ebook img

Employing stochastic differential equations to model wildlife motion PDF

24 Pages·2003·0.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Employing stochastic differential equations to model wildlife motion

BULLETIN BRAZILIAN MATHEMATICAL SOCIETY BullBrazMathSoc,NewSeries33(3),385-408 ©2002,SociedadeBrasileiradeMatemática Employing stochastic differential equations to model wildlife motion David R. Brillinger, Haiganoush K. Preisler, AlanA.Ager, John G. Kie and Brent S. Stewart Abstract. Theconcerniswiththepropertiesofstochasticdifferentialequations(SDEs) describingthemotionofparticlesin3dimensionalspace,onthesphereorintheplane. Thereisconsiderationofthecasewherethedriftfunctioncomesfromapotentialfunc- tion. ThereisstudyofSDEswhoseparametersareperiodicintime. Theseareuseful forincorporatingcircadianrhythminthebehavior. Thecasesofasealinafrozenlake inAlaska,anelephantsealmigratingagreatdistanceinthePacificOceanandofagroup of“free-ranging”elkinareserveinOregonarereferredto. Fortheelknonparametric estimatesofthedriftandvariancetermsofanSDEmodelarediscussedandevaluated and the fit of the model assessed. One issue is how to include explanatories, beyond locationandtime,inthemodel.Anumberofquestionsmotivatedbythewildlifemotion concerningdiffusionprocessesofthetypeconsideredareposedattheendofthepaper. Keywords: Circadianrhythm,Diffusionmodel,Elk,Elephantseal,Nonparametricre- gression,Potentialfunction,Ringed-seal,Stochasticdifferentialequation,Vectorfield. Mathematicalsubjectclassification: 60J60,62G08,62M10,70F99. 1 Introduction Theconcernistheuseofvector-valuedstochasticdifferentialequations(SDEs) to describe the motion of wildlife, with the particular cases of seals and elk focused on. To illustrate the character of the data Figure 1 presents the 3D trajectory of a ringed-seal in a frozen lake inAlaska, while Figure 2 shows the pathofanelephantsealmigratingoutintoandthenbackfromtheNorthPacific Ocean,andlastlyFigure3showsanelkmovingaroundinareserveinOregon. The trajectories of the animals are sampled about every 30 seconds, every 24 hoursandevery2hoursrespectively. Received25April2002. 386 D.R.BRILLINGER, H.K.PREISLER, A.A.AGER, J.G.KIE AND B.S.STEWART Z-120-100-80-60-40-20 010080Y604020 0 0 20 (cid:127)40 60 X80 100 120 140 Z00000002468 1-----021- 020406X08010(cid:127)0120140 0 20 40 6Y0 80 100 (cid:127) (cid:127) Z0 00000020864211------ 0204Y06080100140120100 80 X60 40 20 0 Z0 00000002246811------14012010080X60 40 20 0 100806040Y20 0 Figure 1: The trajectory of a ringed-seal diving into a frozen lake dot as seen from 4 viewpoints. The seal was released at the surface point indicated by the dot. InthecaseofthesealinAlaskathelakewasfrozenandtheconcernwashow didthesealfinditswaytoairholes. Thedotinthefigureindicatestheicehole intowhichtheanimalwasreleased. Thesealisseentoswimtothebottomfairly directly,toswimaroundthereforawhileandthentograduallycomebacktothe originalhole. Inthecaseoftheelephantsealsonewondershowtheynavigate? Where do they go? Is their speed approximately constant? Figure 2 indicates thatsometimestheyfollowclosetogreatcircleroutes. Inthecaseoftheelk,the reservemanagerswereconcernedwithquestionslike: Howtoallocateforage? Ischangetakingplace? Whataretheeffectsoftraffic? Whatisthesequenceof habitatuse? Onecanconjecturewhatthingsareimportanttotheanimals: The locationofcover? Thetypeofforage? Thepresenceofroads? ... An important aspect of the use of the SDEs to model such paths is that the drift and variance terms are meant to include phenomena such as: attraction, repulsion, barriers, time of day, ... There are interesting statistical questions: Howtoincludeexplanatoryvariables? Howtoassessthefitofthemodel? How to predict future motion? ... A number of interesting questions specifically addressedtoprobabilistsarelistedinthelastsectionofthepaper. BullBrazMathSoc,Vol.33,N.3,2002 STOCHASTIC DIFFERENTIAL EQUATIONS TO MODEL WILDLIFE MOTION 387 45 (cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127) (cid:127) (cid:127) (cid:127) latitude (cid:127)(cid:127) (cid:127) (cid:127)(cid:127) (cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127) (cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127) (cid:127)(cid:127) (cid:127)(cid:127) (cid:127) (cid:127) 40 (cid:127) (cid:127)(cid:127) (cid:127) (cid:127)(cid:127)(cid:127)(cid:127) (cid:127)(cid:127) (cid:127) (cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127)(cid:127) (cid:127) (cid:127) (cid:127) (cid:127) (cid:127) 35 (cid:127)(cid:127)(cid:127)(cid:127) (cid:127)(cid:127)(cid:127) (cid:127) (cid:127)(cid:127)(cid:127)(cid:127)(cid:127) (cid:127) (cid:127)(cid:127) -160 -150 -140 -130 -120 longitude Figure 2: Points along the trajectory of an elephant seal. The curved line is a greatcircleroutepresentedforcomparison. Thesealstartsitsjourneyfroman islandofSantaBarbara,California. Thepaperbeginswithadescriptionofdeterministicandstochasticmethodsfor describingthepathsfollowedbyparticlesundertheinfluenceofafield. Section 3providestwospecificmodels. Section4presentssomedetailsofthestatistical methods employed. In Section 5 the experiment in which the elk data were collected is described in some detail. Section 6 presents the results obtained. Section 7 is Discussion and Summary. The final section poses some specific questionsfordiffusionprocessspecialists. Referencespresentingmodelsforanimalmovementinclude: DunnandGip- son [12], Dunn and Brisbin [11], Preisler and Akers [23], White and Garrott [33],BrillingerandStewart[7],Turchin[32]. ThereferencesWhiteandGarrott [33],Turchin[32])setdownFokker-Planckdeterministicdifferentialequations (DDEs)fordensityfunctionsdescribingtheexpectedpatternofspaceuse. Like- lihoods may be set down using conditional densities and may be used to make inferences. Thisdeterministicapproachistobecontrastedwiththatinthepresent BullBrazMathSoc,Vol.33,N.3,2002 388 D.R.BRILLINGER, H.K.PREISLER, A.A.AGER, J.G.KIE AND B.S.STEWART 14 12 10 8 m K 6 4 2 0 0 2 4 6 8 Km Figure3: PointsalongthetrajectoryofoneoftheelkmovingwithintheStarkey ExperimentalForest. BullBrazMathSoc,Vol.33,N.3,2002 STOCHASTIC DIFFERENTIAL EQUATIONS TO MODEL WILDLIFE MOTION 389 and other papers where stochastic equations are set down describing the indi- vidualpaths. Fokker-Planckequationsofdesiredordermaybederivedfromthe SDEmodels. TheSDEapproachisappropriateforleadingdirectlytoresiduals, simulationandlikelihood. 2 Approachestothedescriptionofmovingparticles The analytic formulation of the motion of particles is a traditional problem of physics and applied mathematics. Classical approaches have been developed offeringpropertiesofsolutionsoftheequationsofmotionandinterpretationsof theparametersinvolved. Thissubjectmatterisusefulformotivatingtheresults ofthepresentwork. Firstconsiderthedeterministicapproach. 2.1 Deterministiccase Motion in Newtonian dynamics may be described by a potential function, H(r,t), see Nelson [21]. Here r = (x,y)τ is location and t is time. The equationsofmotiontaketheform dr(t) = v(t)dt (2.1) dv(t) = −βv(t)dt −β∇H(r(t),t)dt withr(t)theparticle’slocationattimet,v(t)theparticle’svelocityand−β∇H theexternalforcefieldactingontheparticle,β beingthecoefficientoffriction. Here ∇ = (∂/∂x,∂/∂y)τ is the gradient operator. The function H is seen to control the particle’s direction and velocity. For example H(r) = |r − a|2 corresponds to motion with a point of attraction at a and H(r) = 1/|r − a|2 correspondstomotionwithapointofrepulsionata. Inthecasethattherelaxationtimeβ−1issmall(frictionishigh),theequations areapproximately dr(t) = −∇H(r(t),t)dt (2.2) andthevelocity,v(t),isnolongerinvolveddirectly,seeNelson[21]. Therehasbeenconsiderablemathematicaldevelopmentofthismateriale.g., Goldstein [14]. An interesting question given a force field, F, is whether there exists a real function H, such that F = ∇H? When it does exist, the field is calledconservative,seeStewart(1991)[31]. Thisquestionisaddressedforthe StarkeyelkinBrillingeretal. [6]. BullBrazMathSoc,Vol.33,N.3,2002 390 D.R.BRILLINGER, H.K.PREISLER, A.A.AGER, J.G.KIE AND B.S.STEWART 2.2 StochasticCase Apertinentprobabilisticconceptfordynamicmotionofaparticleisastochastic differentialequation(SDE),e.g.,seeNelson[21],KarlinandTaylor[17],Bhat- tacharyaandWaymire[3]. SuchequationsoftenleadtoMarkovprocessesand takethefollowingform dr(t) = µµ(r(t),t)dt+(cid:4)(cid:4)(r(t),t)dB(t) (2.3) Herer,µµ,Barevectorswhile(cid:4)(cid:4)isamatrix. Thedriftµµmaybeinterpretedasa velocityfieldandanexampleofanestimatewillbeprovidedlaterinthepaper. (cid:4)(cid:4) is the variance or diffusion parameter while B is a random function such as aBrownianorLevyprocess. TheparametersandtheBrownianprocesscontrol thedirectionandspeedofmotion. Theparametershaveinterpretationsprovidedby E{dr(t)|Ht} = µµ(r(t),t)dt and var{dr(t)|Ht} =(cid:4)(cid:4)(r(t),t)dt withdtissmallandHtrepresentingthetimehistoryoftheprocess,{r(u),u ≤ t}. The driving process B leads to variability around deterministic motion. This process might correspond to explanatories omitted from the equations. The vectorµµ(r(t),t)isseentorepresenttheinstantaneousvelocityoftheparticleat time t and position r. Since the process is Markov, these conditional moments dependonlyontheprecedingposition,r(t). AvarietyofpropertiesareknownconcerningsolutionsofSDEs,forexample whenH doesnotdependont and(cid:4)(cid:4)(cid:4)(cid:4)τ = σ2I,thereisoftenaninvariantdensity 0 π(r) = cexp{−2H(r)/σ2} (2.4) 0 representing the longrun density of locations that the process visits; see Bhat- tacharyaandWaymire[3]. Thusinsuchastationarycase,byanalyzingthepaths, populationdensitiesmaybeestimated. The situation of a particle being affected by the force field of a potential function may be visualized by picturing a ball rolling around in the interior of a perspective plot of the potential function. In the stochastic case there is a convenient approximation for viewing the situation. First consider a one- dimensionalprocessdx = µ(x,t)dt+σ(x,t)dB(t). Supposethatattimet the BullBrazMathSoc,Vol.33,N.3,2002 STOCHASTIC DIFFERENTIAL EQUATIONS TO MODEL WILDLIFE MOTION 391 particle is at location x(t) = x. Then for the particle’s location at time t +dt take √ 1 µ(x,t) √ x(t +dt) = x ±σ(x,t) dt withprob ± dt 2 2σ(x,t) seeKloedenandPlaten[19];ProhorovandRozanov[26]. Asdt → 0thepaths ofthisprocessapproachthoseoftheSDEwithparametersµ,σ. Inthebivariate case one generates two such processes. Examples are given in Brillinger et al. [6]. A random potential/environment may be a useful model. It might be used to describesealschasingfish,elkattractedorrepelledbyotherelk. Therandomness is introduced by the motion of these other particles. For the potential function onemightwrite (cid:1)J H(r,t) = α(r,t) |r−Xj(t)|2 1 withtheXj(t)locationsofmovingattractors/repellors. Thiscouldbethesource ofthedB(t)termin(2.3). The components Hx,Hy of the gradient ∇H correspond to the components ofµµof(2.3). Oneadvantageofthepotentialfunctionapproachisthatindepen- dentpotentialfunctionsfromavarietyofsourcesaddasin (cid:1) Hl(r,t) l There may be points, lines or regions of attraction or repulsion and barriers tobeincluded. Thebarrierscanrepresentactualphysicalobjects(e.g.,fences). The process B includes impulses due to the presence of objects such as trees, mounds,dipsandnaturalvariabilitycorrespondingtoindividualanimalbehavior. The fitted SDEs may be used to produce estimates of other parameters, (e.g. expectedspeedanddistancestoroad),topredictspatialandtemporalpatternsof animaldistributionandhabitatpreferences,tosimulatetrajectoriesandtostudy thedirectionalityofthemovementforexample. 3 Somespecificmodels 3.1 Ornstein–Uhlenbeck A particular case of an SDE that has been employed in describing animal mo- tion is the mean-reverting Ornstein–Uhlenbeck (O–U) process; see Dunn and BullBrazMathSoc,Vol.33,N.3,2002 392 D.R.BRILLINGER, H.K.PREISLER, A.A.AGER, J.G.KIE AND B.S.STEWART Gipson[12];DunnandBrisbin[11]. Here µµ(r,t) = A(a−r) and (cid:4)(cid:4)(r,t) =(cid:4)(cid:4) whilethemeanisa. TheO–UprocessbecomestherandomwalkwhenA = 0, i.e.,whenthedriftterm,µµ(r,t),is0. If A is symmetric and positive definite, the corresponding potential function is H(r,t) = (a−r)τA(a−r)/2 and the particle is wandering but being pulled towards the location a. The invariantdistributionismultivariatenormal,N(a,(cid:8)),with (cid:2) ∞ (cid:8) = e−Au(cid:4)(cid:4)(cid:4)(cid:4)τe−Audu; 0 seep.597inBhattacharyaandWaymire[3]. If(cid:4)(cid:4)(cid:4)(cid:4)τ = σ2I,then(cid:8) = σ2A−1/2. 0 0 3.2 Diffusiononasphere Inthecaseoftheelephantsealsonecanconsiderthecaseofadiffusionprocess with drift on the sphere, see Brillinger [4]. With φ(t) denoting latitude and θ(t)denotingcolatitudetheequationsoftheprocessare σ2 dθ = σdU +( −δ)dt t t 2tanθt σ dφ = dV t sinθt t Hereδ isthedriftparameterand(Ut,Vt)denotesabivariateBrownianmotion. 4 Thestatisticalmethodsused One can consider both parametric and nonparametric methods of inference. DunnandGipson[12]useapproximatemaximumlikelihoodprocedurestoesti- matetheparametersa,(cid:8)ofthemultivariateO–Uprocessfromsampledtrajecto- rieswithconstantsamplingintervals. DunnandBrisbane[11]giveextensionsof themaximumlikelihoodestimatetothecasewhereobservationsareunequally spacedovertime. BullBrazMathSoc,Vol.33,N.3,2002 STOCHASTIC DIFFERENTIAL EQUATIONS TO MODEL WILDLIFE MOTION 393 Turning to a more general situation, the Radon-Nikodyn derivative of the process(2.3)withrespecttothemeasureofr(t) = σ(r,t)dB(t)is (cid:3) (cid:2) (cid:2) (cid:4) T T exp − σ(r,t)−1µ(r,t)·σ(r,t)−1dr+ |σ(r,t)−1µ(r,t)|2dr/2 0 0 [22],andestimatesofafinitedimensionalparametermaybecomputedbymax- imization. In the sampled time case the SDE (2.3) may be approximated as follows √ (r(tl+1)−r(tl))/(tl+1−tl) ≈ µµ(r(tl),tl)+(cid:4)(cid:4)(r(tl),tl)Zl/ tl+1−tl (4.1) l = 1,2,... witht < t < t < ··· samplingtimesandwiththeZ independent 1 2 3 l bivariatestandardnormals. Thisfollowsfrom(2.3)directly. Thevalidityofthe approximationisinvestigatedinKloedenandPlaten[19]. Intermsoftheindividualcomponents(X,Y)ofronehasfrom(4.1) (cid:12)X (cid:12)t = µx(X,Y,t)+noise (cid:12)Y (cid:12)t = µy(X,Y,t)+noise (4.2) Ifthedriftfunctioncomponents,µx,µy,aresmooth,oneseesthatonehasanon- parametricregressionestimationproblem. Principalstatisticaltoolsemployedin theworkaresmoothingmethodsandresidualplots. Thesmoothingornonpara- metricregressionprocedureemployedtoestimateµx,µy isthefunctionloess() of Cleveland et al. [9] within gam() of Hastie [15]. It involves the local fitting ofquadraticsintheexplanatories. Intheexampleoftheelk,timeofdayprovesimportantandconditionaldensity estimatesareevaluatedforselectedtimesofday. Estimateswillbeprovidedof conditionallongrunpopulationdensitiesandoffunctionsdependingsmoothlyon timeandlocationandexplanatories. Thereareavarietyofsuchestimatesinclud- ing: kernel-based,spline-based,localpolynomial,HastieandTibshirani[16]. References to inferential methods for diffusion processes, both parametric and nonparametric, include Banon and Nguyen [1], Bertrand [2], Burgière [8], Dohnal[10],Genot-Catalotetal. [13],Sorensen[29],PrakasaRao[22]. Aquestionishowtoincludeexplanatoryvariablescorrespondingtophenom- enasuchas: fences,roads,streams,forage,cover,terrain,timeofday,timesof sunrise and sunset, periods of hunting. Attraction/repulson phenomena might be described by a potential term H(r,t) = αd(r)β where d(r) is the shortest distancetoafeature. BullBrazMathSoc,Vol.33,N.3,2002 394 D.R.BRILLINGER, H.K.PREISLER, A.A.AGER, J.G.KIE AND B.S.STEWART 5 TheElkexperiment ThemainstudyareaatStarkeyExperimentalForestandRangeis7,762halarge andlocatedintheBlueMountainsofnortheasternOregon,Rowlandetal. [27]. The forest was enclosed with a 2.4-m tall, net-wire fence in 1988 and radio- telemetrystudieswerebegun. Eachspringanumberofelk,deer,andcattleare fitted with collars containing Loran-C receivers. The collars are instructed to interceptLoran-Cbroadcastsatregularintervalsandthentorelaythosesignals toacentralreceiver. Locationsarethenestimatedfromthetimedelays. Thestudyareaisalsomanagedforavarietyofpublicusessuchasrecreation, hunting, forest management, cattle grazing, and other activities. The shape of theareaisshowninFigure3. Thewhiteareasinthefigurescorrespondtotwo smallelk-proofexclosureswithinthestudyarea. The data are spatial-temporal. The locations of M = 53 elk, (labelled by m = 1,... ,M, and recorded at times, tmk,k = 1,... ,Km for the m-th an- imal) are given as well as various explanatory variables describing vegetation andtopography. Otherhabitatfeatures(e.g.,distancetoroad,distancetowater) suspectedtoinfluenceelkmovement,arealsoavailable. Thelocationsarewrit- ten as a column vector rmk = (Xm(tmk),Ym(tmk))τ, corresponding to the UTM (Universal Transverse Mercator) coordinates of the k-th time measurement of them-thelk. The data used in the work of this paper were collected betweenApril 7 and November15,1994andinvolve53femaleelk. Observationswereomittedfor30 daysduringtheautumnof1994whenhuntingwasconductedwithintheproject area. Preliminary analyses of these data often showed erratic movements that werenottypicaloftherestoftheyear. Alsoomittedweremovementswherethe timeintervalexceeded1.5hoursorwaslessthan0.1hours. Velocitiescalculated from short time intervals are strongly influenced by telemetry error while long timeintervalsgenerateuncertaintyregardingthetruetrajectoriesofelk. Figure 3 showed the successive estimated locations for one of the elk. The trajectories plotted are a sequence of straight-line segments and therefore are jagged. This discreteness results from the fact that location estimates are only available once every 0.1-4 hours. Figure 5, to follow, will show the estimated distributionofall53animalsatfourdifferenttimesoftheday. BullBrazMathSoc,Vol.33,N.3,2002

Description:
David R. Brillinger; Haiganoush K. Preisler; Alan A. Ager; John G. Kie; Brent S. Stewart. David R. Brillinger. 1. Haiganoush K. Preisler. 2. Alan A. Ager.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.