ebook img

Emerging Carbon Capture Technologies: Towards a Sustainable Future PDF

502 Pages·2022·7.107 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Emerging Carbon Capture Technologies: Towards a Sustainable Future

Emerging Carbon Capture Technologies This page intentionally left blank Emerging Carbon Capture Technologies Towards a Sustainable Future Edited by Mohammad Khalid Graphene and Advanced 2D Materials Research Group, School of Engineering and Technology, Subang Jaya, Selangor, Malaysia Swapnil A. Dharaskar CO Research Group, Department of Chemical Engineering, School of 2 Technology Pandit Deendayal Energy University, Gandhinagar, Gujarat, India Mika Sillanpa¨a¨ Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa Humaira Siddiqui DepartmentofBiologicalSciences,SchoolofMedicineandLifeSciences, Sunway University, Malaysia Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright(cid:1)2022ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-323-89782-2 ForinformationonallElsevierpublicationsvisitourwebsite athttps://www.elsevier.com/books-and-journals Publisher:SusanDennis EditorialProjectManager:MicaEllaOrtega ProductionProjectManager:KumarAnbazhagan CoverDesigner:MilesHitchen TypesetbyTNQTechnologies Contents List of contributors xiii About the editors xvii Preface xix 1. Introduction to carbon capture AnirbanDey,SukantaKumar DashandBishnupadaMandal 1. Carboncycle:sourcetosink 1 2. Sectors responsible foranthropogenic CO emission 4 2 3. EnergyCO -nexus andclimatechange 5 2 4. OverviewofCO capturemethods 7 2 4.1. Precombustion 7 4.2. Postcombustion 9 4.3. Oxyfuelcombustion 9 4.4. CombustiontechnologiescomparisonforCO capture 10 2 5. CO capturefromstationaryindustrialsources 10 2 5.1. Petroleum refining 14 5.2. Cementmanufacturing 15 5.3. Ironandsteel industries 16 5.4. Naturalgasprocessing 16 5.5. Ethanolproduction 17 5.6. Ammoniaprocessing 17 6. TechnologiesforCO separation 18 2 7. Thermodynamics ofCO separation 18 2 7.1. ModelingphaseandchemicalequilibriaofCO 2 absorption 22 7.2. Thermodynamicmodels 23 8. CO captureeconomics 25 2 9. Challenges andfuturedirections 26 10. Conclusions 27 References 28 2. CO capture by absorption 2 BaharehSadeghalvad,HamidEbrahimi,NiyayeshKhorshidi andAmirrezaAzadmehr 1. Introductiontotheabsorptionprocess 33 v vi Contents 2. Solventsystemsforchemicalabsorption 34 3. SolubilitycriteriaforCO absorption 35 2 4. PhysicalchemistryofCO absorption 36 2 4.1. Thermodynamicmodels 36 4.2. Chemicalkinetic 36 4.3. Quantumchemistry 37 5. NovelsolventsforCO absorption 37 2 5.1. Amine-basedsolventsystem 37 5.2. Non-amine-basedsolventsystem 39 5.3. Ionicliquids 40 5.4. Deepeutectic solvents 42 5.5. Solventblends 46 5.6. Water-free solvents 46 5.7. Biphasicsolvents 48 5.8. Enzyme-enhancedCO absorption 49 2 5.9. Physicalabsorption solvents 52 6. Absorptioncost andenergyrequirement 52 6.1. Capitalcostestimationbasedonbaremodulecost(CBM) 54 6.2. Energyrequirement 54 7. Recycling andregenerationcriteria 55 8. Challenges andfuture perspective 55 9. Conclusion 56 References 56 3. CO capture by adsorption 2 BaharehSadeghalvad,HamidEbrahimiandAmirrezaAzadmehr 1. Introductiontogas-solidadsorption 63 2. Conventionalsolidadsorbents 65 2.1. Activatedcarbon 66 2.2. Zeolites 66 3. Flexibleadsorbents 67 4. Noveladsorbentmaterials 68 4.1. Metalorganicframework(MOFs) 68 4.2. Carbonnanomaterials 69 4.3. Hybridmaterials 71 4.4. Amine-basedsolidmaterials 72 5. Recent developments inadsorptiontechnology 73 5.1. Utilizingrenewableenergy 73 5.2. Hybridprocessesoracombinationofprocesses 74 6. Adsorptioncostmodelandenergyrequirement 75 7. Challengesandfuture perspective 78 8. Conclusion 79 References 80 4. Chemical looping combustion for inherent CO 2 capture HariC.Mantripragada 1. GasseparationdthecruxofCO capture 91 2 Contents vii 2. Chemicalloopingcombustion(CLC) 91 2.1. Calciumlooping(CaL)forpostcombustion CO 2 capture 93 3. Fuelsforchemicalloopingcombustion 94 4. Oxygencarriersforchemicalloopingcombustion 96 5. Reactorsystemsforchemicalloopingcombustion 99 5.1. Reactorsforgaseousfuels 100 5.2. Reactorsforsolidfuels 102 6. Performancemodelforchemicalloopingcombustion 105 6.1. Massbalanceequations 105 6.2. Energybalanceequations 109 6.3. Applicationofperformancemodel 109 7. Powerplant applicationsofchemicallooping combustion 112 8. OutlookforCLC 117 9. Conclusions 118 References 118 5. Membrane for CO separation 2 HarriNieminen,ArtoLaariandTuomasKoiranen 1. Introduction 121 2. Membranecontactors 123 2.1. Background andtheory 123 2.2. MembranecontactorsinCO absorption 130 2 2.3. Absorbentsolutions 131 2.4. MembranecontactorsinCO stripping 134 2 2.5. Feasibilityanddemonstrations 135 3. Gasseparation membranes 136 3.1. Background andtheory 136 3.2. Membranematerials 139 3.3. Processdesign,optimization,andcostestimates 148 4. Challengesandfutureprospects 151 5. Conclusions 153 References 153 6. Electrochemical reduction of carbon dioxide to hydrocarbons: techniques and methods ReyadShawabkeh,AkramAl-Absi, MohamedShamlooh, MazenKhaledandIbnelwaleedA.Hussein 1. Introduction 161 2. Reactionmechanism 162 2.1. Firstpathway 162 2.2. Secondpathway 163 3. Techniquesandconcepts inelectrochemistry 163 3.1. Cyclicvoltammetry 163 3.2. Linearsweepvoltammetry 168 3.3. Chronopotentiometry 169 3.4. Chronoamperometry 170 viii Contents 3.5. Faradaicefficiency 173 3.6. Overpotential 173 4. Experimentalinvestigations 174 4.1. Electrodestructure 174 4.2. Gasdiffusionelectrodes 178 4.3. Electrolyte 179 4.4. Temperatureandpressure effects 182 4.5. Rotatingdiskelectrode(RDE) 182 5. Analyticaltechniques for formic acid/formate 183 6. Conclusions 184 References 184 7. Hydrate-based CO separation 2 TinkuSaikiaandAbdullahSultan 1. Introduction 193 2. CO separation technologies 194 2 2.1. Absorption 194 2.2. Adsorptiontechnology 195 2.3. Membranetechnology 196 2.4. Cryogenicseparation 197 3. TechnicaldrawbacksassociatedwithconventionalCO 2 separation technologies 197 4. Gashydrates 198 4.1. Gashydrateformationanddissociation kinetics 199 4.2. Nucleation 200 4.3. Hydrate growth 201 5. GashydrateebasedCO capture 202 2 5.1. CO capturemechanism 202 2 5.2. Operational parametersofhydrate-basedCO separation 204 2 6. CO hydrate-based separationprocess andreactordesigns 206 2 6.1. Continuousprocess 206 6.2. Stirredreactors 207 6.3. Ejector-typeloopreactor(basedonmicrobubble technology) 208 6.4. Fixed-bedreactor 210 6.5. Unstirredreactor 213 7. Differenthydratepromoters(chemicaladditives) 214 7.1. Tetra-n-butylammoniumbromide 214 7.2. Tetrahydrofuran 217 7.3. Propane 218 7.4. Cyclopentane 219 7.5. Surfactants 220 8. Costcomparisoncalculationforhydrate-based CO separation 224 2 9. Conclusions 226 Acknowledgment 226 References 226 Contents ix 8. Innovations in cryogenic carbon capture TusharPatil,SwapnilA.DharaskarandB.RajasekharReddy 1. Introduction 239 2. CO captureapproaches andtechnologies 241 2 3. Cryogenic technologies 242 3.1. Cryogenicdistillation 244 3.2. Cryogenicpackedbed 246 3.3. CryoCellprocess 247 3.4. Antisublimation(AnSU) 248 3.5. Externalcoolingloopcryogenic carboncapture technology(CCCECL) 249 3.6. Stirlingcoolersystemtechnique 250 4. Benefitsofcryogeniccarboncapturetechniques 251 4.1. Energystorage 251 4.2. HighpurityofCO product 251 2 5. Challengesandlimitationsofcryogeniccarboncapture techniques 252 5.1. Operating cost 252 5.2. Operationefficiency 252 5.3. Impurities 252 6. Conclusion 253 Acknowledgment 253 References 253 9. CO capture from the atmospheric air using 2 nanomaterials MohammedAlHinaai 1. Introduction 257 2. Direct atmosphereCO capture 258 2 3. NanomaterialsforDACC 261 3.1. Carbonnanomaterials 261 3.2. Inorganicnanomaterials 267 4. Challengesandfutureperspective 270 5. Conclusions 271 References 272 10. CO transportation: safety regulations and energy 2 requirement AhmadK.SleitiandWahibA.Al-Ammari Nomenclature 279 1. Introduction 280 2. CO pipelinesdesignandtechnicalcharacteristics 282 2 3. Pipelinesafetyandintegrity 288 4. Pipelineaccessandtariffregulation 290 5. CO maritimetransportationsystem 291 2 6. Landtransportation 295

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.