ebook img

Enabling AI Applications in Data Science PDF

644 Pages·2021·20.711 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Enabling AI Applications in Data Science

Studies in Computational Intelligence 911 Aboul-Ella Hassanien Mohamed Hamed N. Taha Nour Eldeen M. Khalifa   Editors Enabling AI Applications in Data Science Studies in Computational Intelligence Volume 911 Series Editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. The books of this series are submitted to indexing to Web of Science, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink. More information about this series at http://www.springer.com/series/7092 Aboul-Ella Hassanien (cid:129) Mohamed Hamed N. Taha (cid:129) Nour Eldeen M. Khalifa Editors Enabling AI Applications in Data Science 123 Editors Aboul-Ella Hassanien MohamedHamed N.Taha Faculty of Computers Faculty of Computers andArtificialIntelligence andArtificialIntelligence CairoUniversity CairoUniversity Giza, Egypt Giza, Egypt Chairof the scientificResearch Group inEgypt CairoUniversity Giza, Egypt Nour EldeenM.Khalifa Faculty of Computers andArtificialIntelligence CairoUniversity Giza, Egypt ISSN 1860-949X ISSN 1860-9503 (electronic) Studies in Computational Intelligence ISBN978-3-030-52066-3 ISBN978-3-030-52067-0 (eBook) https://doi.org/10.1007/978-3-030-52067-0 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ArtificialIntelligenceandDataSciencearethemostusefultechnologiesthatcould powerfullyimprovethehumanlife.Thiswillbeachievedbymergingbothsciences in order to solve real complex problems in various fields. This book provides a detailed overview on the latest advancements and applications in the field of Artificial Intelligence and Data Science. AI applications have achieved great accuracyandperformancewiththehelpoftheadvancementsindataprocessingand storage. AI applications also gained power through the amount and quality of data which is the main core of data science. This book is aimed to introduce the state of the art in research on Artificial Intelligence with the Data Science. We accepted 28 chapters. The accepted chapters covered the following four parts: (cid:129) Part I—Artificial Intelligence and Optimization (cid:129) Part II—Big Data and Artificial Intelligence Applications (cid:129) Part III—IOT within Artificial Intelligence and Data Science (cid:129) Part IV—Artificial Intelligence and Security We thank and acknowledge all persons who were involved in all the stages of publishing.Thatincludes(authors,reviewers,andpublishingteam).Weprofoundly revalue their engagement and sustenance that was essential for the success of the “Enabling AI applications in Data Science” edited book. We hope the readers would equally love the chapters and their contents and appreciate the efforts that have gone into bringing it to reality. Giza, Egypt Aboul-Ella Hassanien Mohamed Hamed N. Taha Nour Eldeen M. Khalifa v Contents Artificial Intelligence and Optimization Stochastic SPG with Minibatches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Andrei Pătraşcu, Ciprian Păduraru, and Paul Irofti The Human Mental Search Algorithm for Solving Optimisation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Seyed Jalaleddin Mousavirad, Gerald Schaefer, and Hossein Ebrahimpour-Komleh Reducing Redundant Association Rules Using Type-2 Fuzzy Logic . . . . 49 Eman Abd El Reheem, Magda M. Madbouly, and Shawkat K. Guirguis Identifiability of Discrete Concentration Graphical Models with a Latent Variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Mohamed Sharaf An Automatic Classification of Genetic Mutations by Exploring Different Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Badal Soni, K. Suganya Devi, and Angshuman Bora Towards Artificial Intelligence: Concepts, Applications, and Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Djamel Saba, Youcef Sahli, Rachid Maouedj, Abdelkader Hadidi, and Miloud Ben Medjahed Big Data and Artificial Intelligence Applications In Depth Analysis, Applications and Future Issues of Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Badal Soni, Prachi Mathur, and Angshuman Bora Big Data and Deep Learning in Plant Leaf Diseases Classification for Agriculture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Mohamed Loey vii viii Contents Machine Learning Cancer Diagnosis Based on Medical Image Size and Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Walid Al-Dhabyani and Aly Fahmy Edge Detector-Based Hybrid Artificial Neural Network Models for Urinary Bladder Cancer Diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . 225 Ivan Lorencin, Nikola Anđelić, Sandi Baressi Šegota, Jelena Musulin, Daniel Štifanić, Vedran Mrzljak, Josip Španjol, and Zlatan Car Predicting Building-Related Carbon Emissions: A Test of Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Emmanuel B. Boateng, Emmanuella A. Twumasi, Amos Darko, Mershack O. Tetteh, and Albert P. C. Chan Artificial Intelligence System for Breast Cancer Screening Based on Malignancy-Associated Changes in Buccal Epithelium . . . . . . . . . . . 267 A. V. Andreichuk, N. V. Boroday, K. M. Golubeva, and D. A. Klyushin The Role of Artificial Intelligence in Company’s Decision Making . . . . 287 Djamel Saba, Youcef Sahli, and Abdelkader Hadidi The Virtues and Challenges of Implementing Intelligent ‘Student-Success-Centered’ System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Fatema Abdulrasool Boosting Traditional Healthcare-Analytics with Deep Learning AI: Techniques, Frameworks and Challenges. . . . . . . . . . . . . . . . . . . . . . . . 335 Prabha Susy Mathew and Anitha S. Pillai Factors Influencing Electronic Service Quality on Electronic Loyalty in Online Shopping Context: Data Analysis Approach. . . . . . . . . . . . . . 367 Ahlam Al-Khayyal, Muhammad Alshurideh, Barween Al Kurdi, and Said A. Salloum IOT within Artificial Intelligence and Data Science IoT Sensor Data Analysis and Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Mohamed Sohail Internet of Things Sensor Data Analysis for Enhanced Living Environments: A Literature Review and a Case Study Results on Air Quality Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Gonçalo Marques Data Science and AI in IoT Based Smart Healthcare: Issues, Challenges and Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Sohail Saif, Debabrata Datta, Anindita Saha, Suparna Biswas, and Chandreyee Chowdhury Contents ix IoT Sensor Data Analysis and Fusion Applying Machine Learning and Meta-Heuristic Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 Anindita Saha, Chandreyee Chowdhury, Mayurakshi Jana, and Suparna Biswas Geo-Spatiotemporal Intelligence for Smart Agricultural and Environmental Eco-Cyber-Physical Systems . . . . . . . . . . . . . . . . . . 471 Babak Majidi, Omid Hemmati, Faezeh Baniardalan, Hamid Farahmand, Alireza Hajitabar, Shahab Sharafi, Khadije Aghajani, Amir Esmaeili, and Mohammad Taghi Manzuri SaveMeNow.AI:AMachineLearningBasedWearableDeviceforFall Detection in a Workplace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Emiliano Anceschi, Gianluca Bonifazi, Massimo Callisto De Donato, Enrico Corradini, Domenico Ursino, and Luca Virgili Artificial Intelligence and Security Fraud Detection in Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Paul Irofti, Andrei Pătraşcu, and Andra Băltoiu Biomorphic Artificial Intelligence: Achievements and Challenges . . . . . 537 D. O. Chergykalo and D. A. Klyushin Medical Data Protection Using Blind Watermarking Technique . . . . . . 557 Abdallah Soualmi, Adel Alti, and Lamri Laouamer An Artificial Intelligence Authentication Framework to Secure Internet of Educational Things. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 Ahmed A. Mawgoud, Mohamed Hamed N. Taha, and Nour Eldeen M. Khalifa A Malware Obfuscation AI Technique to Evade Antivirus Detection in Counter Forensic Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 Ahmed A. Mawgoud, Hussein M. Rady, and Benbella S. Tawfik An Artificial Intelligence Resiliency System (ARS). . . . . . . . . . . . . . . . . 617 Ali Hussein, Ali Chehab, Ayman Kayssi, and Imad H. Elhajj Artificial Intelligence and Optimization

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.