ebook img

Emergent Intelligence of Networked Agents PDF

257 Pages·2007·17.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Emergent Intelligence of Networked Agents

AkiraNamatame,SatoshiKuriharaandHideyukiNakashima(Eds.) EmergentIntelligenceofNetworkedAgents StudiesinComputationalIntelligence,Volume56 Editor-in-chief Prof.JanuszKacprzyk SystemsResearchInstitute PolishAcademyofSciences ul.Newelska6 01-447Warsaw Poland E-mail:[email protected] Furthervolumesofthisseries Vol.45.VladimirG.Ivancevic,TijanaT.Ivancevic canbefoundonourhomepage: Neuro-FuzzyAssociativeMachineryforComprehensive springer.com BrainandCognitionModeling,2007 ISBN978-3-540-47463-0 Vol.33.MartinPelikan,KumaraSastry,Erick Vol.46.ValentinaZharkova,LakhmiC.Jain Cantu´-Paz(Eds.) ArtificialIntelligenceinRecognitionandClassification ScalableOptimizationviaProbabilistic ofAstrophysicalandMedicalImages,2007 Modeling,2006 ISBN978-3-540-47511-8 ISBN978-3-540-34953-2 Vol.47.S.Sumathi,S.Esakkirajan Vol.34.AjithAbraham,CrinaGrosan,Vitorino FundamentalsofRelationalDatabaseManagement Ramos(Eds.) Systems,2007 SwarmIntelligenceinDataMining,2006 ISBN978-3-540-48397-7 ISBN978-3-540-34955-6 Vol.48.H.Yoshida(Ed.) Vol.35.KeChen,LipoWang(Eds.) AdvancedComputationalIntelligenceParadigms TrendsinNeuralComputation,2007 inHealthcare,2007 ISBN978-3-540-36121-3 ISBN978-3-540-47523-1 Vol.36.IldarBatyrshin,JanuszKacprzyk,Leonid Vol.49.KeshavP.Dahal,KayChenTan,PeterI.Cowling Sheremetor,LotfiA.Zadeh(Eds.) (Eds.) Preception-basedDataMiningandDecisionMaking EvolutionaryScheduling,2007 inEconomicsandFinance,2006 ISBN978-3-540-48582-7 ISBN978-3-540-36244-9 Vol.37.JieLu,DaRuan,GuangquanZhang(Eds.) Vol.50.NadiaNedjah,LeandrodosSantosCoelho, E-ServiceIntelligence,2007 LuizadeMacedoMourelle(Eds.) ISBN978-3-540-37015-4 MobileRobots:TheEvolutionaryApproach,2007 ISBN978-3-540-49719-6 Vol.38.ArtLew,HolgerMauch DynamicProgramming,2007 Vol.51.ShengxiangYang,YewSoonOng,YaochuJin ISBN978-3-540-37013-0 Honda(Eds.) EvolutionaryComputationinDynamicandUncertain Vol.39.GregoryLevitin(Ed.) Environment,2007 ComputationalIntelligenceinReliabilityEngineering, ISBN978-3-540-49772-1 2007 ISBN978-3-540-37367-4 Vol.52.AbrahamKandel,HorstBunke,MarkLast(Eds.) Vol.40.GregoryLevitin(Ed.) AppliedGraphTheoryinComputerVisionandPattern ComputationalIntelligenceinReliabilityEngineering, Recognition,2007 2007 ISBN978-3-540-68019-2 ISBN978-3-540-37371-1 Vol.53.HuajinTang,KayChenTan,ZhangYi Vol.41.MukeshKhare,S.M.ShivaNagendra(Eds.) NeuralNetworks:ComputationalModels ArtificialNeuralNetworksinVehicularPollution andApplications,2007 Modelling,2007 ISBN978-3-540-69225-6 ISBN978-3-540-37417-6 Vol.54.FernandoG.Lobo,Cla´udioF.Lima Vol.42.BerndJ.Kra¨mer,WolfgangA.Halang(Eds.) andZbigniewMichalewicz(Eds.) ContributionstoUbiquitousComputing,2007 ParameterSettinginEvolutionaryAlgorithms,2007 ISBN978-3-540-44909-6 ISBN978-3-540-69431-1 Vol.43.FabriceGuillet,HowardJ.Hamilton(Eds.) Vol.55.XianyiZeng,YiLi,DaRuanandLudovicKoehl QualityMeasuresinDataMining,2007 (Eds.) ISBN978-3-540-44911-9 ComputationalTextile,2007 Vol.44.NadiaNedjah,LuizadeMacedo ISBN978-3-540-70656-4 Mourelle,MarioNetoBorges, Vol.56.AkiraNamatame,SatoshiKuriharaand NivalNunesdeAlmeida(Eds.) HideyukiNakashima(Eds.) IntelligentEducationalMachines,2007 EmergentIntelligenceofNetworkedAgents ISBN978-3-540-44920-1 ISBN978-3-540-71073-8 Akira Namatame Satoshi Kurihara Hideyuki Nakashima (Eds.) Emergent Intelligence of Networked Agents With 105 Figures and 28 Tables AkiraNamatame SatoshiKurihara DepartmentofComputerScience GraduateSchoolof NationalDefenseAcademy InformationScienceandTechnology 1-10-20,Hashirimizu OsakaUniversity Yokosuka,239-8686 8-1Mihogaoka Japan Ibaraki,Osaka,567-0047 E-mail:[email protected] Japan E-mail:[email protected] HideyukiNakashima FutureUniversity-Hakodate Generalco-chairofAAMAS-06 116-2Kamedanakano-choHakodate Hokkaido041-8655 Japan E-mail:[email protected] LibraryofCongressControlNumber:2007921689 ISSNprintedition:1860-949X ISSNelectronicedition:1860-9503 ISBN-10 3-540-71073-6SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-71073-8SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer-Verlag.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:176)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:deblik,Berlin TypesettingbytheeditorsusingaSpringerLATEXmacropackage Printedonacid-freepaper SPIN:11679851 89/SPi 543210 Preface Recently, the study of intelligence emerged from interactions among many agentshasbeenpopular.Inthisstudyitisrecognizedthatanetworkstructure of the agents plays an important role. The current state-of-the art in agent- based modeling tends to be a mass of agents that have a series of states that they can express as a result of the network structure in which they are embedded.Agentinteractionsofallkindsareusuallystructuredwithcomplex networks. Research on complex networks focuses on scale-freeness of various kind of networks. Computational modeling of dynamic agent interactions on richly struc- turednetworksisimportantforunderstandingthesometimescounter-intuitive dynamics of such loosely coupled systems of interactions. Yet our tools to model, understand, and predict dynamic agent interactions and their beha- vior on complex networks have lagged far behind. Even recent progress in network modeling has not yet offered us any capability to model dynamic processes among agents who interact at all scales on such as small-world and scale-free networks. Generally the high-dimensional, non-linear nature of the resulting network-centric multi-agent systems makes them difficult or impos- sible to analyze using traditional methods. Agents follow local rules under complexnetworkconstraints.Theideaofcombiningmulti-agentsystemsand complex networks is also particularly rich and fresh to foster the research on the study of very large-scale multi-agent systems. Weintendtoturnthisintoanengineeringmethodologytodesigncomplex agent networks. Multi-agent network dynamics involves the study of many agents,constituentcomponentsgenerallyactiveoneswithasimplestructures andwhosebehaviorisassumedtofollowlocalrules,andtheirinteractionson complex network. A basic methodology is to specify how the agents interact, and then observe emergent intelligence that occur at the collective level in order to discover basic principles and key mechanisms for understanding and shaping the resulting intelligent behavior on network dynamics. The volume contains refereed papers addressing various important topics that aims at the investigation of emergent intelligence on networked agents. vi Preface Especiallymostpapershighlightonthetopicssuch“networkformationamong agents”,“influence of network structures on agents”,“network-based collec- tive phenomena and emergent intelligence on networked agents”. The selected papers of this volume were presented at the Workshop on Emergent Intelligence of Networked Agents (WEIN 06) at the Fifth Inter- national Joint Conference on Autonomous Agents and Multi-agent Systems (AAMAS2006),whichwasheldatFutureUniversity,Hakodate,Japan,from May 8 to12, 2006. WEIN 06 is concerned with emergence of intelligent beha- viors over networked agents and fostering the formation of an active multi- disciplinary community on multi-agent systems and complex networks. We especiallyintendedtoincreasetheawarenessofresearchersinthesetwofields sharing the common view on combining agent-based modeling and complex networks in order to develop insight and foster predictive methodologies in studying emergent intelligence on of networked agents. From the broad spec- trum of activities, leading experts presented important paper and numerous practicalproblemsappearthroughoutthisbook.Weinvitedhighqualitycon- tributions on a wide variety of topics relevant to the wide research areas of multi-agent network dynamics. We especially covered in-depth of important areas including: Adaptation and evolution in complex networks, Economic agents and complex networks, Emergence in complex networks, Emergent in- telligence in multi-agent systems, Collective intelligence, Learning and evolu- tioninmulti-agentsystems,Webdynamicsascomplexnetworks,Multi-agent based supply networks, Network-centric agent systems, Scalability in multi- agent systems, Scale-free networks, Small-world networks. We could solicit many high quality papers that reflect the result of the growing recognition of the importance of the areas. All papers have received a careful and supportive review, and we selected 19 papers out of 31 pa- pers.Thecontributionsweresubmittedasafullpaperandreviewedbysenior researchers from the program committee. All authors revised their earlier versions presented at the workshop with reflecting criticisms and comments received at the workshop. The editors would like to thank the program com- mitteeforthecarefulreviewofthepapersandthesponsorsandvolunteersfor their valuable contribution. We hope that as a result of reading the book you will share with us the intellectual excitement and interest in this emerging discipline.Wealsothankthemanyotherrefereeswhogenerouslycontributed time to ensure the quality of the finished product. Workshop Organizers Satoshi Kurihara, Osaka University, Japan Hideyuki Nakashima, Future University Hakodate, Japan Akira Namatame, National Defense Academy, Japan, Workshop Chair Preface vii International Steering Committee Robert Axtell, Brookings Institution, and Santa Fe Institute, USA Giorgio Fagiolo, University of Verona, Italy Satoshi Kurihara, Osaka University, Japan Hideyuki Nakashima, Future University Hakodate, Japan Akira Namatame, National Defense Academy, Japan Scientific Program Committee Robert Axtell, Santa Fe Institute, USA Sung-Bae Cho, Yosei University, Korea Giorgio Fagiolo, University of Verona, Verona, Italy Kensuke Fukuda, National Institute of Informatics (NII), Japan David Green, Monash University, Australia Yukio Hayashi, Japan Advanced Institute of Science and Technology (JAIST), Japan Dirk Helbing, Dresden Technical University, Germany KiyoshiIzumi,NationalInstituteofAdvancedIndustrialScienceandTech- nology (AIST), Japan Taisei Kaizoji, International Christian University (ICU), Japan Hidenori Kawamura, Hokkaido University, Japan Satoshi Kurihara, Osaka University, Japan Yutaka Matsuo, National Institute of Advanced Industrial Science and Technology (AIST), Japan Peter Mika, Free University of Amsterdam, Netherlands Hideyuki Nakashima, Future University - Hakodate, Japan Akira Namatame, National Defense Academy, Japan Denis Phan, University of Rennes, France Jon Sakker, Australian Defense Academy, Australia Frank Schweitzer, ZTH, Switzerland WataruSouma,AdvancedTelecommunicationsResearchInstituteInterna- tional (ATR), Japan David Wolpert, NASA Ames Research Center, USA Tokyo, Akira Namatame November 2006 Satoshi Kurihara Hideyuki Nakashima Contents Preface .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . v Incremental Development of Networked Intelligence in Flocking Behavior . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Masaru Aoyagi and Akira Namatame Emergence and Software development Based on a Survey of Emergence Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Joris Deguet, Laurent Magnin, and Yves Demazeau The Impact of Network Model on Performance of Load-balancing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Kensuke Fukuda, Toshio Hirotsu, Satoshi Kurihara, Osamu Akashi, Shin-ya Sato, and Toshiharu Sugawara Auction-Based Resource Reservation Game in Small World. . . . 39 Zhixing Huang, Yan Tang and Yuhui Qiu Navigational Information as Emergent Intelligence of Spontaneously Structuring Web Space. . . . . . . . . . . . . . . . . . . 53 Takashi Ishikawa From Agents to Communities: A Meta-model for Community Computing in Multi-Agent System. . . . . . . . . . . . . . . . . . . . . . . . 67 Kyengwhan Jee and Jung-Jin Yang x Contents The effects of market structure on a heterogeneous evolving population of traders. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Dan Ladley and Seth Bullock Analysis on Transport Networks of Railway, Subway and Waterbus in Japan... . . . . . . . . . .. . . . . . . . . . .............99 Takahiro Majima, Mitujiro Katuhara and Keiki Takadama Network Design via Flow Optimization. . . . . . . . . . . . . . . . . . . . .115 Yusuke Matsumura, Hidenori Kawamura, Koichi Kurumatani, and Azuma Ohuchi Gibbs measures for the network ...........................129 Syuji Miyazaki Extracting Users’ Interests of Web-watching Behaviors Based on Site-Keyword Graph. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Tsuyoshi Murata and Kota Saito Topological aspects of protein networks . . . . . . . . . . . . . . . . . . . . 147 J.C. Nacher, M. Hayashida, and T. Akutsu Collective Intelligence of Networked Agents................. 159 Akira Namatame Using an agent based simulation to evaluate scenarios in customers’ buying behaviour............................177 Filippo Neri How to Form Stable and Robust Network Structure through Agent Learning—from the viewpoint of a resource sharing problem. . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Itsuki Noda and Masayuki Ohta Contents xi An Evolutionary Rulebase Based Multi-agents System........203 Hiroshi Ouchiyama, Runhe Huang, and Jianhua Ma Improvements in Performance of Large-Scale Multi-Agent Systems Based on the Adaptive/ Non-Adaptive Agent Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Toshiharu Sugawara, Kensuke Fukuda, Toshio Hirotsu, Shin-ya Sato and Satoshi Kurihara Effect of grouping on classroom communities. . . . . . . . . . . . . . . 231 Toriumi Fujio and Ishii Kenichiro Emergence and Evolution of Coalitions in Buyer-Seller Networks... . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .245 Frank E. Walter, Stefano Battiston, and Frank Schweitzer

Description:
The study of intelligence emerged from interactions among agents has been popular. In this study it is recognized that a network structure of the agents plays an important role. The current state-of-the art in agent-based modeling tends to be a mass of agents that have a series of states that they c
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.