View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Emerging Antiviral Strategies to Interfere with Influenza Virus Entry EvelienVanderlindenandLieveNaesens RegaInstituteforMedicalResearch,KULeuven,Leuven,Belgium PublishedonlineinWileyOnlineLibrary(wileyonlinelibrary.com). DOI10.1002/med.21289 (cid:2) Abstract: InfluenzaAandBvirusesarehighlycontagiousrespiratorypathogenswithaconsiderable medicalandsocioeconomicalburdenandknownpandemicpotential.Currentinfluenzavaccinesrequire annual updating and provide only partial protection in some risk groups. Due to the global spread of viruseswithresistancetotheM2protonchannelinhibitoramantadineortheneuraminidaseinhibitor oseltamivir,novelantiviralagentswithanoriginalmodeofactionareurgentlyneeded.Weherefocuson emergingoptionstointerferewiththeinfluenzavirusentryprocess,whichconsistsofthefollowingsteps: attachment of the viral hemagglutinin to the sialylated host cell receptors, endocytosis, M2-mediated uncoating,lowpH-inducedmembranefusion,and,finally,importoftheviralribonucleoproteinintothe nucleus.Wereviewthecurrentfunctionalandstructuralinsightsintheviralandcellularcomponentsof this entry process, and the diverse antiviral strategies that are being explored. This encompasses small molecule inhibitors as well as macromolecules such as therapeutic antibodies. There is optimism that atleastsomeoftheseinnovativeconceptstoblockinfluenzavirusentrywillproceedfromtheproofof concepttoamoreadvancedstage.Specialattentionisthereforegiventothechallengingissuesofinfluenza virus(sub)type-dependentactivityorpotentialdrugresistance. (cid:2)C 2013WileyPeriodicals,Inc.Med.Res.Rev., 00,No.0,1–39,2013 Keywords: influenzavirus;antiviral;hemagglutinin;M2channel;nucleoprotein 1. INTRODUCTION HumaninfluenzaAandBvirusescausesignificantmorbidityandmortality,particularlyinin- fantsandelderlypeople,orthosesufferingfrompreexistingpathologyorimmunodeficiency.1,2 The United States Centers for Disease Control and Prevention estimated that, from 1976 to 2000,seasonalinfluenzaepidemicswereresponsiblefor>200,000annualhospitalizationsand anannualaverageof>30,000influenza-associateddeathsintheUSA.3Approximately90%of theinfluenza-associateddeathsoccuramongadultsaged≥65years.4 To evade the immune response, the circulating influenza H3N2, H1N1, and B viruses continuously change their antigens, and this explains why current influenza vaccines require Correspondenceto:LieveNaesens,RegaInstituteforMedicalResearch,KULeuven,Minderbroedersstraat10, B-3000Leuven,Belgium.E-mail:[email protected] MedicinalResearchReviews,00,No.0,1–39,2013 (cid:2)C 2013WileyPeriodicals,Inc. (cid:2) 2 VANDERLINDENANDNAESENS Figure1. Overviewoftheinfluenzavirusentryandreplicationprocess.Intheinsetontheright,thedifferent virioncomponentsarespecified.(a)AfterbindingoftheviralHAtosialylatedglycansonthehostcellsurface, thevirusisinternalizedbyendocytosis.(b)AcidificationoftheendosomeleadstoactivationoftheM2proton channelandvirionacidification,resultinginvirusuncoating(i.e.,dissociationofthevRNPsfromtheM1capsid protein).ThelowpHinsidetheendosomealsotriggersaconformationalchangeintheHA,leadingtofusion oftheviralandendosomalmembranes.AftervRNPreleaseinthecytoplasmanddissociationofresidualM1, nuclearlocalizationsignalsinNPdirectthetransportofthevRNPsintothenucleus.(c)Inthenucleus,theviral polymerasestartsmRNAsynthesisbycleavingoff5(cid:4)-cappedRNAfragmentsfromhostcellpre-mRNAs.Then, viralmRNAtranscriptionisinitiatedfromthe3(cid:4)endofthecleavedRNAcap.(d)ViralmRNAsaretransportedto thecytoplasmfortranslationintoviralproteins.HA,M2,andNAareprocessedintheendoplasmicreticulumand theGolgiapparatus,andsubsequentlytransportedtothecellmembrane.(e)BesidesviralmRNAsynthesis, theviralpolymeraseperformstheunprimedreplicationofvRNAs.ThevRNAsarefirsttranscribedintopositive- strandedcRNAs,whichthenfunctionasthetemplateforthesynthesisofnewvRNAs.Duringtheirsynthesis, vRNAsandcRNAsareencapsidatedbyNPs.ExportofthenewlyformedvRNPsintothecytoplasmismediated byanM1-NS2complexthatisboundtothevRNPs.(f)Astheyreachthecellmembrane,thevRNPsassociate withviralglycoproteinsattheplasmamembranefromwhichnewvirionsbudoff.Finally,theNAcleavesthesialic acidterminionviralandcellmembraneglycoproteins,therebyreleasingtheprogenyvirionsfromthehostcell. annual updating. These vaccines provide inadequate protection in some target populations (particularlytheelderly).5Besides,thereisconcernthatthewidelyspreadandhighlypathogenic avian H5N1 influenza virus may acquire human transmissibility and become a potentially disastrouspandemicvirus.Thehumancase-fatalityrateofthisavianH5N1isreportedtobe 59%,6 although some investigators have raised the possibility that subclinical cases of H5N1 infectionsinhumansmayremainunnoticed.7Forcomparison,thecase-fatalityrateofthe1918 influenzaviruswasestimated>2.5%.8 AsshowninFigure1,theinfluenzavirusreplicationcyclecontainsseveralstepsamenable toantiviralintervention.Thisreviewfocusesontheviralentrypathway,which,giventheacute onset of influenza virus infection and the inflammation associated with it, is a particularly attractive process to interfere with. We describe the current insights into the structure and functionsoftheviralandcellularcomponentsinvolvedinthisentryprocess,andtheantiviral strategiesthatarebeingexplored(anoverviewofthedescribedcompoundsisgiveninTableI). MedicinalResearchReviewsDOI10.1002/med (cid:2) EMERGINGOPTIONSTOINTERFEREWITHINFLUENZAVIRUSENTRY 3 s e Referenc 79,808283,84858688,8990,92,939496,97101,102103104105106,107109112,114 124 126–128 129 135135137–139107,131 2 1 c cspectrum H3,H9,HH13,H16 ype-specifi ctivity 11,H2,1,H2, AsubtandBandBandB andB andB A HHHBBHAAA A A b y Demonstratedactivitorclinicalstatus nvitronvivonvivonvitronvivonvivonvitro/Invivonvitro/Invivonvitro/Invivonvitronvivonvitronvivonvitronvitronvivo/PhaseII nvitro nvivoNaturalmedicine nvitro nvitronvitroNotactiveinhumansnvitro IIIIIIIIIIIIIIII I I I II I ors aProposedmodeofaction BindingclosetoHARBSIdemIdemIdemIdemIdemIdemIdemIdemBindingtoHARBSIdemIdemIdemNotpreciselyknownBindingtosialicacidReceptordestruction MembranefluiditymodulatorInhibitsvirusinternalization;immunomodulatorIntercalatesintoviralmembranesV-ATPaseinhibitorIdemRaisesendosomalpHIntra-cytoplasmicvirustrapping bit hi n i b y y a d r F o e OverviewofreportedinfluenzavirusentTableI. CompoundcodeorclassGeneralstructure InhibitorsoftheHA-receptorinteractionCH65ImmunoglobulinorC05IdemS139/1Idem3A2and10C4IdemCR8033andCR8071IdemNanobodiesSingle-domainantibSurfactantproteinDLectinCL-43LectinCyanovirin-NLectinSPGandGM3SialylatedgangliosidLSTc-bearingliposomesSialylatedliposomePentadecapeptidesPeptideA22AptamerNMSO3Sulfatedsialyllipidc01andc03AcylatedpeptidesDAS181Sialidaseenzyme InhibitorsofviralendocytosisFattiviracinNeutralglycolipid GlycyrrhizinTriterpeneglycoside LJ001Smallmolecule BafilomycinA1SmallmoleculeDiphyllinSmallmoleculeChloroquine4-AminoquinolineSA-19Aglycoristocetinlipoglycopeptide MedicinalResearchReviewsDOI10.1002/med (cid:2) 4 VANDERLINDENANDNAESENS References 146,155,159148161,166–169 55,175 176177,182179180178184,187–189194196,197,199 206–208 20921086 236–239 245 o(i.e.animal wasnot(yet) v cActivityspectrum AAA H3-specific H3-specificH1-andH2-specificH1-andH2-specificH1-andH2-specificH1-andH2-specificA AandB Group1HAs Group2HAsAllAHAsAandB A incellculture),invi heactivityspectrum b (i.e. ce,t DemonstratedactivityaProposedmodeofactionorclinicalstatus BlocktheM2channelApprovedIdemApprovedIdemInvitro BindstoHAstemandinhibitsInvitroHArefoldingIdemInvitroIdemInvitroIdemInvitroIdemInvitroIdemInvitroInhibitsmembranemixing?InvitroImmobilizessurfaceglycoproteinsInvitroInhibitorofHArefolding;Approved(RussiaandmembranefluiditymodulatorChina)BindtoconservedHA-stemInvivoepitope;inhibitHArefoldingIdemInvivoIdemInvivoIdemInvivo AggregatesNP;alsoinhibitsInvivovRNPactivity BroadproteinkinaseCinhibitorInvitro hemodeofactionrelevantforinfluenzavirusisgiven.nfluenzavirusactivityisgiven,inthesequence:invitro oanumberofinfluenzaAorBvirusestested,andheneclearlydefinedactivityspectrum. ContinuedTableI. CompoundcodeorclassGeneralstructure InhibitorsofM2-mediatedprotontransportAmantadineAdamantaneRimantadineAdamantane+analoguesAdamantane InhibitorsofHA-mediatedfusionatlowpHTBHQSmallmolecule 4cSmallmoleculeBMY-27709SmallmoleculeCL61917SmallmoleculeStachyflinSmallmoleculeRO5464466SmallmoleculeDextransulfateSulfatedpolysaccharideRetrocyclin-2CircularpeptideArbidolSmallmolecule F10;CR6261ImmunoglobulinorFab CR8020ImmunoglobulinorFabFI6v3ImmunoglobulinorFabCR9114ImmunoglobulinorFab InhibitorsofNP-mediatedviralnuclearimport+NucleozinanaloguesSmallmolecule Inhibitorsofentry-relatedcellularproteinkinasesBisindolylmaleimideISmallmolecule aForcompoundswithbroaderantiviralactivity,onlytbThemostadvancedlevelfordemonstrationofanti-istudies),andinhumans.cFormostcompounds,literaturereportsarelimitedtspecified.Theinformationinthiscolumnindicatesth MedicinalResearchReviewsDOI10.1002/med (cid:2) EMERGINGOPTIONSTOINTERFEREWITHINFLUENZAVIRUSENTRY 5 For antiviral approaches affecting other stages in the viral life cycle, the reader is referred to otherrecentreviewarticles.9–12 2. CURRENTLYAVAILABLEANTI-INFLUENZAVIRUSDRUGS Effectiveantiviraldrugstopreventortreatinfluenzainfectionsshouldatalltimesbeavailable. Today, two classes of anti-influenza virus drugs exist: the M2 proton channel blockers (i.e., theadamantanecompounds,amantadineandrimantadine),andtheneuraminidaseinhibitors (NAIs)(oseltamivirandzanamivir).13 Thefirsttwocompoundshavelimitedutility,sincethey areassociatedwithneurologicalsideeffects,havenoactivityagainstinfluenzaBvirus,andthe vastmajorityofcirculatingstrainsareadamantane-resistant.13 Adetaileddescriptionoftheir mode of action and resistance mechanisms will be given below. The obviously superior class of anti-influenza virus drugs are the NAIs oseltamivir and zanamivir that are active against all influenza A and B viruses. These structural analogues of sialic acid bind to the catalytic pocketoftheviralNAandinhibititsfunctioninreleasingthenewlyproducedvirusfromthe host cells.14,15 Thereisa criticaldifferenceintheNAbinding modeofoseltamivir compared to that of zanamivir, which explains their significantly different resistance profile. Due to its largerhydrophobicsidechain,oseltamivirrequiresrotationofthenoncatalyticGlu276residue withinNAtocreateabindingspaceforoseltamivir.16Bycontrast,thesmallersizeofzanamivir enablesdirectbindingofthiscompoundtoNA.InamutantN1NAcontainingaHistoTyr substitution at position 274, this rotation can no longer occur, rendering the NA resistant to oseltamivir binding. During the 2008–2009 season, oseltamivir-resistant H1N1 viruses were isolated all over the globe, even from untreated patients.17,18 In a Japanese study in 2004, nine out of 50 children treated with oseltamivir carried oseltamivir-resistant H3N2 viruses.19 Fortunately, oseltamivir-resistant viruses are still sensitive to zanamivir, for which resistance hasonlyscarcelybeenreported.20,21 Ontheotherhand,thepatient-unfriendlyadministration routeforzanamivir(i.e.,bypowderinhalationdevice)explainswhyoseltamivir(whichisgiven byoralcapsules)isgenerallypreferredintheclinicalsetting.Inhalationofzanamivirisapriori excludedinpatientssufferingfromsevereinfluenzasymptomswithacuterespiratorydistress, such as patients infected with the highly pathogenic avian H5N1 virus, or severe cases of the 2009pandemicH1N1virus.Toaddressthisissue,anintravenousformulationofzanamiviris under consideration.22,23 Besides, new NAIs are being developed. Peramivir, which has to be administeredintravenously,hasbeenlicensedinJapanandSouthKorea,while,intheUnited States,itsusewastemporarilyallowedduringthe2009H1N1pandemic.24 Unfortunately,the widespreadoseltamivir-resistantH1N1His274Tyrmutantsshowintermediatecross-resistance to peramivir.25 Another NAI, laninamivir (CS-8958), was approved in Japan in 2010 and is currentlyinPhaseIIItrialsintheUnitedStates.26,27 Thispromisingcompoundrequiresonly onesingleintranasaladministration(basedonitslonghalf-life),andhasasimilarNAbinding mode and favorable resistance profile as zanamivir.28 Finally, novel NAIs with a sialic acid- relatedorunrelatedstructurehavebeendevelopedbyrationaldesign,butarestillintheearly experimentalstage.29–31 To face the emerging resistance to NAIs (in particular, oseltamivir), entirely novel anti- influenzavirusdrugsareurgentlyneeded.Thetwoproductsthataremostadvancedinclinical developmentarethenucleobaseanalogueT-705(favipiravir)andthereceptordestroyingpro- tein DAS181. For T-705, Phase III trials in the United States are pending. Its active ribose- triphosphate metabolite is recognized by the influenza virus polymerase, causing competitive inhibitionofviralRNAsynthesisand/orlethalviralmutagenesis.32T-705hasbroadanti-RNA virus activity beyond influenza virus and is presumed (based on cell culture data) to have a MedicinalResearchReviewsDOI10.1002/med (cid:2) 6 VANDERLINDENANDNAESENS high barrier for viral resistance.33 The second agent, DAS181, is currently in Phase II trials. Thisrecombinantproteinisasialidasethatcleavestheinfluenzavirusreceptorsintheairway epithelia.MoredetailsonDAS181areprovidedinSection3. 3. INHIBITORSOFTHEHEMAGGLUTININ-RECEPTORINTERACTION A. StructureoftheViralHemagglutinin Within the influenza virus particle, the single-stranded, negative-oriented RNA genome is dividedovereightviralribonucleoprotein(vRNP)segments,whichareprotectedbythecapsid shell formed by the M1 protein, further surrounded by the viral envelope. Two viral spike proteinsprotrudefromthevirion:thehemagglutinin(HA)andNA,whichhavealeadingrole in viral entry and release, respectively. The HA and NA glycoproteins are the main antigens against which the host immune response is raised. In the case of influenza A virus, 17 HA and 10 NA subtypes are known, which are all present in aquatic birds, the natural reservoir for influenza A viruses.34 The only exception is H17, which was isolated only recently from bats.35,36 Theemergenceofanewpandemicvirusisexplainedbythereassortmentofgenome segments,whichoccasionallyoccursupondualinfectionofananimalspecies(suchasapig) thatcarriestheavian-aswellasthehuman-typeinfluenzavirusreceptors.37 The influenza virus HA (Fig. 2A) is a homotrimeric type 1 membrane glycoprotein. Its membrane-distal globular head domain contains the receptor binding site (RBS), whereas the HA stem structure (which contains the fusion peptide) is responsible for intraendosomal membrane fusion.34 In influenza virus-infected cells, HA is first synthesized as its precursor proteinHA0,whichassemblesintoanoncovalentlylinkedhomotrimer38andiscleavedintotwo polypeptides(HA1andHA2containing,inthecaseofH3,328and221aminoacids,respec- tively),whichremaincovalentlyattachedbyadisulfidebond.39 FormostHAs,HA0cleavage occursatasinglearginineresidueandisperformedbyamembrane-boundorsecretedserine proteasethatisrestrictedtobronchiolarepithelium,suchastryptaseClara,thehumanairway trypsin-likeproteaseorTMPRSS2.40,41TheHAsfromhighlypathogenicavianvirusescontain aseriesofbasicresiduesattheircleavagesite,42allowingrecognitionbyfurin-likeintracellular proteasesthatarewidelydistributedinaviantissues,thusexplainingtheirsystemicspreadand high virulence.43 Inhibition of the cellular proteases performing HA0 cleavage is an original antiviralstrategy,andpeptidomimeticfurininhibitorshaveproventoinhibitthereplicationof an avian influenza virus in cell culture.44 After HA0 cleavage, minor rearrangements lead to insertion of the fusion peptide (located at the N-terminus of HA2) into a negatively charged cavity,thusprimingtheHAforpH-dependentfusion.40PosttranslationalmodificationsofHA comprise the addition of acyl chains to the short cytoplasmic tail,45 and N-glycosylation at several asparagine residues in the ectodomain.39 Besides masking the antigenic epitopes by stericallyhinderingantibodyrecognition,46,47theN-linkedglycansalsofunctioninthecorrect foldingofHAintheendoplasmicreticulum,48,49modulationofreceptorbinding,50controlling HA0 cleavage,51 and maintaining the HA in its metastable conformation required for fusion activity.52 TheN-glycansthataremostconservedamongvariousinfluenzaHAsarelocatedat theN-terminusofHA0(oraftercleavage,HA1)48andintheHAstemregion.53 The 17 influenza HA subtypes are classified into two phylogenetic groups (Fig. 2B). The H1andH5HAsbelongtothesamecladewithingroup1,whereasH3HAbelongstogroup 2.35,54,55AlthoughthisphylogeneticclassificationwasprimarilybasedonHAproteinsequence, comparisonofavailableHAcrystalstructuresindicatesthattheregionsinvolvedinmembrane fusionshowstrikingsimilaritiesonagroup-specificbasis.54 MedicinalResearchReviewsDOI10.1002/med (cid:2) EMERGINGOPTIONSTOINTERFEREWITHINFLUENZAVIRUSENTRY 7 Figure2. StructureandclassificationofinfluenzaAHAs.(A)Structureoftheviralhemagglutinin,showingthe bindingsiteforsialicacid(violet)intheglobularheaddomain(blueribbonstructure),aswellasthebinding pocketsintheHAstemstructureforfusioninhibitorsreportedtopreventtheHAconformationalchange,thatis, thesmall-moleculeinhibitorTBHQ(orange)andthebroad-actingantibodiesF10(pink)andCR6261(yellow). TwoHAsubunitsarerepresentedbytheircombinedmolecularsurface,whilethethirdoneisshowninaribbon diagram.[ReprintedbypermissionfromMacmillanPublishersLtd:NatureStructural&MolecularBiologyRef. Dasetal.10 (cid:2)C (2010).](B)PhylogenetictreeofinfluenzaAHAs.Group1(cyan)canbesubdividedintothree clades (H8, H9, and H12; H1, H2, H5, and H6; H11, H13, and H16). Group 2 (green) is subdivided in two clades(H3,H4,andH14;H7,H10,andH15).ThenewlyidentifiedH17isclassifiedintheH1cladeofgroup 1.35 [TakenfromRusselletal.,55 Copyright(2008)NationalAcademyofSciences,USA.](C)DetailoftheHA RBSindicatingthebindingmodeoftheCDR-H3loop(heavy-chaincomplementaritydeterminingregion3)of antibodyCH65,whichactsasasialicacidmimic.TheHARBSiscoloredpinkandtheCDR-H3loopisshown inblue.Theresiduesrelevantfortheantibody-HAinteractionarelabeled;someoftheseareconservedHA1 residuesinvolvedinsialicacidbinding(Ser1361,Trp1531,andLeu1941).[Taken,withpermission,fromWhittle etal.79](D)CartoonofthestructuralchangesinHAduringtheHA-mediatedmembranefusionprocess.[a]The HARBSbindstothesialylatedcellreceptor(ingreen).[b]TheacidicpHintheendosomeinducesHArefolding, whichleadstotheexposureofthefusionpeptide(inred)anditsinsertionintheendosomalmembrane.[c]As aresultoffurtherconformationalchangesinHA,theviralandendosomalmembranesarepulledtogether.[d] Mixingoftheoutermembraneleafletsgeneratestheprefusionstalkintermediate.Thedashedlinesseparatethe innerandoutermembraneleaflets.[TakenfromHamiltonetal.,251withpermission] MedicinalResearchReviewsDOI10.1002/med (cid:2) 8 VANDERLINDENANDNAESENS B. Species-SpecificVirusBindingtoSialylatedGlycanReceptors In the first step of the infection cycle, the HA attaches, via the RBS in its globular head, to sialylatedglycoproteinsorglycolipidsonthehostepithelialcells.56ThisHA-receptorinteraction ishighlyspecificforsialylglycoconjugatesandplaysanessentialpartinthespeciesrecognition of avian versus human influenza viruses.57 The HAs from human-adapted viruses, including thepandemicvirusesoftheH1N1,H2N2,orH3N2subtype,preferentiallybindtocell-surface glycansterminatinginα2-6-linkedsialyl-galactosylresidues[Neu5Ac(α2-6)Gal],whereasavian influenza A viruses have a preference for α2-3-linked sialyl-galactosyl termini.58–62 The HAs ofinfluenzaBviruseswhich,innature,areonlydetectedinhumansandseals,showabinding preference for α2-6-linked glycans.63–65 Thus, it is important to underline that the species specificityoftheHA–glycaninteractionisnotbasedonrecognitionoftheterminalsialicacid itself, but, rather, its linkage to the vicinal galactose and the sugars beyond galactose.66,67 A correlation between glycan topology and species specificity was established from HA–glycan cocrystal structures as well as glycan array data.58 With regard to the HA residues that are directlyinvolvedinsialicacidbinding,thesearehighlyconservedacrossdifferentHAsubtypes. Theseaminoacids(Tyr98 ,Ser136 ,Trp153 ,His183 ,Leu194 )[aminoacidnumberingbased 1 1 1 1 1 on the H3 HA sequence; the suffixes 1 and 2 denote location in the HA1 and HA2 subunit, respectively]leadtoafixedorientationofthesialicacidrelativetotheHARBS.68 Althoughsialicacidisgenerallyconsideredtobetheprimaryattachmentreceptor,influenza virusisabletobindandenter(thoughconsiderablylessefficiently)intocellsofwhichallsurface sialicacids,whetherattachedtoglycolipidsorglycoproteins,wereremovedbytreatmentwith exogenousMicromonosporaviridifacienssialidase.69 Hence,ithasbeenproposedthat,besides sialic acid, other receptors may be involved in influenza virus entry, which can work either independentlyorviaamultistepprocess.69,70 Which specific amino acid residues in HA govern its avian versus human receptor pref- erence, varies among the different HAs, and is still incompletely understood, although α2-6 tropismisgenerallylinkedtoresiduesAsp190 andAsp225 inH1andLeu226 inH2andH3 1 1 1 HAs.71 To cross the avian–human species barrier, acquisition of the human receptor binding preference is not sufficient, since additional amino acid changes are required, particularly in theinfluenzaviruspolymerasecomplex.71InarecentstudyinwhichtheavianH5N1viruswas passedinferrets,fourmutationsintheheaddomainofH5HA,combinedwiththeGlu627Lys hallmarkmutationinthePB2subunitofthepolymerasecomplex,wereabletoleadtoairborne transmissionofthisvirusinferrets.72AsimilarstudywithareassortantviruscarryingtheHA ofavianH5N1alsoconcludedthatitsavian-to-mammalianadaptationrequiresacombination ofHAmutationstonotonlyswitchitsreceptorpreferencefromα2-3toα2-6,butalsoincrease thestabilityoftheHAprotein.73 C. AntiviralStrategiestoInterferewithHA-ReceptorBinding When considering the HA-receptor binding as an antiviral target, the multivalent nature of this interaction may present as a challenge. This binding is highly dynamic and involves an ensembleofsialylatedglycansmakingcontactwithmultipleHAtrimers.74Inthismanner,the avidityeffectsofthemultivalentinteractioncompensatefortheintrinsicallylowglycanbinding affinity for a single binding site on HA [with a dissociation constant (Kd) in the millimolar range].75 Thus, to develop inhibitors that block the receptor binding of HA, at least three factors needtobetakenintoaccount:largesequencevariationamongHAsubtypesandantigenicdrift of HA; avian versus human-specific receptor use; and multivalent nature of the HA-receptor interaction. An ideal inhibitor would be species- and HA subtype-independent. There are MedicinalResearchReviewsDOI10.1002/med (cid:2) EMERGINGOPTIONSTOINTERFEREWITHINFLUENZAVIRUSENTRY 9 threeconceivablestrategiesforinhibitingattachmentofinfluenzavirustoitstargetcell:(i)an antiviralcompoundbindingtotheHARBS;(ii)aninhibitorblockingthesialicacid-containing receptorsontheepithelialcellmembrane;or(iii)areceptor-destroyingagent. 1. HA-BindingAgents Virus-neutralizingantibodies Thefirstandnaturaltypesofbindinginhibitorsarethevirus-neutralizingantibodiesraiseddur- ingthecourseofaninfluenzavirusinfection.Theseneutralizingantibodiesarepredominantly directed toward the surface of the membrane-distal globular head domain of HA.76 During the 1918 pandemic, some patients were treated with human blood products from recovering influenza patients.77 Eight controlled studies reported between 1918 and 1925 were recently reviewed,anditwasconcludedthattheoverallcase-fatalityratewasreducedfrom37%among control patients to 16% among treated patients. Treatment was most effective when initiated early(i.e.,lessthan4daysafterpneumoniabecameapparent).77 Thesehistoricaldatademon- stratethatpassiveimmunizationwithanti-HAantibodiescanbeconsideredincaseapandemic occurs.Obviously,safetyconsiderationsabouttheuseofpatient-derivedmaterialsneedtobe addressed.AnelegantmethodfortheisolationofhumanantibodieswasreportedbySimmons etal.,78 whopreparedH5N1neutralizingmonoclonalantibodiesfromthememoryB-cellsof patients recovered from an H5N1 infection. Two monoclonal antibodies were effective in a mouseinfluenzamodelwhenadministerednolaterthan72hrafterinfection.78 Anattractive new concept is the development of monoclonal antibodies that bind to the conserved RBS of HA and, hence, are endowed with heterosubtypic HA neutralizing activity. A first human monoclonalantibodydirectedagainstH1HA,encodedCH65,wasderivedfromplasmacells of a person immunized with the 2007 trivalent influenza vaccine. Cocrystallization of its Fab fragment with H1 HA revealed that this antibody acts as a sialic acid mimic since the tip of itsheavy-chaincomplementaritydeterminingregion3(HCDR3)insertsintheRBSofH1HA (Fig.2C).79SinceCH65wasshowntoneutralize31outof36H1N1isolatescoveringaperiod of more than 30 years, and to interact with the conserved RBS itself, resistance selection by CH65 may be expected to be rare, unless associated with reduced viral fitness.79,80 It should however be noted that the RBS of HA is smaller than the interaction site of an antibody81 and,therefore,CH65formsadditionalinteractionswithRBSsurroundingresiduesthatareless conservedamongthedifferentHAs.ThemorebroadlyactingmonoclonalantibodyC05binds toH1,H2,H3,H9,andH12HAsandwasisolatedfromaphage-displaylibraryconstructed frombonemarrowdonatedafterseasonalinfluenzainfection.Cocrystallizationstudiesdemon- stratedthattheHCDR3partofC05formsaloopthatinsertsintotheconservedRBSofHA, whileitsHCDR1regionmakesonlyminimalcontactwithRBSsurroundingandmorevariable residues.82 Athirdcross-reactivemonoclonalantibody,S139/1,neutralizesH1,H2,H3,H13, andH16virusstrains.83TheHCDR2regionofS139/1wasshowntoformmultiplehydropho- bicinteractionswithintheRBSofH3HA.Theratherlowaffinityofthisbindinginteraction iscompensatedinthebivalentIgGmolecule,andthisavidityeffectisrequiredtobroadenthe neutralizing activity of S139/1 to strains of the H1, H2, H13, and H16 subtypes.84 Regard- ing influenza B viruses, the human monoclonal antibodies 3A2 and 10C4, reactive against B viruses of the Yamagata lineage, recognize the 190-helix (residues 190–198 in HA1) near the RBS.85ThehumanmonoclonalantibodiesCR8033andCR8071wereshowntoneutralizeboth YamagataandVictorialineageBvirusesandprotectmiceafterchallengewithalethaldoseof influenzavirus.86Althoughthetherapeuticuseofananti-influenzaantibodymayappearcom- plicated,someparallelcanbeseenwiththepalivizumabantibodythatisalreadyinuseforthe prophylaxisofanotherrespiratoryvirus,thatis,respiratorysyncytialvirus(RSV).87 Aninno- vativestrategytoimprovethepharmacokineticsandreducetheproductioncostoftherapeutic MedicinalResearchReviewsDOI10.1002/med (cid:2) 10 VANDERLINDENANDNAESENS antibodiesconsistsofsingle-domainantibodyfragments(alsoreferredtoasNanobodies)de- rivedfromcamelidimmunoglobulins.88 ANanobodydirectedtotheglobularheadofH5HA wasshowntobeeffectiveinH5N1-infectedmice.TheactivityofthemonovalentNanobodywas increasedbyafactor60whenusingabivalentformat,consistingoftwoparatopecontaining domainsconnectedbyaflexiblelinker.89 Lectins AnothertypeofimmuneproteinscapableofcatchingvirusesisthecollagenousC-typelectins (referredtoascollectins)suchasthelungsurfactantproteins.TheroleofsurfactantproteinD (SP-D)intheinnateimmuneresponsetoinfluenzavirusisexplainedbyitscapacitytocause virus particle aggregation, thereby preventing virus attachment to the host cells.90 Besides, SP-Dhasvariousimmunologicaleffectsthataccountforitsabilitytolimitlunginflammation byrespiratorypathogens.91 Regardingpotentialantiviraluse,designofmodifiedformsofthe porcineSP-Dlectin(whichhashigheranti-influenzavirusactivitythanitshumancounterpart) is aided by the growing insight into how its carbohydrate recognition domain (CRD) pre- ciselyinteractswiththehigh-mannoseglycansattachedneartheRBSofHA.92,93 Inaddition, N-linkedsialoglycansattachedtotheCRDofSP-Dareconsideredimportant,sincetheymay cause additional interactions between the SP-D and the HA RBS and enhance the antiviral effect.90Asimilaractionprinciple,thatis,bindingtohigh-mannosecarbohydratesontheviral HA,accountsfortheanti-influenzavirusactivityofthebovineserumlectinCL-43.94Likewise, cyanovirin-N,alectinisolatedfromEscherichiacoli,recognizeshigh-mannoseoligosaccharide structuresondiverseviralglycoproteins,explainingitsbroadactivityagainstunrelatedviruses such as influenza virus and HIV.95 Cyanovirin-N was shown to inhibit influenza virus repli- cation in cell culture as well as mouse and ferret infection models.96,97 Although SP-D and cyanovirin-N manifest broad anti-influenza A and B virus activity, some virus strains (such as the A/PR/8/34 H1N1 strain) are known to be insensitive, due to the lack of particular Asn-linked oligosaccharides on the head of their HA.98 The location and number of glycans attached to the head of HA is quite variable, since acquisition of epitope shielding oligosac- charides is part of the viral immune escape.46 In contrast, the glycans attached to the HA stemhaveastructuralfunctioninproteinrefolding,andthecorrespondingglycosylationsites arethereforemoreconserved.52,53 Thisimpliesthatantiviraluseoflectincompoundsdirected towardHAheadglycansmightleadtoescapemutantsdevoidofspecificglycans,althoughthe newlyexposedantigenicsitesmightalsorenderthemutatedvirussusceptibletoimmunological control.99 Sialyl-containingmacromoleculesandsialomimetics An alternative approach to block the HA RBS makes use of receptor mimics, such as sialyl-containing macromolecules. The gangliosides sialylparagloboside (SPG) and GM3 (Neu5Acα2-3Galβ1-4Glcβ1-1(cid:4)ceramide) were proven to bind to HA and inhibit the virus- induced cytopathic effect,100–102 and their antiviral activity correlated with their HA binding affinities.101ThehydrophobicceramidemoietyofSPGandGM3wasfoundessential,sincethe uncoupledtrisaccharides3(cid:4)-sialyllactosamineand3(cid:4)-sialyllactose(whichconstitutethetermini ofSPGandGM3,respectively)producednoeffect.Micelleformationofthesegangliosidesin aqueous solution likely causes protrusion of their sialic acid parts toward the outside of the micelles,resultinginhighsialicaciddensityand,hence,amultivalentbindinginteractionwith HA.101 In a recent report, Hendricks et al. described that liposomes bearing sialylneolacto-N- tetraose c (LSTc) can form multivalent interactions with influenza virus.103 In contrast to MedicinalResearchReviewsDOI10.1002/med
Description: