Pages·19.893 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Encyclopedia of Geodesy

A Attitude Determination Attitudedetermination,whichistheprocessofdetermin- ing the attitude parameters, is accomplished by employing GabrieleGiorgi oneormultipleattitudesensors.Theseeithersensechanges InstituteforCommunicationsandNavigation,Technische in the object’s rotational dynamic (e.g., gyroscopes) or Universita¨tM€unchen,Munich,Germany exploit directional measurement of an external signal or forcefield(e.g.,startrackers,magnetometers).Thesesensors provide the raw measurements necessary to extract an esti- Definition mateoftheobject’sattitude. Attitude determination. The process of determining the ori- entationofanobjectwithrespecttoareferenceframe. AttitudeRepresentation Thespatialorientationisformallydescribedbythetransfor- Introduction mation matrix R between a body-fixed orthogonal frame F andareferenceorthogonalframeF : body ref Thecharacterizationofanobject’spositioninspace,beita vehicleorameasuringinstrument,requirestheknowledgeof F ¼RF body ref bothitslocationandattitude(viz.orientation)withrespectto areferenceframe. Since the transformation is applied to orthogonal frames, Attitude determination is a prerequisite for a number of both the lengths of the canonical vectors that identify the applicationsthatnecessitateknowingtheorientationinorder main axes and their mutual angles must be preserved. The to execute a task. These include autonomously navigating necessaryandsufficientconditiontomaintaintheseproper- space,air,sea,andlandvehicles,orpointinginstrumentsat ties is to employ an orthogonal rotation matrix as transfor- desired targets, such in spaceborne and airborne altimetry, mation operator: RTR¼I . An additional constraint must 3 satellite laser ranging, radar interferometry, and optical alsobeimposed:thedeterminantoftherotationmatrixmust tracking. bepositive.Thisisnecessarytoavoidphysicallyinadmissi- The attitude of an object is formally identified by the ble rotations that cause axes reflections rather than pure relativeorientationbetweenaframeofcoordinatesattached rotations. to the object and a reference frame (cf. Figure 1). The Theorthogonalityconstraintreducesthedegreesoffree- orientationisdescribedthroughasetofreal-valuedvariables domassociatedtoanarbitraryrotationtothree,whichisthe knownasattitudeparameters. Differentlyfromthedescrip- minimum number of attitude parameters necessary to tion of a spatial position, for which Euclidean coordinates describe the orientation. Attitude parameterizations usually suffice, multiple choices of attitude parameters are employing a minimal set of attitude parameters are the available,withdifferentanalyticalandnumericalproperties Euler angles (Eulero, 1776), matrix exponentiation (Golub (Shuster, 1993). Examples of attitude parameters are the andVanLoan,1996),andtheRodriguesvectors(Rodrigues, Euler angles (such as the heading, elevation, and bank 1840). These minimal set representations cannot avoid the angles)orthequaternions. presenceofsingularities,foritisnotpossibletoparameterize #SpringerInternationalPublishingSwitzerland2015 E.W.Grafarend(ed.),EncyclopediaofGeodesy, DOI10.1007/978-3-319-02370-0_2-1 2 AttitudeDetermination AttitudeDetermination, Figure1 Theattitudeof anobjectisidentifiedbythe mutualorientationbetween anorthogonalreference frameandabody-attached orthogonalframe. certainparticularorientationswithoutincurringinnonfinite systems (MEMS) measure the Coriolis force generating values or ambiguous couplings of the associated attitude from vibrating elements subject to rotations of the plane of parameters (Stuelpnagel, 1964). An example of a singular vibration (Ghodssi and Lin, 2011); special magnetometers configurationisthe“gimbal-lock”whenusingEulerangles, measure the variation of the rotation axis of a spinning in which two parameters can no longer be decoupled, thus superconductor developing a magnetic moment whose axis degenerating into a “locked” state that requires aligns with the axis of rotation (London-moment effect) reinitialization. (Fairbanketal.,1988;Everittetal.,2007). A larger number of parameters (four) are used in the The complementary class of contingent attitude sensors quaternion (Hamilton, 1844–1850), the Euler axis-angle uses an external source of information to infer the spatial (Eulero,1776)andtheCayley-Klein(Klein,1875)parame- orientation.Thisclassofsensorsincludes:startrackersand terizations, which avoid singular configurations but may horizon sensors, which extract the object’s orientation with increasethecomputationalloadrequiredfortheirhandling. respecttoagroupofselectedstarsorhorizonlinesofclose celestialbodies;magnetometers,whichsensethedirectionof anexternalmagneticfield;gyrocompasses,whichdetectthe AttitudeSensors gravity field vector; global navigation satellite system (GNSS) antenna arrays, which exploit the interferometry Attitude sensors divide into two categories: self-contained principle between the received satellite signals at closely systems that sense the variation of the rotational dynamics spacedantennas. withbuilt-indevices,andcontingentsystemsthatuseexter- Theseattitudesensorsmakeavailabledirection-of-arrival nalsourcestoinfertheobject’sorientation. measurements from an external source whose position is Inertial measurement units are attitude sensors of the known. Multiple such measurements enable estimating the formertype.Asthebodyundergoesarotationalmotion,an object’sorientationatanygivenmoment,providedtheexter- inertial sensor reacts proportionally to the amplitude of the nalsourceofinformationisavailable. motion.Differenttypologiesofinertialsensorsareavailable: gimbaled gyros exploit the gyroscopic effect, maintaining thesameangularmomentumduringrotationalmaneuvering AttitudeEstimationandCapabilities (Wertz,1978);ringlasergyros(RLG)andfiber-opticgyros (FOG)arebasedontheinterferometryprinciple,providinga The information collected by either independent or contin- measureoftheperturbationstriggeredbyrotationalacceler- gent attitude sensors may not give a direct reading of the ations (Anderson et al., 1994); micro electro-mechanical orientation (e.g., the sensed rotational variations need to be AttitudeDetermination 3 integrated over time), and it needs further elaboration to Cross-References obtainausableestimateoftheattitude. Whenemployingself-containedsystems,theorientationis ▶CoordinateTransformation–Geodesy determinedthroughdead-reckoning:aknowninitialorienta- ▶GPS,ReferenceSystems tionispropagatedusingthesensedrotationalvariations.Due ▶HighPrecisionGNSS to the accumulation of measurement errors over time, self- ▶INS–Geodesy contained systems are evaluated both in terms of precision ▶MultisensorSystems (e.g.,angularrandomwalk,ARW)andstability,withthelatter givingaconservativevalueoftheexpectedbiasovertime.The capabilities of marketed self-contained systems vary from a ReferencesandReading 1/10 (cid:2) 1deg/√hrARWand5 (cid:2) 30deg/hrstabilityforlower- gradeMEMS,upto0.0001deg/√hrARWand0.0001deg/hr Anderson,R.,Bilger,H.R.,andStedman,G.E.,1994.Sagnaceffect:a centuryofEarth-rotatedinterferometers.AmericanJournalofPhys- stability for higher-grade RLGs and FOGs (Barbour, 2010). ics,62(11),975–985. Purpose-built devices are capable ofhigher performance; an Barbour, N. M., 2010. Inertial navigation sensors. DTIC Document. exampleistheLondonmomentgyroemployedintheGravity Cambridge,MA:CharlesStarkDraperLab. Probe-B mission, capable of 3 (cid:3) 10(cid:4)8 deg sensitivity and Diebel,J.,2006.Representingattitude:Eulerangles,unitquaternions, 10(cid:4)11deg/hrstability(Everittetal.,2007). androtationvectors.Technicalreport,StanfordUniversity. Eulero, L., 1776. Formulae generales pro translatione quacunque Most contingent systems exploit the measured angular corporumrigidorum(Generalformulasforthetranslationofarbi- direction of the line of sight to an external source, whose trary rigid bodies). Novi Commentarii Academiae Scientiarum positionisknown(e.g.,thelocationofanavigationsatellite Petropolitanae,20,189–207. Everitt, F., Parkinson, B., and Kahn, B., 2007. The gravity probe oraclusterofstars;amapofthemagneticfieldoftheEarth). B experiment. Post flight analysis – Final report. Project report: Oneormultiplesuchmeasurementsarethenusedtoestimate NASA,StanfordUniversityandLockheedMartin. the orthogonal matrix that rotates a body-attached frame to Fairbank,J.D.,Michelson,P.F.,andEveritt,C.W.,1988.NearZero:New thereferenceframeofchoice(anotablesolutionisinWahba, FrontiersofPhysics,1stedn.NewYork:W.H.Freeman,p.959pp. Ghodssi,R.,andLin,P.,2011.MEMSMaterialsandProcessesHand- 1965). The capabilities of dependent systems are propor- book.Berlin:Springer.1188pp. tional to the quality of the raw directional measurement. Giorgi, G., Teunissen, P. J. G., Verhagen, S., and Buist, P. J., 2010. Star trackers are among the most precise sensors, capable TestinganewmultivariateGNSScarrierphaseattitudedetermina- of 1/10000 (cid:2) 1/1000 deg angular resolutions sensitivity tion method for remote sensing platforms. Advances in Space Research,46(2),118–129. (Liebe, 1995; Tapley and Bettadpur, 2004). The precision Golub,G.H.,andVanLoan,F.C.,1996.MatrixComputations,3rdedn. of attitude sensors based on the interferometry principle, Baltimore,MD:TheJohnsHopkinsUniversityPress. such as GNSS antenna arrays, also depend on the spatial Goodall,C.,Carmichael,S.,andScannell,B.,2013.Thebattlebetween separation between the elements used to obtain the direc- MEMSandFOGsforprecisionguidance.EDNMagazine. Hamilton,W.R.,1844–1850.OnQuaternions;oronanewsystemof tional measurement, with wider separations yielding higher imaginariesinAlgebra.InDavid,R.W.(ed.),TheLondon,Edin- angular resolutions. GNSS antenna arrays are capable of burghandDublinPhilosophicalMagazineandJournalofScience providing angular estimates with a precision of reaching (3rdSeries).xxv-xxxvi,2000.Taylor&Francis,London 0.1degperunitlength(onemeter)(Giorgietal.,2010). Hofmann-Wellenhof,B.,Legat,K.,andWieser,M.,2003.Navigation. PrinciplesofPositioningandGuidance.NewYork:Springer.420pp. Attitude determination and control systems often make Klein,F.,1875.UeberBina¨reformenmitlinearentransformationenin use of integrated solutions, in which two or more attitude SichSelbst.MathematischeAnnalen,9,183–208. sensor typologies are used. Typical examples are inertial Liebe,C.C.,1995.Startrackersforattitudedetermination.IEEEAES sensors coupled with multiple GNSS antennas, with the SystemsMagazine,10(6),10–16. Rodrigues, O., 1840. Des lois geometriques qui regissent les d´ former providing higher angular measurement precision eplacementsd’unsystemesolidedansl’espace,etlavariationdes andthe latter providingthe biasstabilitynecessarytocom- coordonnees provenant de ses d´eplacements consideres pensate for the drift of the inertial sensor (Hofmann- independamment des causes qui peuvent les produire. Journal de Wellenhofetal.,2003). MathematiquesPuresetAppliquees,5,380–440. Shuster,M.D.,1993.Asurveyofattituderepresentations.TheJournal oftheAstronauticalSciences,41(4),439–517. Stuelpnagel,J.,1964.Ontheparameterizationofthethree-dimensional Summary rotationgroup.SIAMReview,6(4),422–430. Tapley, B. D., and Bettadpur, S., 2004. The gravity recovery and climateexperiment:missionoverviewandearlyresults.Geophysi- Attitudedeterminationistheprocessofassessingtheorien- calResearchLetters,31,L09607. tation of an object in space. Attitude sensors provide the Wahba, G., 1965. Problem 65-1: a least squares estimate of satellite informationnecessarytoestimatethesetofattitudeparam- attitude.SIAMReview,7(3),409. eters that describe the object’s orientation with respect to a Wertz, J. R., 1978. Spacecraft Attitude Determination and Control. Dordrecht:Kluwer.858pp. givenreferenceframe. B Best Integer Prediction in Mixed Models analogue of Kolmogorov–Wiener prediction (Grafarend, 1976). P.J.G.Teunissen Theabovemethodsofpredictioncanbecastintheframe- GNSSResearchCentre,DepartmentofSpatialSciences, workofeitherleast-squarespredictionorofbestlinearunbi- CurtinUniversityofTechnology,Perth,Australia ased prediction (Goldberger, 1962; Moritz, 1972; Hardy, DepartmentofGeoscienceandRemoteSensing,Delft 1977;Harville,1990;Christensen,1991;Koch,1999;Stein, UniversityofTechnology,Delft,TheNetherlands 1999). A generalization of the above predictors is possible when the trend parameters are permitted to be of the mixed real-integer type (Teunissen, 2007). Such is for instance Definitions needed to handle the models of carrier phase–based global andregionalnavigationsatellitesystems(GNSS/RNSS),very Best predictor: Predictor having the smallest mean square long baseline interferometry(VLBI),or interferometric syn- predictionerror(best)ofallpredictorswithinacertainclass. thetic aperture radar (InSAR) (see, e.g., Strang and Borre, Mixed integer model: Model of observation equations 1997; Teunissen and Kleusberg, 1998; Hanssen, 2001; and having both real-valued and integer-valued unknown Hofmann-Wellenhof etal., 2007). Examples of such GNSS/ parameters. RNSSs are GPS (USA), Glonass (Russia), BeiDou (China), Galileo(EU),QZSS(Japan),andIRNSS(India). Introduction BestLinearPrediction Thepredictionofspatiallyand/ortemporallyvaryingvariates findsitsapplicationinvariousspatial andEarth science dis- We speak of prediction if a function P:ℝm7!ℝr of an ciplines. In physical geodesy, where it is used with a trend- observablerandomvectoryℝmisusedtoguesstheoutcome signal-noisemodeltopredictfunctionalsofthegravityfield, of another random, but unobservable, vector pℝr it is known as least-squares collocation (Krarup, 1969; (an underscore is used to denote random variables). The Moritz,1978;SansoandTscherning,2003).Thetrend-signal- relationbetweenyandpisassumedgivenas noisemodelalsoformsthebasisofpredictioningeostatistics, (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) (cid:1) (cid:3) whereoptimallinearpredictioniscalledKriging,namedafter y A e y Q Q ¼ xþ , D ¼ yy yp (1) Krige (1951) and further developed by Matheron (1970). p Ap ep p Qpy Qpp When the trend is unknown, it is referred to as universal Kriging,andwhenthetrendisabsentorsettozero,itiscalled with known coefficient matrices A and A , unknown p simple Kriging (Herzfeld, 1992; Wackernagel, 1995; Olea, nonrandom vector xℝn, and zero-mean random vectors e 1999). Although collocation and Kriging have been devel- ande withknowndispersion.D(.)denotesthemathematical p opedforspatiallyvaryingvariates,theyarecloselyconnected dispersion operator. If P(y) is a predictor of p , then with the fundamental work of Kolmogorov (1941) and e ¼p(cid:2)PðyÞisitspredictionerror.Thepredictorisunbiased p Wiener (1949) on the interpolation, extrapolation, and ifE(e )=0,inwhichE(.)denotesthemathematicalexpec- p smoothing of stationary time series. In the absence of a tation operator. The mean squared error (MSE) E (||e ||2) is p trend, collocation and simple Kriging become the spatial #SpringerInternationalPublishingSwitzerland2015 E.W.Grafarend(ed.),EncyclopediaofGeodesy, DOI10.1007/978-3-319-02370-0_3-1 2 BestIntegerPredictioninMixedModels often used to judge the performance of a predictor, e.g., QBLUP ¼ QBLP þA Q AT (Sorenson,1970;AndersonandMoore,1979;Scharf,1991; ^ep^ep ^ep^ep pjy ^x^x pjy (5) QBLP ¼ Q (cid:2)Q Q(cid:2)1Q Koch, 1999). A predictor is c(cid:4)alled “(cid:5)best” if it (cid:4)succee(cid:5)ds in ^ep^ep pp py yy yp minimizingtheMSE.Since E jje jj2 ¼traceE e eT ,the p p p with Q the variance matrix of the BLUE of x and ^x^x MSE is equal to the trace of the error variance matrix of an Apjy ¼Ap(cid:2)QpyQ(cid:2)yy1A.Since Q^BeL^eUP (cid:5)Q^BeL^eP; theBLUPpre- p p p p unbiased predictor. Best unbiased predictors are therefore dictionerrorisnevermoreprecisethanthatoftheBLP.Thisis sometimes also called ‘minimum error variance unbiased’ duetoadditionaluncertaintythatentersbyhavingtoestimate predictors. Since one can minimize the MSE over different xaswell. classes of functions, there are different predictors that are ‘best’. Best Predictor (BP): If no restrictions are placed on the BestIntegerEquivariantPrediction class of predictors, the best predictor of p is equal to the conditionalmean, The BLUP is not the “best” predictor in case the parameter (cid:4) (cid:5) vectorxofEq.1isintegervalued.Tocoverthiscase,another j p^ ¼E p y (2) classofpredictorsneedstobeconsidered,onethattakesthe BP integerness of x into account. Assume that y in Eq. 1 is ForcomputingtheBP,informationontheprobabilitydensity perturbedbyAz,withzℤn.Thenxgetsperturbedbyzand function(PDF)ofyandpisneeded. p getsperturbedbyApz.Whendesigningapredictorof p,it Best linear predictor (BLP): Within the class of linear seemsreasonable torequest that any such predictor, being a predictors(LPs),thebestpredictortakestheform function of y, behaves in the same way with regard to such integer perturbations. Such predictors were introduced in (cid:4) (cid:5) ^p ¼pþQ Q(cid:2)1 y(cid:2)y (3) Teunissen (2007) as integer equivariant (IE) predictors. As py yy BLP thisclassencompassestheclassoflinearunbiasedpredictors, (cid:4) (cid:5) (cid:4) (cid:5) theMSEoftheBLUPwillnever besmaller thanthatofthe withp ¼E p andy ¼E p .IncontrasttotheBP,theBLP bestIEP. onlyneedsknowledgeaboutthefirsttwomoments,themean Integer Rounding Prediction (IRP): Let xˆ denote the and the variance. The BP and BLP become identical in the integer vector that is obtained by rounding all the entries of Gaussiancase,i.e.,wheny andp arenormallydistributed. ^x totheirnearestinteger.Then Best linear unbiased prediction (BLUP): The need to know the means in Eq. 3 is not always practical. This need pˆ = A ⎡xˆ⎦+Q Q−1(y−A⎡xˆ⎦) ð6Þ can be circumvented by using their known relation (cf. 1) IRP p py yy when minimizingthe MSE overthe class oflinearunbiased predictors(LUPs).ThisgivestheBLUPas isanexampleofanIEP.Itfollowsbyreplacing^xinEq.4with (cid:4) (cid:5) theintegervector xˆ.OtherIEPscanbeobtainedinasimilar ^p ¼Ap^x þQpyQ(cid:2)yy1 y(cid:2)A^x (4) way.Ifonereplaces xˆ byanyotherintegerestimator,e.g.,the BLUP integer bootstrapped estimator or the integer least-squares estimator (Teunissen, 1999), then again an IEP of p is inwhich^x ¼argminxℝnjjy(cid:2)Axjj2Qyyisthebestlinearunbi- obtained. ased estimator (BL(cid:6)U(cid:7)E) of(cid:6)x(cid:7)ðthe weighted squared norm is Best integer equivariant predictor (BIEP): None of the definedasjj:jj2M ¼ : TM(cid:2)1 : Þ.ThustheBLUPEq.4follows IEPs that follow from replacing ^x in Eq. 4 by an integer fromtheBLPEq.3byreplacingthemeansp andy bytheir estimatorarebestintheMSEsense.Incasepandyarejoint BLUEs. Gaussian,thebestIEPisgivenas Since the above three classes of predictors are related as (cid:4) (cid:5) LarUePor(cid:3)derLePd(cid:3)asP,theminimumMSEsoftheirbestpredictors ^pBIEP ¼Ap^xBIEþQpyQ(cid:2)yy1 y(cid:2)A^xBIE (7) MSEðBPÞ(cid:4)MSEðBLPÞ(cid:4)MSEðBLUPÞ with Sinceallthreebestpredictorsareunbiased,thesameordering holds true for their error variance matrices. The BLP and BLUPerrorvariancematricesaregivenas BestIntegerPredictioninMixedModels 3 1 1 0.5 0.5 0 0 –0.5 –0.5 –1 –1 –1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1 BestIntegerPredictioninMixedModels,Fig.1 (Left)Two-dimensionalscatterplotsof^x(green)andcorresponding^x (blue).(Right)Theblue BIE arrowsshowthemappingfrom^xto^x (cf.8).TheILSpull-inregionsareshownashexagons BIE (cid:8) (cid:9) 1 forthereal-valuedcase xℝn,butnotiftheparametersare X exp 2jj^x (cid:2)zjj2Qx^^x integervalued,xℤn.Lettheleast-squaresobjectivefunction ^xBIE ¼ zX (cid:8)1 (cid:9) (8) forprediction,basedonthelinearmodelEq.1,begivenas zZn exp jj^x (cid:2)zjj2 Q 2 ^x^x (cid:1) (cid:3) (cid:1) (cid:3)(cid:1) (cid:3) zZn (cid:4) (cid:5) y(cid:2)Ax T W W y(cid:2)Ax F x,p ¼ p(cid:2)A x Wyy Wyp p(cid:2)A x (10) A two-dimensional example of the workings of this p py pp p BIEestimatorisshowninFig.1.Theaboveisbasedonthe all-integercase,xℤn.Inmanyapplications,like,e.g.,those Least-squares prediction (LSP): With the weighted(cid:4)leas(cid:5)t- squares predictor of p defined as ^p ¼argmin F x,p , ofGNSSandInSAR,apartoftheunknownparameterswill LSP xℝn,Pℝr theLSPtakestheform be integer valued, while the other part will be real valued. For this mixed integer/real parameter case, with (cid:4) (cid:5) (cid:6) (cid:7) x¼ xT1,xT2 T, x1  ℤq, x2  ℤn(cid:2)q, the class of mixed ^pLSP ¼Ap^xLS(cid:2)W(cid:2)pp1Wpy y(cid:2)A^xLS (11) integer equivariant predictors (MIEP) is characterized by (cid:6) (cid:7) PðyþA1zþA2aÞ¼G y þAp1zþAp2a,8yℝm,zℤq,aℝn(cid:2)q with ^xLS ¼argminxℝnjjy(cid:2)Axjj2M, M¼W(cid:2)yy1jp, and .Thebestpredictorwithinthisclassisgivenas Wyyjp ¼Wyy(cid:2)WypW(cid:2)pp1Wpy. If the weight matrix in Eq. 10 (cid:4) (cid:5) ischosenastheinverseofthevariancematrixinEq.1,then ^pBMIEP ¼Ap^xBMIEþQpyQ(cid:2)yy1 y(cid:2)A^xBMIE (9) Wyyjp ¼Q(cid:2)yy1 and W(cid:2)pp1Wpy ¼(cid:2)QpyQ(cid:2)yy1,andtheLSPEq.11 h i reducestotheBLUPofEq.4. T with ^x ¼ ^xT ,^xT , ^x ¼^x (cid:2)Q Q(cid:2)1 Integer least-squares prediction (ILSP): With the (cid:4) BMIE(cid:5) 1BIE 2BIEP 2BIEP 2 ^x2^x1 ^x1^x1 weighted integer least-squares pred(cid:4)ictor(cid:5)of p defined as ^x (cid:2)^x , and ^x given by Eq. 8, with ^x, z, and Q 1 1BIE 1BIE ^x^x the minimizer ^p ¼argmin F x,p , the ILSP takes replacedby^x1,z1,andQ^x1^x1,respectively. theform ILSP xℤn,Pℝr (cid:4) (cid:5) WeightedLeast-SquaresPrediction p^ILSP ¼Ap^xILS(cid:2)W(cid:2)pp1Wpy y(cid:2)A^xILS (12) There is a close connection between best linear unbiased with ^xILS ¼argminxZnjjy(cid:2)Axjj2M, M¼W(cid:2)yy1jp and estimators and weighted least-squares estimators. The Wyyjp ¼Wyy(cid:2)WypW(cid:2)pp1Wpy. The ILSP is a member of the weighted least-squares estimatorof xbecomes theBLUE of class of IEPs, just like the LSP is a member of the class of x, if the weight matrix is chosen as the inverse variance LUPs.However,unliketheLSP,whichbecomesidenticalto matrix, Wyy ¼Q(cid:2)yy1. This equivalence extends to prediction the BLUP if the weight matrix is set equal to the inverse 4 BestIntegerPredictioninMixedModels 0.75 0.75 0.25 0.25 –0.25 –0.25 –0.75 –0.75 –0.75 –0.25 0.25 0.75 –0.75 –0.25 0.25 0.75 Best Integer Prediction in Mixed Models, Fig. 2 (Left) theILSpull-inregion,whilethescatterplotof^x isconcentratedin BIE Two-dimensional scatter plots of ^x (green) and corresponding ^x onlyafewpoints.(Right)Thebluearrowsshowthemappingfrom^xto BIE (blue).AsthePDFof ^x ispeaked,thescatterplotof ^x residesinside ^x BIE variance matrix, the ILSP does not become identical to the Cross-References BIEPinthiscase.TheILSPwillthenstillhaveapoorerMSE performancethantheBIEP. ▶GNSSAmbiguityResolutionandValidation Depending on the peakedness of the PDF of ^x, the ILSP ▶GNSSMeteorology andBLUPbecomelimitsoftheBIEP.Iftheweightmatrixis ▶GPSLeveling chosenequaltotheinversevariancematrix,then ▶HighPrecisionGNSS ▶PrecisePointPositioning(PPP) lim ^p ¼^p and lim ^p ¼^p (13) s7!1 BIEP BLUP s7!0 BIEP ILSP whereQ^x^x ¼s2G^x^x.Thedifferencebetween^pBIEPand^pBLUP ReferencesandReading getssmaller,thesmallertheintegergridsizegetsinrelationto Anderson,B.D.O.,andMoore,J.B.,1979.OptimalFiltering.Engle- thesizeandextentofthePDFof^x.Similarly,thedifference woodCliffs,NJ:Prentice-hall,Vol.11. between ^p and ^p gets smaller, the more peaked the Christensen,R.,1991.LinearModelsforMultivariate,TimeSeries,and BIEP ILSP PDFof^x becomesinrelationtotheintegergridsize.Thisis SpatialData.NewYork:Springer. Goldberger,A.S.,1962.Bestlinearunbiasedpredictioninthegeneral- illustratedinthetwo-dimensionalexampleofFig.2. ized linear regression model. Journal of the American Statistical Association,57(298),369–375. Grafarend, E., 1976. Geodetic applications of stochastic processes. Summary PhysicsoftheEarthandPlanetaryInteriors,12,151–179. Hanssen, R. F., 2001. Radar Interferometry: Data Interpretation and ErrorAnalysis.SanDicgo:Springer,Vol.2. Best prediction tailored for mixed integer models is needed Hardy, R. L., 1977. Least squares prediction. Photogrammetric Engi- for carrier phase–based sensors such as used in global and neeringandRemoteSensing,43(4),475–492. regionalnavigationsatellitesystems,verylongbaselineinter- Harville, D. A., 1990. BLUP (best linear unbiased prediction) and beyond.InAdvancesinStatisticalMethodsforGeneticImprovement ferometry, or interferometric synthetic aperture radar. The ofLivestock.Berlin/NewYork:Springer,pp.239–276. class of predictors that exploits the mixed integer property Herzfeld, U. C., 1992. Least-squares collocation, geophysical inverse oftheirmodelsistheclassofintegerequivariantpredictors. theory and geostatistics: a bird’s eye view. Geophysical Journal Thebestintegerequivariantpredictor(BIEP)hasthesmallest International,111(2),237–249. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2007. meansquaredpredictionerrorwithinthisclassandthiserror GNSS–GlobalNavigationSatelliteSystems:GPS,GLONASS,Gali- isneverlargerthanthatofthebestlinearunbiasedpredictor leo,andMore.Berlin:Springer. (BLUP). Koch, K. R., 1999. Parameter Estimation and Hypothesis Testing in LinearModels.Berlin:Springer. Kolmogorov, A., 1941. Interpolation and extrapolation of stationary randomsequences.IzvestiiaAkademiiNaukSSSR,SeriiaMatemati- cheskiiaPubl,5,3–14. Krarup, T., 1969. A Contribution to the Mathematical Foundation of PhysicalGeodesy.Copenhagen:DanishGeodætiskInstitut,Vol.44. BestIntegerPredictioninMixedModels 5 Krige, D., 1951. A statistical approach to some basic mine valuation Sorenson, H. W., 1970. Least-squares estimation: from Gauss to problemsonthewitwatersrand.JournaloftheChemical,Metallur- Kalman.IEEESpectrum,7(7),63–68. gicalandMiningSocietyofSouthAfrica,52,119–139. Stein, M. L., 1999. Interpolation of Spatial Data: Some Theory for Matheron, G., 1970. The Theory of Regionalized Variables and Its Kriging.NewYork:Springer. Applications.Fontainebleau:EcoledesMinesdeParis.Cahiersdu Strang, G., and Borre, K., 1997. Linear Algebra, Geodesy, and GPS. CentredeMorphologieMathematique.212pp. Wellesley:WellesleyCambridgePress. Moritz,H.1972.AdvancedLeast-SquaresMethods,Vol.175.Depart- Teunissen, P.J. G., 1999. An optimality property of theinteger least- mentofGeodeticScience,OhioStateUniversityColumbus. squaresestimator.JournalofGeodesy,73,587–593. Moritz, H., 1978. Least-squares collocation. Reviews of Geophysics, Teunissen,P.J.G.,2007.Bestpredictioninlinearmodelswithmixed 16(3),421–430. integer/realunknowns:theoryandapplication.JournalofGeodesy, Olea, R. A., 1999. Geostatistics for Engineers and Earth Scientists. 81(12),759–780. Boston:Kluwer. Teunissen,P.J.G.,andKleusberg,A.(eds.),1998.GPSforGeodesy, Sanso,F.,andTscherning,C.C.,2003.Fastsphericalcollocation:theory 2ndedn.Berlin:Springer. andexamples.JournalofGeodesy,77(1–2),101–112. Wackernagel, H., 1995. Multivariate Geostatistics. Berlin/Heidelberg/ Scharf, L. L., 1991. Statistical Signal Processing. Reading, MA: NewYork:Springer. Addison-Wesley,Vol.98. Wiener,N.,1949.Extrapolation,Interpolation,andSmoothingofSta- tionaryTimeSeries.Cambridge:MITPress. G GNSS Ambiguity Resolution and Validation Mixed-IntegerModel SandraVerhagen Themixed-integermodelforGNSScanbewrittenas DepartmentofGeoscienceandRemoteSensing,Delft (cid:1) (cid:3) UniversityofTechnology,Delft,TheNetherlands y(cid:1)N AaþBb,Q , aℤn,bℝp (1) yy whereyisthem-vectorwithGNSScodeandphaseobserv- Definition ables, which is assumed to follow the normal distribution denoted by (cid:1)Nð(cid:3)Þ, with mean AaþBb and variance- GNSS ambiguity resolution. The process of estimating the covariance matrix Q . Furthermore, a is the n-vector with yy integerparametersofamixed-integermodel,basedontheir integer ambiguities and b the p-vector with remaining real-valued estimates and associated variance-covariance unknownreal-valuedparameters,suchasthepositioncoor- matrix. dinates, atmospheric delay parameters, and clock GNSSambiguityvalidation.Applyinganacceptancetest parameters. to decide whether or not the estimated integer ambiguities Themixed-integermodel(1)canbesolvedinthefollow- arereliableenough. ingthreesteps: 1. The float solution together with its variance-covariance Introduction matrixisobtainedfromstandardleast-squaresparameter estimation: The GNSS carrier-phase observations are ultra-precise but (cid:4) (cid:5) (cid:6)(cid:4) (cid:5) (cid:4) (cid:5)(cid:7) athmebseigsuoo-ucaslbleydainnteugnekrnaomwbnignuuimtibeseraroefrienstoeglveerdctyocltehse.irOcnocre- ab^^ (cid:1)N ab , QQab^^aa^^ QQab^^bb^^ (2) rectintegervalues,thecarrier-phaseobservationsstarttoact aspseudoranges with twoorders ofmagnitude betterpreci- In this step, the integer nature of the ambiguities is sionthanthecodeobservations.Intheearly1990s,thetheory discarded. forresolvingtheintegerambiguitieshasbeenlargelydevel- 2. An integer mapping I :ℝn7!ℤn is applied to the float oped,butresearchhasbeencarriedouteversinceonseveral ambiguities: aspects, such as the integer validation, computational effi- ciency,andpartialambiguityresolution.Anextensiveover- a^¼ Iða^Þ (3) viewofthetheorycanbefoundinTeunissen(2010). suchthata^ℤn. In addition, usually an acceptance test is applied, which should prevent that unreliable integer solutions arepropagated. 3. Iftheintegersolutionisaccepted,thefloatsolutionofthe ^ remainingparametersbwillbeadjusted: #SpringerInternationalPublishingSwitzerland2015 E.W.Grafarend(ed.),EncyclopediaofGeodesy, DOI10.1007/978-3-319-02370-0_6-1 2 GNSSAmbiguityResolutionandValidation b^¼b^(cid:4)Qb^a^Qa(cid:4)^a^1ða^(cid:4)a^Þ (4) theprecisionofthefloatsolutioningrey.Thepositionerrors forthe7%ofthesolutionscorrespondingtowronginteger If the probabilitythat a^ is correct is sufficientlyhigh, solutionstendtobeofthesameorderofmagnitudeasforthe theprecisionofb^willbeinlinewithhighprecisionofthe floatsolutionorareevenlarger.Thisdemonstratesontheone phasedata. hand that ambiguity resolution is the key to the very high precision and at the same time the need for appropriate Figure 1 shows a scatter plot of the horizontal float and acceptance testing in order to prevent incorrect integer fixed position errors based on 10,000 simulated samples of solutions. the float solution. In 93 % ofthe cases, the integer solution wascorrect,andthecorrespondingfixedsolutionsareshown IntegerEstimation ingreen.Thehighprecisionisclearlyvisible,ascomparedto The second step of solving the mixed-integer model is to 2 apply an integer mapping, followed by an acceptance test. The integer map is a many-to-one map, since many real- 1.5 valued vectors will be mapped to the same integer. This meansthatasubsetofℝn,calledpull-inregion,isassigned 1 to each integer. All vectors in a subset are mapped to the corresponding integer. The pull-in regions are translational 0.5 invariant over the integers and cover the whole space ℝn withoutgapsandoverlaps. 0 Three two-dimensional examples of pull-in regions are shown in Fig. 2, corresponding to integer rounding, integer bootstrapping,andintegerleast-squares.Thesearethecom- −0.5 monlyusedintegerestimatorsforGNSSapplications.Inthe figure,alsosimulatedfloatsolutionsareshown.Asanexam- −1 ple,allfloatsolutionsingreeninthiscasearemappedtothe integer[0 0]T. −1.5 Integerroundingisthemostsimpleintegerestimator:all entries of a^ are simply rounded to the nearest integer. The −2 correlationbetweentheambiguitiesisthusignored. −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 Integer bootstrapping is a generalization of integer GNSSAmbiguityResolutionandValidation,Fig.1 Scatterplotof rounding. In fact, it is a sequential conditional rounding. horizontalpositionerrorsforsimulatedfloatsolutions(greydots)and One starts with rounding the most precise float ambiguity, correspondingfixedsolutions.Inthiscase,93%ofthesolutionswere then calculates the float solution of the remaining correctlyfixed(greendots),and7%werewronglyfixed(reddots) 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 c] y 0 0 0 c [2 a −0.5 −0.5 −0.5 −1 −1 −1 −1.5 −1.5 −1.5 −1 0 1 −1 0 1 −1 0 1 a [cyc] a [cyc] a [cyc] 1 1 1 GNSSAmbiguityResolutionandValidation,Fig.2 Pull-inregionsforintegerrounding(left),integerbootstrapping(center),andintegerleast- squares(right).Simulatedfloatsolutionsareshown,wheregreenindicatesacorrectintegersolutionandred,anincorrectintegersolution

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.