ebook img

Empirical Studies on the Network of Social Groups PDF

19 Pages·2015·7.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Empirical Studies on the Network of Social Groups

RESEARCHARTICLE Empirical Studies on the Network of Social Groups: The Case of Tencent QQ Zhi-QiangYou1,Xiao-PuHan1*,LinyuanLü1,ChiHoYeung2 1AlibabaResearchCenterforComplexitySciences,HangzhouNormalUniversity,Hangzhou311121, China,2DepartmentofScienceandEnvironmentalStudies,TheHongKongInstituteofEducation,Hong Kong * [email protected] Abstract a11111 Background Participationinsocialgroupsareimportantbutthecollectivebehaviorsofhumanasa grouparedifficulttoanalyzeduetothedifficultiestoquantifyordinarysocialrelation,group membership,andtocollectacomprehensivedataset.Suchdifficultiescanbecircumvented OPENACCESS byanalyzingonlinesocialnetworks. Citation:YouZ-Q,HanX-P,LüL,YeungCH(2015) EmpiricalStudiesontheNetworkofSocialGroups: Methodology/PrincipalFindings TheCaseofTencentQQ.PLoSONE10(7): e0130538.doi:10.1371/journal.pone.0130538 Inthispaper,weanalyzeacomprehensivedatasetreleasedfromTencentQQ,aninstant Editor:FredericAmblard,UniversityToulouse1 messengerwiththehighestmarketshareinChina.Specifically,weanalyzethreederiva- Capitole,FRANCE tivenetworksinvolvinggroupsandtheirmembers—thehypergraphofgroups,thenetwork Received:November28,2014 ofgroupsandtheusernetwork—torevealsocialinteractionsatmicroscopicandmeso- scopiclevel. Accepted:May21,2015 Published:July15,2015 Conclusions/Significance Copyright:©2015Youetal.Thisisanopenaccess articledistributedunderthetermsoftheCreative Ourresultsuncoverinterestingbehaviorsonthegrowthofusergroups,theinteractions CommonsAttributionLicense,whichpermits betweengroups,andtheirrelationshipwithmemberageandgender.Thesefindingsleadto unrestricteduse,distribution,andreproductioninany insightswhicharedifficulttoobtaininsocialnetworksbasedonpersonalcontacts. medium,providedtheoriginalauthorandsourceare credited. DataAvailabilityStatement:Datasetofthispaperis availableonlinefromtheurl:http://datadryad.org/ review?doi=doi:10.5061/dryad.pc537. Introduction Funding:ThisworkissupportedbytheNational NaturalScienceFoundationofChina(11205040, Socialinteractionsareessentialtoourdailylife,yetourunderstandingontheorganizationof 11205042,11105024,11305043),andtheresearch socialcontactsislimited.Majorreasonsincludethedifficultiestoquantifyindividualsocial startupfundofHangzhouNormalUniversity,andthe relationshipandtocollectacomprehensivedataset.Nevertheless,therapiddevelopmentofthe EUFP7Grant611272(projectGROWTHCOM),and Internethasrevolutionizedtheformofsocialinteractionsfrompostalmails,telephonevoice CCF-TencentOpenResearchFund.ZQY calls,physicalmeetingandgathering,toemails,instantmessaging,onlineforumandonline acknowledgestheXinmiaoTalentProgramof socialnetworks.Throughtheinternet,interactionsarequantifiedintodatawhichgreatlyfacili- ZhejiangProvince(GrantNo.ZX13005002062).CHY acknowledgestheInternalResearchGrantofHKIEd. tatesthestudiesofsocialnetworks.Manyexcitingfindingsarerevealed.Asanexample,the PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 1/19 EmpiricalStudiesontheNetworkofSocialGroups CompetingInterests:Theauthorshavedeclared hypothesisofsixdegreesofseparationwasinitiallyconsideredin1930s[1],whichstatesthat thatnocompetinginterestsexist. anytwopersonscanbeconnectedbyasmallnumberofacquaintances,wasonlyrecentlytested onFacebooknetworkwhichgivesanaveragedegreeofseparationofroughly4[2].Otherfea- turesrevealedononlinesocialnetworksincludepower-lawdegreedistribution[3–7],commu- nitystructure[8,9]andspecialcommunicationpatterns(e.g.thenon-Poissonpropertieson contactactivities)[10–16]. Sofarthestudiesononlinesocialnetworksfocusmainlyonindividualsocialrelationship, leavinganotherimportantaspect—participationinsocialgroups—lessunderstood.Itis becausethecollectivebehaviorofhumanasagroupisdifficulttostudyintraditionalsocial networksduetotheambiguityinquantitativelyaffiliatingindividualstospecificgroups.This problemdoesnotoccurontheInternetsincegroup-basedapplicationshaveadefinitemem- bershipidentityforindividuals.Forinstance,prototypeonlineapplicationssuchaschatrooms andbulletinboardsystems(BBS)involveindividualusersjoiningandpostingmessageswhere membershipidentityiswelldefined[17,18].IncludingWindowsLiveandGooglemessengers, Whatsapp,Skype,FetionandTencentQQ,theseapplicationssetthebasisforexistingsocial applicationsandinstantmessengers.Intheseapplications,userscreatesocialgroupson demand.Itdrivessocialnetworkstoastatewhicharemoreextensiveandcomplicatedthan theirphysicalcounterparts. TwodifferenttypesofonlinesocialgroupscanbeformedontheInternet.Thefirstoneis similartoordinarysocialnetworks,whicharejoinedbyfriendswithrealpersonalrelationship. CirclesinGoogleplus,SkypeandWhatsappgroupsbelongtothistype[19].Thesecondoneis moreuniquetoonlinesocialnetworks,consistingofgroupsofindividualswithcommoninter- estsbutwithoutpriorpersonalrelationship,forinstance,membershipinforumsandstudent bulletins.Theyconnectindividualsbeyondordinarysocialnetworksandextendthesocial scopeofindividuals.Despitethedifferenceintheirnature,thetwotypesofnetworksareinter- dependentoneachother[20–22].Forinstance,twousersinthesameforummaybecomeinti- matefriendsandparticipateineachothers’personalsocialnetworks.Bymakingnewfriends, anindividualmayfindnewinterestsandjoinnewforums.Thisnewformofsocialorganiza- tionisuniquetoonlinesocialnetworksandhasgreatlysupplementedorevenreplacedits physicalcounterpart. Inthispaper,weanalyzeacomprehensivedatasetobtainedfromTencentQQ,aninstant messengerwiththehighestmarketshareinChina.Bothtypesofsocialnetworksareestab- lishedonQQandtheinteractionsbetweenthetwonetworksareexpected.Specifically,weana- lyzethreedifferentnetworksinvolvinggroupsandtheirmembers—thehypergraphofgroups, thenetworkofgroups,andtheusernetwork—torevealsocialinteractionsatmicroscopicand mesoscopiclevels.Ourresultsuncoverinterestingbehaviorsonthegrowthofusergroups,the interactionsbetweengroups,andtheirrelationshipwithmemberageandgender.Thesefind- ingsrevealuniquephenomenoninonlinesocialnetworks,aswellasinsightswhichareother- wiseinaccessibleinordinarysocialnetworks.Here“ordinarysocialnetworks”refertothe socialnetworksdirectlybasedonpersonalusers. Method Datadescription TencentQQ(commonlyabbreviatedasQQ,thewebsiteofTencentQQ:http://www.qq.com) isaninstantcommunicationtooldevelopedbyTencentHoldingsLimitedin1999.Todate,it hasover700millionactiveusersandhasbecomethelargestonlineapplicationinChina.QQ userscansendmessages,sharephotosandfiles,postmicroblogs,andvoiceorvideochatwith friendsusingcomputersorsmartphones. PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 2/19 EmpiricalStudiesontheNetworkofSocialGroups SocialgroupisoneofthemainfeaturesofQQwhichallowsmultipleuserstocommunicate instantly.Amessagepostedbyamemberisimmediatelyreceivedbyalltheothergroupmem- bers.Whennecessary,anytwomemberscancommunicateviaindividualchannel.Depending ontheactivenessofauser,eachofthemcancreatenomorethansixgroups.Groupscanbe searchedbytheirID’sornamesandotheruserscanjointhegroupupontheapprovalbythe administrator,i.e.thegroupcreator.QQlimitsthegroupsizeby100,200,500,and1000,also dependingontheactivenessofthegroupcreator.Forexample,accordingtothelatestruleof Tencent,auserwithlevel0(theactivenessislessthan5)cancreateonlyonegroup(thelimit ofgroupsizeis200),andauserwithlevel48(theactivenessishigherthan2496)cancreate5 groups(thelimitsare200foroneofthegroupsand500fortheother4groups).Otherthan personalrelationships,somegroupsareformedbymemberswithcommoninterests,e.g.mov- ies,orbelongtothesameorganizations,e.g.universitiesorcompanies.Thelattersareusually exclusivesocialcirclesbasedonphysicalorganizations. TheQQdataset(itwasreleasedfromtheonlineopendatabase[23]andcanbeavailable usingwebcrawler)weexaminecoversmorethan58,523,079groupsand274,335,183users,of which48,676,355groupshastheinformationwithallID,memberlist,anddate.Duetothe limitof2000groupswhichareallowedforanordinaryusertojoin,34userswhojoinedmore than2000groupsmusthavesuperiorpermissiongivenbyTencent,andthustheyareconsid- eredastherobotsorthecustomerservicessetbyTencentandareexcludedfromouranalyzes. Sincesomeusersdonotindicatehis/hergenderorage,orprovidesomeseeminglyfalseinfor- mation,e.g.0yearold,weexcludeuserswithoutgenderinformationoryoungerthan10or olderthan70.Overall,thereare273,204,518userswithgenderinformation,ofwhich42.5% (116,135,972)arefemales,and244,521,321userswithagebetween10and70.Formostofthe QQgroups,itsID,itsmemberlistwithgenderandage,andthedateofwhichitwasestablished areknown.Theoldestandtheyoungestgroupsinourdatasetareformedon22ndSeptember, 2005and25thMarch,2011,respectively.Wethusonlyusedataupto25thMarch,2011. Networksconstruction Weexaminethefollowingtypesofnetworksembeddedinthedatasets: 1. User-grouphypergraphandbipartitenetwork—Ahypergraph[24,25]isagraphofnodes andhyperedgeseachofwhichconnectstwoormorenodes.AsshowninFig1(a),thehyper- graphinourdatasetdescribestheuser-grouprelationshipwithnodesrepresentingindivid- ualusersandhyperedgesrepresentinggroups.Forinstance,userBisamemberofgroupG 1 andG ,andarethusconnectedtoAviahyperedgeG aswellastoCandDviahyperedge 2 1 G .Inthispaper,welabeltheresultsobtainedontheuser-grouphypergraphbysuperscript 2 H.Wealsoshowthecorrespondingbipartitenetwork[26,27]inFig1(b),whichisanequiv- alentrepresentationofthehypergraphH.Thenodesinuppersideandbottomsiderespec- tivelyareusersandgroups.TheresultsonthebipartitenetworkislabeledbysuperscriptB. 2. Groupnetwork—AsshowninFig1(c),groupnetworksinourcontextrefertoweightednet- workswherenodesrepresentindividualgroups,andtwogroupsareconnectediftheyhave atleastonecommonmember.Theweightontheedgeisdefinedasthenumberofcommon usersbetweenthetwogroups.Forinstance,groupG andG inFig1(a)have3common 3 4 users,theedgeconnectingG andG inFig1(c)hasaweightof3.Inthispaper,welabelthe 3 4 resultsobtainedonthegroupnetworkbysuperscriptG. 3. Usernetwork—Tofocusonthebehaviorsofsocialgroups,theusernetworkinourcontext isnottheordinaryfriendshipnetworkinQQ,butinsteadisaweightednetworkwhichonly connectstwousersiftheyaremembersofatleastonecommongroup.Hence,allmembers PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 3/19 EmpiricalStudiesontheNetworkofSocialGroups Fig1.Schematicdiagramshowing(a)theuser-grouphypergraphH,(b)thebipartitenetworkB,(c)thegroupnetworkG,and(d)theusernetwork U.Thedataiscomposedoffivegroupsdenotedbythecoloredellipsesin(a)andelevenusers.Thethicknessofedgesin(c)and(d)isproportionaltothe weightontheedges. doi:10.1371/journal.pone.0130538.g001 inagrouparefullyconnectedtoeachother.Theweightofanedgeconnectingapairof usersisequaltothenumberofgroupstheybothjoin.AsshowninFig1(a),bothuserCand DaremembersofG ,G andG ,andhencetheweightontheedgeconnectinguserCandD 2 3 4 inFig1(d)is3.Inthispaper,welabeltheresultsobtainedontheusernetworkbysuper- scriptU. ThenotationsusedthroughoutthepaperaresummarizedinTable1. Results TheStructuralPropertiesoftheUser-GroupHypergraphH Thedistributionofsocialgroupsizeisoneofthemostinterestingfeaturesinasocialnetwork. AsshowninFig1(a),thegroupsizesHisthetotalofnodenumberscoveringbyahyperedge. AswecanseeinFig2(a),thedistributionP(sH)showsaslowandsmoothdecayintherange0 (cid:1)sH(cid:1)50.ThedecaybecomesfasterforsH>50andthecurvebecomesdiscontinuousatsH= 100,200,500and1000,duetothelimitationofgroupsizebyQQ.Wefindthatthebroken PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 4/19 EmpiricalStudiesontheNetworkofSocialGroups Table1.Notationsinthepaper. Notations Description sH ThesizeofgroupH,namelythetotalnumberofusersinagroup hsHi Theaveragevalueofsizeofgroups kH Thenumberofgroupsthatauserjoined,thenode’shyperdegree hkHi Theaveragevalueofnode’shyperdegree kH Themaximumvalueofjoinedgroupsofusersinagroup max kG Thenodedegreeingroupnetwork,namelythenumberofconnectedgroupsofagroup KG Theweightednodedegreeingroupnetwork,namelythenumberofcommonusersbetweena groupandothers wG Theedge’sweightingroupnetwork,whichisdefinedasthenumberofcommonusers betweentwogroups wG Theeffectiveedge’sweightingroupnetwork,whichiscalculatedbytheresource-allocation e process. dG Thedistancebetweengroupsingroupnetwork hdGi Theaveragedistancebetweengroupsingroupnetwork CG Thelocalclusteringcoefficientingroupnetwork hCGi Theaveragevalueoflocalclusteringcoefficientingroupnetwork kU Theuser’sdegreeinusernetwork,foranarbitraryuseri,kU(i)isthenumberofuserswhoare inthesamegroupswithi hkUi Theaverageuser’sdegreeinusernetwork wU Theedge’sweightinusernetwork,whichisdefinedasthenumberofcommongroups betweentwousers wU Theeffectiveedge’sweightinusernetwork,whichiscalculatedbytheresource-allocation e process. dU Thedistancebetweenusersinusernetwork hdUi Theaveragedistancebetweenusersinusernetwork a Theageofuseri i hai Theaveragevalueofuser’sage P(a) Thedistributionofusers’ages c Thecoefficientofvariationofage,c =σ /haiwhereσ isthestandarddeviationofmember va va a a age c Thecoefficientofvariationofthenumberofneighboringusers,c =σ /hkUiwhereσ isthe vu vu u u standarddeviationofmemberdegreeinusernetwork hc i Theaveragecoefficientofvariationofneighboringusers’ages va f hc i Theaveragecoefficientofvariationofneighboringusers’degree vu f doi:10.1371/journal.pone.0130538.t001 partsofthecurvecanbeenclosedbytwopowerlawswithexponent−3.5and−5.0,i.e.thetwo dashedlinesinFig2(a).Theseexponentsaremorenegativethansimilarexponentsobserved inothersocialnetworks,suggestingthatitismoredifficultforagrouptomaintainalarge membercommunitythanforanindividualtomaintainalargenumberoffriends.Theresults indicateamorehomogeneousnatureinthedistributionofgroupsize,probablybecausemain- tainingsuchcloserelationshipinalargegroup,e.g.clubsororganizations,isnoteasy,which limitsthegrowthofgroup.Ontheotherhand,weshowinFig2(b)adatacollapseofthediffer- entbrokenpartsafterre-scaling,implyingthatformationmechanismsofgroupsaresimilar regardlessoftheirsize.Andalso,therelationbetweenthenumberofgroupsandthenumberof usersobeyspowerfunctionwithexponent1(TheinsetofFig2(c)). Intuitively,weexpectoldergroupstohavealargersizesincetheyhavealongertimeto accumulatemembers.Torevealthecorrelationbetweenthesizeofagroupandthedateof whichitisformed,wecomputetheaveragesizeofgroupsestablishedonthesamedate.Aswe PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 5/19 EmpiricalStudiesontheNetworkofSocialGroups Fig2.StatisticsforthehypergraphH.(a)P(sH),thedistributionofgroupsizesH,withthedistributioninsemi-logscaleshownintheinset.Thetwodashed linesinshowtherangeofthetailexponentofP(sH),namely−3.5(orange)and−5.0(magenta).(b)ThedatacollapseofthedifferentbrokenpartsonP(sH) afterre-scaling,inwhichsH¼ð1þsH(cid:3)sH Þ=ð1þsH (cid:3)sH Þ,heresH andsH respectivelyaretheminimumandmaximumvalueofsHineachsection,and c min max min min max P (sH)isthecorrespondingre-scaledprobability.(c)Theaverage(pink)andthestandarddeviation(grey)ofgroupsizegivenspecificdateofestablishment, c andtheinsetshowsthescalingrelationshipbetweentotalofgroupsandtotalofusersateachdate.(d)ThedistributionP(kH)ofthenumberofjoinedgroupby individualusers.P(kH)formaleandfemaleusersareshownintheinset.Thepinklinescorrespondtopower-lawfitswithexponent−3.82. doi:10.1371/journal.pone.0130538.g002 canseeinFig2(c),theaveragesizehsHiisalmostindependentofthedateofestablishment, whichiscontrarytoourbelief.Thisresultmayimplythatmostgroupsdonotgrowsignifi- cantlyafterestablishment,andthegroupsizeismainlydeterminedbythenumberofusers whojoinedthegroupshortlyafterthegroupwascreated.Itisbecausewhenagroupiscreated, PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 6/19 EmpiricalStudiesontheNetworkofSocialGroups itsinformationusuallyspreadsrapidlyinthecreator’ssocialcircle.Asaresult,mostinterested usersjointhegrouponcetheyheardaboutit.Occasionally,asmallnumberofusersmayjoin existinggroupsbutontheotherhand,someexistingmembersmayleavethegroupleadingto anequilibriumgroupsize.Thiscertaintyongroupmemberscreatessomedifficultiesintothe studiesonrecommendationalgorithmsforQQgroups. Theabovepicturesarefurthersupportedbythestandarddeviationσ ofgroupsize,which s againdoesnotincreasewiththeageofagroup.Moreover,afterexcludingthegroupswithsize closetothesizelimits(i.e.excludinggroupswithsizeintherange90–100,180–200,450–500), theaveragesizehsHioftheremaininggroupsalsoshowsthesamephenomenon(theviolet r curveinFig2(c)).Thisbehaviorofconstantsizeisdifferentfromthoseobservationsinmany otherslow-growingsocialnetworks. Otherthanthegroupsize,thenumberofgroupsjoinedbyanindividualuserisalsoan importantcharacteristicofasocialnetwork.Inthecontextofhypergraph,onecanrepresent thenumberofgroupjoinedbyauserbythehyperdegreekHoftheuser.Fig2(d)showsthedis- tributionP(kH)withatailwellfittedbyapowerlawwithexponent−3.82.Althoughtheexpo- nentismorenegativethanmostoftheothersocialnetworks,apower-lawdecaydoesimply thatuserswhichjoinedalargenumberofgroupsarepresent.Unlikepreviousstudieswhich revealeddifferencesbasedongender,weobservedsimilarP(kH)forbothmaleandfemale users.Inaddition,wefindobviouspositivecorrelationontherelationshipbetweentheaverage valueofkHamonggroupmembersandthecorrespondinggroupsizesH.Furtheranalysis(see Section1ofMaterialsandMethods)indicatesthatthispositivecorrelationreflectstheprefer- enceofactiveusersinjoininglargegroups. TheStructuralPropertiesofGroupNetworkG Afterexaminingthemacroscopiccharacteristicsofgroups,wemoveontorevealtheirmicro- scopicinteractions.Inthisrespect,theweightedgroupnetworkcharacterizesanindirectinter- actionbetweengroupswhentheysharesomecommonmembers.Asareminder,twogroups areconsideredconnectediftheysharesomecommonneighborsandtheweightoftheedgeis thenumberofuserswhojoinedbothgroups. AsshowninFig3(a),thedistributionP(kG)ofthegroupdegreekGshowsapowerlawwith exponent−0.8whenkG<120andanotherpowerlawwithexponent−2.23whenkG>120. Similarly,asshowninFig3(b),theweighteddegreedistributionP(KG)showsapowerlawwith exponent−0.81whenKG<160andanotherpowerlawwithexponent−2.33whenKG>160. Theresultsimplythatagrouponlysharememberswithasmallnumberofgroups,usuallyat mostoftheorderO(102)amongthe58milliongroupsintheQQnetwork.Ontheotherhand, thenumberofcommonmembersbetweenapairofgroups,i.e.theweightofedge,alsoobeysa two-regionpower-lawasshowninFig3(c),withanexponent−5.94atthetail.Thisimpliesthat thenumberofuserswhohaveinterestsinacommonpairofgroupsarelimitedtotheorderof O(102).Furthermore,usingbipartitenetworkprojection,wecalculatetheeffectiveedge’sweight wGthatreflectstheinfluenceofagrouponanotherone[28],andfindthatthefittingpower- e lawexponentofthedistributionofwGissmallerthantheoneofwG,indicatingthattheinflu- e encebetweengroupsismoreheterogeneous(seeSection2ofMaterialsandMethods). Thedegreeofagroupisdependentontwofactors,namely(i)thenumberofusersinthe group,and(ii)thetotalnumberofothergroupsjoinedbyitsmembers.Fig4(a)showstherela- tionbetweenthegroupdegreekGandthegroupsizesH,suchthattherelationbetweensHand thecorrespondinghkGiisgivenbythepinkcurve.Theresultsshowthatgroupdegreeincreases withgroupsize,whichisexpectedsincethenumberofdifferentgroupsjoinedbythemembers ofalargergroupshouldbeproportionatelyhigher.InFig4(b),asimilarstatisticsshowsthe PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 7/19 EmpiricalStudiesontheNetworkofSocialGroups Fig3.PropertiesofthegroupnetworkG.Thefiguresshow(a)thedistributionP(kG)ofgroupdegree,(b)thedistributionP(K )ofweightedgroupdegree G K ofG,and(c)thedistributionP(wG)ofedge’sweight.Theinsetsshowthesamecurvesinsemi-logscale. G doi:10.1371/journal.pone.0130538.g003 relationbetweenthegroupdegreekGandkH ,thelargestnumberofjoinedgroupsbyanindi- max vidualmemberinagroup.ThereasonissimilartothatinFig4(a),sincealargergrouphaspro- portionatelymoreactivemembers,thelargestnumberofgroupjoinedbyanindividual memberishigher.TheaverageofkGhasanobvioustransitionfromafastergrowthtoaslower growth(seeFig4(b)),indicatingthatk ismorestronglydependentonkH whenkGissmaller G max Fig4.Theheatmapswhichshowthecorrelation(a)betweenkGandsH(a),and(b)betweenkGandkH .Thecolorscalecorrespondstothelog- max frequencyofoccurrence.ThePearsoncorrelationcoefficientsforlog(kG)vs.log(sH)andforlog(kG)vs.logðkH Þare0.92and0.91,respectively.Thepink max linesshowthecurvesontheirmeansalongverticalvalues,andthebluedashedlinein(a)showsthefittingpowerfunctionwithslope1.14. doi:10.1371/journal.pone.0130538.g004 PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 8/19 EmpiricalStudiesontheNetworkofSocialGroups than100.ThisresultsimplythatwhenthegroupdegreekGissmall,theactiveusershaveasig- nificantroleinimprovingkG. Finally,weshowthattheQQgroupnetworkissparsebutshows“small-world”phenome- non,similartothefriendshipnetworkofFacebook[2,29].ComparingtoFacebook,theaver- agedegreeandaverageweighteddegreeareslightlysmallerinQQgroupnetwork,withvalues 108.8and133.6respectively.Thesedegreesaresmallgiventhelargesizeofthenetwork,indi- catingthenetworkissparse.Toshowthe“small-world”phenomenon,werandomlysample 2×104pairsofgroupsandremarkablyfindthattheiraveragedistanceisonly3.70±0.004,indi- catingtheupperlimitoftheaveragedistancebetweeneachtwousersisonly4.70,similartothe fourdegreesofseparationobservedinFacebook(theaveragedistancebetweenusersis4.74) [2].WealsocomputethelocalclustercoefficientCG 2n CG ¼ T ð1Þ kGðkG(cid:3)1Þ for104randomchosengroups,suchthatn isthenumberofconnectionamongtheneighbors T ofthegroup.Weshowthefrequencyofthevalues(kG,CG)forindividualgroupinFig5.Aswe cansee,CGisnegativelyrelatedtokGinaroughpower-lawrelationwithexponent−0.62, whichissimilartotheFacebookcase[2].TheaveragevalueofCGis0.35,whichishighcom- paredtotheothersocialnetworks. Fig5.TheheatmapwhichshowsthecorrelationbetweenlocalclusteringcoefficientCGandthedegreekGingroupnetworkG.Thecolorscale correspondstothelog-frequencyofoccurrenceover104randomlysampledgroups.Thepinkdashedlineshowsthefittingcurvewithslope−0.62onthe meansalongverticalvalues. doi:10.1371/journal.pone.0130538.g005 PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 9/19 EmpiricalStudiesontheNetworkofSocialGroups TheStructuralPropertiesofUserNetworkU Asimilaranalysisisconductedfortheweightedusernetwork.WeshowinFig6thedegreedis- tributionP(kU),whichhasapower-lawtailwithexponent−3.22,andanaveragevalue135.3. Thedegreedistributionsformaleandfemaleusersdonotshowobviousdifferenceandare showninthebottominsetofFig6.Byaveraging1600randompairsofusers,weobtainedthe averagedistancebetweenapairofuserstobe4.36±0.015,whichissmallerthantheaverage distance4.74observedinFacebookfriendshipnetwork[2].Theseresultsshowthattheuser networkissparseandexhibitsasmall-worldphenomenon.Bycomparingthedegreedistribu- tionP(kU)andtheweighteddegreedistributionP(wU)asshowninthetopinsetofFig6,we observethatthelattercanbefittedwellbyadecayfunctionP(wU)(cid:4)10−5.45[log(wU)]−7.96, whichisslowerthanpower-law.Itimpliesthatuserswithlargedegreearemorelikelytoshare groupswithotherusers,resultinginalargeedgeweight,andthusashiftofthetailparttothe right.Nevertheless,theeffectiveedge’sweightwUcalculatedbytheprojectionofbipartitenet- e workBobeysarapid-decayingtypeofdistribution,indicatingthatthedifferenceonthe Fig6.DegreedistributionP(kU)intheusernetworkU.Thebottominsetshowsthesamedistributionovermaleandfemaleusersrespectively.Thetop insetshowsthedistributionP(wU)ofedge’sweightwU. doi:10.1371/journal.pone.0130538.g006 PLOSONE|DOI:10.1371/journal.pone.0130538 July15,2015 10/19

Description:
1 Alibaba Research Center for Complexity Sciences, Hangzhou Normal . social networks, consisting of groups of individuals with common inter- .. The Pearson correlation coefficients for log(kG) vs. log(sH) and for log(kG) vs with our previous analyzes which show a transition from a pre-mature.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.