RESEARCHARTICLE Empirical Studies on the Network of Social Groups: The Case of Tencent QQ Zhi-QiangYou1,Xiao-PuHan1*,LinyuanLü1,ChiHoYeung2 1AlibabaResearchCenterforComplexitySciences,HangzhouNormalUniversity,Hangzhou311121, China,2DepartmentofScienceandEnvironmentalStudies,TheHongKongInstituteofEducation,Hong Kong * [email protected] Abstract a11111 Background Participationinsocialgroupsareimportantbutthecollectivebehaviorsofhumanasa grouparedifficulttoanalyzeduetothedifficultiestoquantifyordinarysocialrelation,group membership,andtocollectacomprehensivedataset.Suchdifficultiescanbecircumvented OPENACCESS byanalyzingonlinesocialnetworks. Citation:YouZ-Q,HanX-P,LüL,YeungCH(2015) EmpiricalStudiesontheNetworkofSocialGroups: Methodology/PrincipalFindings TheCaseofTencentQQ.PLoSONE10(7): e0130538.doi:10.1371/journal.pone.0130538 Inthispaper,weanalyzeacomprehensivedatasetreleasedfromTencentQQ,aninstant Editor:FredericAmblard,UniversityToulouse1 messengerwiththehighestmarketshareinChina.Specifically,weanalyzethreederiva- Capitole,FRANCE tivenetworksinvolvinggroupsandtheirmembers—thehypergraphofgroups,thenetwork Received:November28,2014 ofgroupsandtheusernetwork—torevealsocialinteractionsatmicroscopicandmeso- scopiclevel. Accepted:May21,2015 Published:July15,2015 Conclusions/Significance Copyright:©2015Youetal.Thisisanopenaccess articledistributedunderthetermsoftheCreative Ourresultsuncoverinterestingbehaviorsonthegrowthofusergroups,theinteractions CommonsAttributionLicense,whichpermits betweengroups,andtheirrelationshipwithmemberageandgender.Thesefindingsleadto unrestricteduse,distribution,andreproductioninany insightswhicharedifficulttoobtaininsocialnetworksbasedonpersonalcontacts. medium,providedtheoriginalauthorandsourceare credited. DataAvailabilityStatement:Datasetofthispaperis availableonlinefromtheurl:http://datadryad.org/ review?doi=doi:10.5061/dryad.pc537. Introduction Funding:ThisworkissupportedbytheNational NaturalScienceFoundationofChina(11205040, Socialinteractionsareessentialtoourdailylife,yetourunderstandingontheorganizationof 11205042,11105024,11305043),andtheresearch socialcontactsislimited.Majorreasonsincludethedifficultiestoquantifyindividualsocial startupfundofHangzhouNormalUniversity,andthe relationshipandtocollectacomprehensivedataset.Nevertheless,therapiddevelopmentofthe EUFP7Grant611272(projectGROWTHCOM),and Internethasrevolutionizedtheformofsocialinteractionsfrompostalmails,telephonevoice CCF-TencentOpenResearchFund.ZQY calls,physicalmeetingandgathering,toemails,instantmessaging,onlineforumandonline acknowledgestheXinmiaoTalentProgramof socialnetworks.Throughtheinternet,interactionsarequantifiedintodatawhichgreatlyfacili- ZhejiangProvince(GrantNo.ZX13005002062).CHY acknowledgestheInternalResearchGrantofHKIEd. tatesthestudiesofsocialnetworks.Manyexcitingfindingsarerevealed.Asanexample,the PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 1/19 EmpiricalStudiesontheNetworkofSocialGroups CompetingInterests:Theauthorshavedeclared hypothesisofsixdegreesofseparationwasinitiallyconsideredin1930s[1],whichstatesthat thatnocompetinginterestsexist. anytwopersonscanbeconnectedbyasmallnumberofacquaintances,wasonlyrecentlytested onFacebooknetworkwhichgivesanaveragedegreeofseparationofroughly4[2].Otherfea- turesrevealedononlinesocialnetworksincludepower-lawdegreedistribution[3–7],commu- nitystructure[8,9]andspecialcommunicationpatterns(e.g.thenon-Poissonpropertieson contactactivities)[10–16]. Sofarthestudiesononlinesocialnetworksfocusmainlyonindividualsocialrelationship, leavinganotherimportantaspect—participationinsocialgroups—lessunderstood.Itis becausethecollectivebehaviorofhumanasagroupisdifficulttostudyintraditionalsocial networksduetotheambiguityinquantitativelyaffiliatingindividualstospecificgroups.This problemdoesnotoccurontheInternetsincegroup-basedapplicationshaveadefinitemem- bershipidentityforindividuals.Forinstance,prototypeonlineapplicationssuchaschatrooms andbulletinboardsystems(BBS)involveindividualusersjoiningandpostingmessageswhere membershipidentityiswelldefined[17,18].IncludingWindowsLiveandGooglemessengers, Whatsapp,Skype,FetionandTencentQQ,theseapplicationssetthebasisforexistingsocial applicationsandinstantmessengers.Intheseapplications,userscreatesocialgroupson demand.Itdrivessocialnetworkstoastatewhicharemoreextensiveandcomplicatedthan theirphysicalcounterparts. TwodifferenttypesofonlinesocialgroupscanbeformedontheInternet.Thefirstoneis similartoordinarysocialnetworks,whicharejoinedbyfriendswithrealpersonalrelationship. CirclesinGoogleplus,SkypeandWhatsappgroupsbelongtothistype[19].Thesecondoneis moreuniquetoonlinesocialnetworks,consistingofgroupsofindividualswithcommoninter- estsbutwithoutpriorpersonalrelationship,forinstance,membershipinforumsandstudent bulletins.Theyconnectindividualsbeyondordinarysocialnetworksandextendthesocial scopeofindividuals.Despitethedifferenceintheirnature,thetwotypesofnetworksareinter- dependentoneachother[20–22].Forinstance,twousersinthesameforummaybecomeinti- matefriendsandparticipateineachothers’personalsocialnetworks.Bymakingnewfriends, anindividualmayfindnewinterestsandjoinnewforums.Thisnewformofsocialorganiza- tionisuniquetoonlinesocialnetworksandhasgreatlysupplementedorevenreplacedits physicalcounterpart. Inthispaper,weanalyzeacomprehensivedatasetobtainedfromTencentQQ,aninstant messengerwiththehighestmarketshareinChina.Bothtypesofsocialnetworksareestab- lishedonQQandtheinteractionsbetweenthetwonetworksareexpected.Specifically,weana- lyzethreedifferentnetworksinvolvinggroupsandtheirmembers—thehypergraphofgroups, thenetworkofgroups,andtheusernetwork—torevealsocialinteractionsatmicroscopicand mesoscopiclevels.Ourresultsuncoverinterestingbehaviorsonthegrowthofusergroups,the interactionsbetweengroups,andtheirrelationshipwithmemberageandgender.Thesefind- ingsrevealuniquephenomenoninonlinesocialnetworks,aswellasinsightswhichareother- wiseinaccessibleinordinarysocialnetworks.Here“ordinarysocialnetworks”refertothe socialnetworksdirectlybasedonpersonalusers. Method Datadescription TencentQQ(commonlyabbreviatedasQQ,thewebsiteofTencentQQ:http://www.qq.com) isaninstantcommunicationtooldevelopedbyTencentHoldingsLimitedin1999.Todate,it hasover700millionactiveusersandhasbecomethelargestonlineapplicationinChina.QQ userscansendmessages,sharephotosandfiles,postmicroblogs,andvoiceorvideochatwith friendsusingcomputersorsmartphones. PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 2/19 EmpiricalStudiesontheNetworkofSocialGroups SocialgroupisoneofthemainfeaturesofQQwhichallowsmultipleuserstocommunicate instantly.Amessagepostedbyamemberisimmediatelyreceivedbyalltheothergroupmem- bers.Whennecessary,anytwomemberscancommunicateviaindividualchannel.Depending ontheactivenessofauser,eachofthemcancreatenomorethansixgroups.Groupscanbe searchedbytheirID’sornamesandotheruserscanjointhegroupupontheapprovalbythe administrator,i.e.thegroupcreator.QQlimitsthegroupsizeby100,200,500,and1000,also dependingontheactivenessofthegroupcreator.Forexample,accordingtothelatestruleof Tencent,auserwithlevel0(theactivenessislessthan5)cancreateonlyonegroup(thelimit ofgroupsizeis200),andauserwithlevel48(theactivenessishigherthan2496)cancreate5 groups(thelimitsare200foroneofthegroupsand500fortheother4groups).Otherthan personalrelationships,somegroupsareformedbymemberswithcommoninterests,e.g.mov- ies,orbelongtothesameorganizations,e.g.universitiesorcompanies.Thelattersareusually exclusivesocialcirclesbasedonphysicalorganizations. TheQQdataset(itwasreleasedfromtheonlineopendatabase[23]andcanbeavailable usingwebcrawler)weexaminecoversmorethan58,523,079groupsand274,335,183users,of which48,676,355groupshastheinformationwithallID,memberlist,anddate.Duetothe limitof2000groupswhichareallowedforanordinaryusertojoin,34userswhojoinedmore than2000groupsmusthavesuperiorpermissiongivenbyTencent,andthustheyareconsid- eredastherobotsorthecustomerservicessetbyTencentandareexcludedfromouranalyzes. Sincesomeusersdonotindicatehis/hergenderorage,orprovidesomeseeminglyfalseinfor- mation,e.g.0yearold,weexcludeuserswithoutgenderinformationoryoungerthan10or olderthan70.Overall,thereare273,204,518userswithgenderinformation,ofwhich42.5% (116,135,972)arefemales,and244,521,321userswithagebetween10and70.Formostofthe QQgroups,itsID,itsmemberlistwithgenderandage,andthedateofwhichitwasestablished areknown.Theoldestandtheyoungestgroupsinourdatasetareformedon22ndSeptember, 2005and25thMarch,2011,respectively.Wethusonlyusedataupto25thMarch,2011. Networksconstruction Weexaminethefollowingtypesofnetworksembeddedinthedatasets: 1. User-grouphypergraphandbipartitenetwork—Ahypergraph[24,25]isagraphofnodes andhyperedgeseachofwhichconnectstwoormorenodes.AsshowninFig1(a),thehyper- graphinourdatasetdescribestheuser-grouprelationshipwithnodesrepresentingindivid- ualusersandhyperedgesrepresentinggroups.Forinstance,userBisamemberofgroupG 1 andG ,andarethusconnectedtoAviahyperedgeG aswellastoCandDviahyperedge 2 1 G .Inthispaper,welabeltheresultsobtainedontheuser-grouphypergraphbysuperscript 2 H.Wealsoshowthecorrespondingbipartitenetwork[26,27]inFig1(b),whichisanequiv- alentrepresentationofthehypergraphH.Thenodesinuppersideandbottomsiderespec- tivelyareusersandgroups.TheresultsonthebipartitenetworkislabeledbysuperscriptB. 2. Groupnetwork—AsshowninFig1(c),groupnetworksinourcontextrefertoweightednet- workswherenodesrepresentindividualgroups,andtwogroupsareconnectediftheyhave atleastonecommonmember.Theweightontheedgeisdefinedasthenumberofcommon usersbetweenthetwogroups.Forinstance,groupG andG inFig1(a)have3common 3 4 users,theedgeconnectingG andG inFig1(c)hasaweightof3.Inthispaper,welabelthe 3 4 resultsobtainedonthegroupnetworkbysuperscriptG. 3. Usernetwork—Tofocusonthebehaviorsofsocialgroups,theusernetworkinourcontext isnottheordinaryfriendshipnetworkinQQ,butinsteadisaweightednetworkwhichonly connectstwousersiftheyaremembersofatleastonecommongroup.Hence,allmembers PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 3/19 EmpiricalStudiesontheNetworkofSocialGroups Fig1.Schematicdiagramshowing(a)theuser-grouphypergraphH,(b)thebipartitenetworkB,(c)thegroupnetworkG,and(d)theusernetwork U.Thedataiscomposedoffivegroupsdenotedbythecoloredellipsesin(a)andelevenusers.Thethicknessofedgesin(c)and(d)isproportionaltothe weightontheedges. doi:10.1371/journal.pone.0130538.g001 inagrouparefullyconnectedtoeachother.Theweightofanedgeconnectingapairof usersisequaltothenumberofgroupstheybothjoin.AsshowninFig1(a),bothuserCand DaremembersofG ,G andG ,andhencetheweightontheedgeconnectinguserCandD 2 3 4 inFig1(d)is3.Inthispaper,welabeltheresultsobtainedontheusernetworkbysuper- scriptU. ThenotationsusedthroughoutthepaperaresummarizedinTable1. Results TheStructuralPropertiesoftheUser-GroupHypergraphH Thedistributionofsocialgroupsizeisoneofthemostinterestingfeaturesinasocialnetwork. AsshowninFig1(a),thegroupsizesHisthetotalofnodenumberscoveringbyahyperedge. AswecanseeinFig2(a),thedistributionP(sH)showsaslowandsmoothdecayintherange0 (cid:1)sH(cid:1)50.ThedecaybecomesfasterforsH>50andthecurvebecomesdiscontinuousatsH= 100,200,500and1000,duetothelimitationofgroupsizebyQQ.Wefindthatthebroken PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 4/19 EmpiricalStudiesontheNetworkofSocialGroups Table1.Notationsinthepaper. Notations Description sH ThesizeofgroupH,namelythetotalnumberofusersinagroup hsHi Theaveragevalueofsizeofgroups kH Thenumberofgroupsthatauserjoined,thenode’shyperdegree hkHi Theaveragevalueofnode’shyperdegree kH Themaximumvalueofjoinedgroupsofusersinagroup max kG Thenodedegreeingroupnetwork,namelythenumberofconnectedgroupsofagroup KG Theweightednodedegreeingroupnetwork,namelythenumberofcommonusersbetweena groupandothers wG Theedge’sweightingroupnetwork,whichisdefinedasthenumberofcommonusers betweentwogroups wG Theeffectiveedge’sweightingroupnetwork,whichiscalculatedbytheresource-allocation e process. dG Thedistancebetweengroupsingroupnetwork hdGi Theaveragedistancebetweengroupsingroupnetwork CG Thelocalclusteringcoefficientingroupnetwork hCGi Theaveragevalueoflocalclusteringcoefficientingroupnetwork kU Theuser’sdegreeinusernetwork,foranarbitraryuseri,kU(i)isthenumberofuserswhoare inthesamegroupswithi hkUi Theaverageuser’sdegreeinusernetwork wU Theedge’sweightinusernetwork,whichisdefinedasthenumberofcommongroups betweentwousers wU Theeffectiveedge’sweightinusernetwork,whichiscalculatedbytheresource-allocation e process. dU Thedistancebetweenusersinusernetwork hdUi Theaveragedistancebetweenusersinusernetwork a Theageofuseri i hai Theaveragevalueofuser’sage P(a) Thedistributionofusers’ages c Thecoefficientofvariationofage,c =σ /haiwhereσ isthestandarddeviationofmember va va a a age c Thecoefficientofvariationofthenumberofneighboringusers,c =σ /hkUiwhereσ isthe vu vu u u standarddeviationofmemberdegreeinusernetwork hc i Theaveragecoefficientofvariationofneighboringusers’ages va f hc i Theaveragecoefficientofvariationofneighboringusers’degree vu f doi:10.1371/journal.pone.0130538.t001 partsofthecurvecanbeenclosedbytwopowerlawswithexponent−3.5and−5.0,i.e.thetwo dashedlinesinFig2(a).Theseexponentsaremorenegativethansimilarexponentsobserved inothersocialnetworks,suggestingthatitismoredifficultforagrouptomaintainalarge membercommunitythanforanindividualtomaintainalargenumberoffriends.Theresults indicateamorehomogeneousnatureinthedistributionofgroupsize,probablybecausemain- tainingsuchcloserelationshipinalargegroup,e.g.clubsororganizations,isnoteasy,which limitsthegrowthofgroup.Ontheotherhand,weshowinFig2(b)adatacollapseofthediffer- entbrokenpartsafterre-scaling,implyingthatformationmechanismsofgroupsaresimilar regardlessoftheirsize.Andalso,therelationbetweenthenumberofgroupsandthenumberof usersobeyspowerfunctionwithexponent1(TheinsetofFig2(c)). Intuitively,weexpectoldergroupstohavealargersizesincetheyhavealongertimeto accumulatemembers.Torevealthecorrelationbetweenthesizeofagroupandthedateof whichitisformed,wecomputetheaveragesizeofgroupsestablishedonthesamedate.Aswe PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 5/19 EmpiricalStudiesontheNetworkofSocialGroups Fig2.StatisticsforthehypergraphH.(a)P(sH),thedistributionofgroupsizesH,withthedistributioninsemi-logscaleshownintheinset.Thetwodashed linesinshowtherangeofthetailexponentofP(sH),namely−3.5(orange)and−5.0(magenta).(b)ThedatacollapseofthedifferentbrokenpartsonP(sH) afterre-scaling,inwhichsH¼ð1þsH(cid:3)sH Þ=ð1þsH (cid:3)sH Þ,heresH andsH respectivelyaretheminimumandmaximumvalueofsHineachsection,and c min max min min max P (sH)isthecorrespondingre-scaledprobability.(c)Theaverage(pink)andthestandarddeviation(grey)ofgroupsizegivenspecificdateofestablishment, c andtheinsetshowsthescalingrelationshipbetweentotalofgroupsandtotalofusersateachdate.(d)ThedistributionP(kH)ofthenumberofjoinedgroupby individualusers.P(kH)formaleandfemaleusersareshownintheinset.Thepinklinescorrespondtopower-lawfitswithexponent−3.82. doi:10.1371/journal.pone.0130538.g002 canseeinFig2(c),theaveragesizehsHiisalmostindependentofthedateofestablishment, whichiscontrarytoourbelief.Thisresultmayimplythatmostgroupsdonotgrowsignifi- cantlyafterestablishment,andthegroupsizeismainlydeterminedbythenumberofusers whojoinedthegroupshortlyafterthegroupwascreated.Itisbecausewhenagroupiscreated, PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 6/19 EmpiricalStudiesontheNetworkofSocialGroups itsinformationusuallyspreadsrapidlyinthecreator’ssocialcircle.Asaresult,mostinterested usersjointhegrouponcetheyheardaboutit.Occasionally,asmallnumberofusersmayjoin existinggroupsbutontheotherhand,someexistingmembersmayleavethegroupleadingto anequilibriumgroupsize.Thiscertaintyongroupmemberscreatessomedifficultiesintothe studiesonrecommendationalgorithmsforQQgroups. Theabovepicturesarefurthersupportedbythestandarddeviationσ ofgroupsize,which s againdoesnotincreasewiththeageofagroup.Moreover,afterexcludingthegroupswithsize closetothesizelimits(i.e.excludinggroupswithsizeintherange90–100,180–200,450–500), theaveragesizehsHioftheremaininggroupsalsoshowsthesamephenomenon(theviolet r curveinFig2(c)).Thisbehaviorofconstantsizeisdifferentfromthoseobservationsinmany otherslow-growingsocialnetworks. Otherthanthegroupsize,thenumberofgroupsjoinedbyanindividualuserisalsoan importantcharacteristicofasocialnetwork.Inthecontextofhypergraph,onecanrepresent thenumberofgroupjoinedbyauserbythehyperdegreekHoftheuser.Fig2(d)showsthedis- tributionP(kH)withatailwellfittedbyapowerlawwithexponent−3.82.Althoughtheexpo- nentismorenegativethanmostoftheothersocialnetworks,apower-lawdecaydoesimply thatuserswhichjoinedalargenumberofgroupsarepresent.Unlikepreviousstudieswhich revealeddifferencesbasedongender,weobservedsimilarP(kH)forbothmaleandfemale users.Inaddition,wefindobviouspositivecorrelationontherelationshipbetweentheaverage valueofkHamonggroupmembersandthecorrespondinggroupsizesH.Furtheranalysis(see Section1ofMaterialsandMethods)indicatesthatthispositivecorrelationreflectstheprefer- enceofactiveusersinjoininglargegroups. TheStructuralPropertiesofGroupNetworkG Afterexaminingthemacroscopiccharacteristicsofgroups,wemoveontorevealtheirmicro- scopicinteractions.Inthisrespect,theweightedgroupnetworkcharacterizesanindirectinter- actionbetweengroupswhentheysharesomecommonmembers.Asareminder,twogroups areconsideredconnectediftheysharesomecommonneighborsandtheweightoftheedgeis thenumberofuserswhojoinedbothgroups. AsshowninFig3(a),thedistributionP(kG)ofthegroupdegreekGshowsapowerlawwith exponent−0.8whenkG<120andanotherpowerlawwithexponent−2.23whenkG>120. Similarly,asshowninFig3(b),theweighteddegreedistributionP(KG)showsapowerlawwith exponent−0.81whenKG<160andanotherpowerlawwithexponent−2.33whenKG>160. Theresultsimplythatagrouponlysharememberswithasmallnumberofgroups,usuallyat mostoftheorderO(102)amongthe58milliongroupsintheQQnetwork.Ontheotherhand, thenumberofcommonmembersbetweenapairofgroups,i.e.theweightofedge,alsoobeysa two-regionpower-lawasshowninFig3(c),withanexponent−5.94atthetail.Thisimpliesthat thenumberofuserswhohaveinterestsinacommonpairofgroupsarelimitedtotheorderof O(102).Furthermore,usingbipartitenetworkprojection,wecalculatetheeffectiveedge’sweight wGthatreflectstheinfluenceofagrouponanotherone[28],andfindthatthefittingpower- e lawexponentofthedistributionofwGissmallerthantheoneofwG,indicatingthattheinflu- e encebetweengroupsismoreheterogeneous(seeSection2ofMaterialsandMethods). Thedegreeofagroupisdependentontwofactors,namely(i)thenumberofusersinthe group,and(ii)thetotalnumberofothergroupsjoinedbyitsmembers.Fig4(a)showstherela- tionbetweenthegroupdegreekGandthegroupsizesH,suchthattherelationbetweensHand thecorrespondinghkGiisgivenbythepinkcurve.Theresultsshowthatgroupdegreeincreases withgroupsize,whichisexpectedsincethenumberofdifferentgroupsjoinedbythemembers ofalargergroupshouldbeproportionatelyhigher.InFig4(b),asimilarstatisticsshowsthe PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 7/19 EmpiricalStudiesontheNetworkofSocialGroups Fig3.PropertiesofthegroupnetworkG.Thefiguresshow(a)thedistributionP(kG)ofgroupdegree,(b)thedistributionP(K )ofweightedgroupdegree G K ofG,and(c)thedistributionP(wG)ofedge’sweight.Theinsetsshowthesamecurvesinsemi-logscale. G doi:10.1371/journal.pone.0130538.g003 relationbetweenthegroupdegreekGandkH ,thelargestnumberofjoinedgroupsbyanindi- max vidualmemberinagroup.ThereasonissimilartothatinFig4(a),sincealargergrouphaspro- portionatelymoreactivemembers,thelargestnumberofgroupjoinedbyanindividual memberishigher.TheaverageofkGhasanobvioustransitionfromafastergrowthtoaslower growth(seeFig4(b)),indicatingthatk ismorestronglydependentonkH whenkGissmaller G max Fig4.Theheatmapswhichshowthecorrelation(a)betweenkGandsH(a),and(b)betweenkGandkH .Thecolorscalecorrespondstothelog- max frequencyofoccurrence.ThePearsoncorrelationcoefficientsforlog(kG)vs.log(sH)andforlog(kG)vs.logðkH Þare0.92and0.91,respectively.Thepink max linesshowthecurvesontheirmeansalongverticalvalues,andthebluedashedlinein(a)showsthefittingpowerfunctionwithslope1.14. doi:10.1371/journal.pone.0130538.g004 PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 8/19 EmpiricalStudiesontheNetworkofSocialGroups than100.ThisresultsimplythatwhenthegroupdegreekGissmall,theactiveusershaveasig- nificantroleinimprovingkG. Finally,weshowthattheQQgroupnetworkissparsebutshows“small-world”phenome- non,similartothefriendshipnetworkofFacebook[2,29].ComparingtoFacebook,theaver- agedegreeandaverageweighteddegreeareslightlysmallerinQQgroupnetwork,withvalues 108.8and133.6respectively.Thesedegreesaresmallgiventhelargesizeofthenetwork,indi- catingthenetworkissparse.Toshowthe“small-world”phenomenon,werandomlysample 2×104pairsofgroupsandremarkablyfindthattheiraveragedistanceisonly3.70±0.004,indi- catingtheupperlimitoftheaveragedistancebetweeneachtwousersisonly4.70,similartothe fourdegreesofseparationobservedinFacebook(theaveragedistancebetweenusersis4.74) [2].WealsocomputethelocalclustercoefficientCG 2n CG ¼ T ð1Þ kGðkG(cid:3)1Þ for104randomchosengroups,suchthatn isthenumberofconnectionamongtheneighbors T ofthegroup.Weshowthefrequencyofthevalues(kG,CG)forindividualgroupinFig5.Aswe cansee,CGisnegativelyrelatedtokGinaroughpower-lawrelationwithexponent−0.62, whichissimilartotheFacebookcase[2].TheaveragevalueofCGis0.35,whichishighcom- paredtotheothersocialnetworks. Fig5.TheheatmapwhichshowsthecorrelationbetweenlocalclusteringcoefficientCGandthedegreekGingroupnetworkG.Thecolorscale correspondstothelog-frequencyofoccurrenceover104randomlysampledgroups.Thepinkdashedlineshowsthefittingcurvewithslope−0.62onthe meansalongverticalvalues. doi:10.1371/journal.pone.0130538.g005 PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 9/19 EmpiricalStudiesontheNetworkofSocialGroups TheStructuralPropertiesofUserNetworkU Asimilaranalysisisconductedfortheweightedusernetwork.WeshowinFig6thedegreedis- tributionP(kU),whichhasapower-lawtailwithexponent−3.22,andanaveragevalue135.3. Thedegreedistributionsformaleandfemaleusersdonotshowobviousdifferenceandare showninthebottominsetofFig6.Byaveraging1600randompairsofusers,weobtainedthe averagedistancebetweenapairofuserstobe4.36±0.015,whichissmallerthantheaverage distance4.74observedinFacebookfriendshipnetwork[2].Theseresultsshowthattheuser networkissparseandexhibitsasmall-worldphenomenon.Bycomparingthedegreedistribu- tionP(kU)andtheweighteddegreedistributionP(wU)asshowninthetopinsetofFig6,we observethatthelattercanbefittedwellbyadecayfunctionP(wU)(cid:4)10−5.45[log(wU)]−7.96, whichisslowerthanpower-law.Itimpliesthatuserswithlargedegreearemorelikelytoshare groupswithotherusers,resultinginalargeedgeweight,andthusashiftofthetailparttothe right.Nevertheless,theeffectiveedge’sweightwUcalculatedbytheprojectionofbipartitenet- e workBobeysarapid-decayingtypeofdistribution,indicatingthatthedifferenceonthe Fig6.DegreedistributionP(kU)intheusernetworkU.Thebottominsetshowsthesamedistributionovermaleandfemaleusersrespectively.Thetop insetshowsthedistributionP(wU)ofedge’sweightwU. doi:10.1371/journal.pone.0130538.g006 PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 10/19
Description: