ebook img

Emergence of Consensus in a Multi-Robot Network: from Abstract Models to Empirical Validation PDF

5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Emergence of Consensus in a Multi-Robot Network: from Abstract Models to Empirical Validation

Emergence of Consensus in a Multi-Robot Network: from Abstract Models to Empirical Validation VitoTrianni1,DanieleDeSimone2,AndreagiovanniReina3 andAndreaBaronchelli4 1ISTC,NationalResearchCouncil,00185Rome,Italy [email protected] 2DIAG,SapienzaUniversityofRome,00185Rome,Italy [email protected] 3UniversityofSheffield,SheffieldS14DP,UK [email protected] 4CityUniversityLondon,LondonEC1V0HB,UK 6 [email protected] 1 0 2 n Abstract a Consensus dynamics in decentralised multiagent systems are subject to intense studies, and several different models have J beenproposedandanalysed. Amongthese,thenaminggamestandsoutforitssimplicityandapplicabilitytoawiderangeof 9 phenomenaandapplications,fromsemioticstoengineering. Despitethewiderangeofstudiesavailable,theimplementationof 1 theoreticalmodelsinrealdistributedsystemsisnotalwaysstraightforward,asthephysicalplatformimposesseveralconstraints thatmayhaveabearingontheconsensusdynamics.Inthispaper,weinvestigatetheeffectsofanimplementationofthenaming ] A gameforthekilobotroboticplatform,inwhichweconsiderconcurrentexecutionofgamesandphysicalinterferences.Consensus M dynamicsareanalysedinthelightofthecontinuouslyevolvingcommunicationnetworkcreatedbytherobots,highlightinghow thedifferentregimescruciallydependontherobotdensityandontheirabilitytospreadwidelyintheexperimentalarena. We . findthatphysicalinterferencesreducethebenefitsresultingfromrobotmobilityintermsofconsensustime, butalsoresultin s c lowercognitiveloadforindividualagents. [ 1 1 Introduction v 2 5 Collective decision-making is an essential capability of large-scale decentralised systems like robot swarms, and is often key 9 to achieve the desired goal. In swarm robotics, a large number of robots coordinate and cooperate to solve a problem, and 4 oftenconsensusamongtherobotsisnecessarytomaximisethesystemperformance[12,18,15]. Thedesignofcontrollersfor 0 consensus decision is often inspired by models of collective behaviour derived from studies in the ethology of social systems . 1 [19, 14], as well as from studies about the emergence of social conventions and cultural traits [21, 6, 5]. Theoretical models 0 represent idealised instances of collective decentralised systems in which consensus can be somehow attained. Among the 6 differentavailablemodels,aparticularlyinterestingcaseistheoneofthenaminggame(NG),whichrepresentstheemergence 1 : of conventions in social systems, such as linguistic, cultural, or economic conventions [23, 4, 7]. The appeal of this model v consistsintheabilitytodescribetheemergenceofconsensusoutofavirtuallyinfinitesetofequivalentalternatives,yetrequiring i X minimalcognitiveloadfromtheagentscomposingthesystem[4,2]. Moreover,theNGhasbeensuccessfullydemonstratedon r anetworkofmobilepoint-sizeagents[3]. Suchacollectivedecision-makingbehaviourcanbeveryusefulinswarmroboticsin a caseconsensusisrequiredwithrespecttoapossiblylargenumberofalternatives(e.g.,thelocationandstructureforcooperative construction[24,20],orthemostfunctionalshapeforself-assembly[11,17]). When dealing with the implementation of physical systems starting from theoretical models, however, several constraints mayarisewhichmayhaveabearingonthecollectivedynamics. Indeed,smallimplementationdetailsatthemicroscopicscale may have a large impact at the macroscopic level. Hence, it is important to study the effects of such constraints in relation to thedynamicspredictedbythetheoreticalmodels. Inthispaper,weproposeanimplementationoftheNGforthekilobotrobotic platform[16]. Kilobotsarelow-costautonomousrobotsdesignedforexperimentationwithlargegroups[17]. Theycanmoveon aflatsurfaceandinteractwithcloseneighboursbyexchangingshortmessagessentonaninfraredchannel. Thecollectivebe- haviourofakilobotswarmresultssolelyfromtheindividualdecisionsandinter-individualinteractions,withoutanycentralunit directingthegroupdynamics. Asaconsequence,theimplementationoftheNGforthekilobotsneedstobefullydecentralised withgamesautonomouslytriggeredbyanyrobotatanytime. Additionally, withinadecentralisedsystem, theconcurrentexe- cutionofgamesbyneighbouringrobotsbecomespossible,inoppositiontotherigorouslysequentialschemetypicallyadopted intheoreticalstudies. Hence, theinteractionpatternamongrobotsmaybesignificantlyaltered, andthecorrespondingdynam- icsneedtobecarefullycharacterised. Finally,theembodimentoftherobotsdeterminesphysicalinterferences(i.e.,collisions) that strongly influence the overall mobility pattern. It follows that abstract models of agent mobility must be contrasted with experimentationwithrobots,inwhichallthedetailsofthephysicalplatformcanbetakenintoaccount. 1 procedureNG(nm,ns) (cid:46)ImplementationoftheNG nt←nt+1 ifnt modnm=0then (cid:46)Changemotiondirection RandomTurn() endif MoveStraight() W←ReceiveWords() (cid:46)Playthehearerrole Randomise(W) forw∈Wdo UpdateInventory(w) endfor ifnt modns=0then (cid:46)Playthespeakerrole w←SelectWord() Broadcast(w) endif endprocedure Figure1: TheNGalgorithmexploitedinmulti-agentsimulations. Inthispaper,westudytheeffectsofthemotionandinteractionpatternsontheconsensusdynamics,andwepayparticular attention to both concurrent executions of games and physical interferences. First, we provide an abstract model of mobile agentsplayingtheNG,inwhichphysicalinterferencesareignored. Followingpreviousstudies[3],weanalysethismodelinthe lightofthecommunicationnetworkestablishedbytheagents, weshowhowtheconsensusdynamicsaredeterminedbyagent density,mobilityandinteractionfrequency,andwelinkourempiricalfindingswiththeoreticalstudies[2,10]. Then,wecontrast abstractmodelswithlarge-scalesimulationsofthekilobots,aswellaswithreal-worldexperiments. Here,physicalinterferences impactontheconsensusdynamicsbylimitingthefreediffusionofrobotsintheexperimentalarena,henceincreasingconsensus times. Still, the cognitive load for the individual agents is reduced for physical implementations, due to the lower number of alternativesthateachagentmustconsiderinaverage. OuradaptedimplementationoftheNGispresentedinSection2,whilethe correspondingconsensusdynamicsarediscussedinSection3. ConclusionsandfuturedirectionsarepresentedinSection4. 2 Model and Implementations Thenaminggameinitsbasicform[4]modelspairwiseinteractionsinwhichtwoplayers—thespeakerandthehearer—interact by exchanging a single word chosen by the speaker, and updating their inventory on the basis of the game success. Previous extensionsofthemodeltakeintoaccountdifferentinventoryupdatingandcommunicationschemes[1]andalsoconsidermobile agents[3]. Inthiswork,weadoptabroadcastingschemeforthespeakeragent,whileinventoryupdatingisperformedonlyby theheareragent,asdetailedinthefollowing(fordetails,see[1]). WhenengaginginaNG,thespeakeragenta selectsawordweitherrandomlyfromitsinventory,orinventingitanewshould s theinventorybeempty(i.e.,thesetofpossiblechoicesforanewwordwisvirtuallyinfinite). Then,itbroadcastswtoallagents initsneighbourhood. Uponreceptionofw, theheareragenta updatesitsinventorybyeitherstoringwifitwasnotfoundin h a ’sinventory,orbyremovingallwordsbutwifthelatterwasalreadyknowntoa . Byiteratingthegamemultipletimes,the h h entiresystemconvergestowardtheselectionofasinglewordsharedbyallagents[4,1]. 2.1 Multiagentsimulations WeimplementadecentralisedversionoftheNGbylettingeachagentaautonomouslytaketheroleofspeakereveryτ s. Given s that agents update their state at discrete steps of δ =0.1s, they communicate every n steps so that a word is broadcast every t s τ =n δ stoallneighbourswithintheranged =10cm. Inthisway, concurrentexecutionofgamesbecomespossible, hence s s t i introducing an important difference from previous theoretical studies in which at any time only one game is executed by a randomlychosenagentandoneofitsneighbours[3,4,1,10]. Atthehearerside,multipleinteractionsarepossiblewithinany timeintervalδ,dependingonthelocaldensityofagents. Hence,allwordsreceivedinasingleδ periodareusedsequentially t t to update the inventory. The list of received words is randomised before usage to account for the asynchronous reception of messagesbythephysicalplatform(seeSection2.3). ThealgorithmforthemultiagentimplementationisshowninFig.1. Atthebeginningofeachsimulationrun,NagentsaredeployeduniformlyrandomwithinasquaredboxofsideLwithperiodic boundaryconditions(e.g.,atorus). Thisallowstofocusontheeffectsofagentmobilityanddensitywithoutconstraintsfroma boundedspace[3]. Agentsaredimensionlessparticlesandthereforedonotcollidewitheachother. Theagentsneighbourhood is determined by all the agents within the interaction range d. By moving in space, the agent neighbourhood varies so that a i dynamiccommunicationnetworkisformed. Agentmobilityfollowsanuncorrelatedrandomwalkscheme,withconstantspeed v=1cm/s and fixed step length vτ , where τ represents the constant time interval between two consecutive uncorrelated m m changesofmotiondirection. ThisleadstoadiffusivemotionwithcoefficientD∼ v2τ [3]. Inpractice,agentschangedirection m everyn steps,sothatτ =n δ (seeFig.1). m m m t 2 2.2 Robotsimulations We have developed a custom plugin for simulating kilobots within the ARGoS framework [13], paying particular attention to matchtherealrobotfeaturesintermsofbodysize,motionspeedandcommunicationrange. Communicationisimplementedby allowingtheexchangeofmessagesbetweenneighbourswithintheranged. Nofailuresincommunicationhavebeensimulated, i assumingthatthechannelcansupportcommunicationevenwithhighdensities. Wewilldiscussthischoiceinthelightofthe obtainedresultsinSection4. Concerningthemotionpattern,kilobotsarelimitedtothreemodesofmotion:forwardmotionwhenbothleftandrightmotors areactivated,andleftorrightturnswhenonlyonemotorisactivated. Turningisperformedwhilepivotingononeofthekilobot legs. Wehavethereforeimplementedadifferentialdrivemotionschemecentredbetweenthetwobackwardlegsofthekilobot, withspeedv=1cm/sforforwardmotionandangularspeedω=π/5s−1forturning. Amultiplicativegaussiannoiseappliedat everysimulationcycle(standarddeviationσ =0.4)simulatestheimprecisemotionofkilobots. Withsuchanimplementation, theindividualmotionisstilldiffusive,butwithalowercoefficientduetothedelayintroducedbyturning. Additionally,collision avoidanceisnotpossiblewiththekilobotonboardsensors,androbotsareletfreetocrashintowallsandeachother. TheARGoS framework provides a 2D dynamics physics engine that handles collisions between robots and with walls with an integration stepsizeδ =0.1s,whichprovessufficientforourpurposes. Collisionsdetermineafurtherreductioninthediffusionspeed,as t we will discuss in Section 3.2. Robots are deployed randomly within a squared box of side L surrounded by walls. To avoid overlappingofrobots,theinitialpositionsaredeterminedbydividingthearenaincellswideenoughtocontainasinglekilobot, andrandomlyplacingkilobotsintofreecells. 2.3 Kilobotimplementation The implementation of the NG for kilobots requires handling transmission and reception of messages, and implementing the randomwalk.WeusethekilobotAPIfromKilobotics[22],whichprovidestwocallbackfunctionsfortransmissionandreception of 10-byte messages, functions for distance estimation of the message source, and a counter that is updated approximately 32 times per second (i.e., δ (cid:39)1/32). Broadcast is allowed every τ seconds by opportunely activating the transmission callback. t s Communication interferences among robots are treated through the CSMA-CD protocol (carrier-sensing multiple access with collisiondetection)withexponentialback-off,meaningthatupondetectionoftheoccupiedchannel,messagesendingisdelayed withinanexponentiallyincreasingrangeoftimeslots.Thisintroducesanadditionallevelofasynchronythatmustbetoleratedby thecollectivedecision-makingprocess,astheexacttimingofcommunicationcannotbecompletelycontrolled. Uponreception ofanymessage,thecorrespondingcallbackfunctionisactivated,andtheNGisimmediatelyplayedexploitingthecontentofthe receivedmessage. Giventhatthemaximumcommunicationdistancemayvaryacrossdifferentrobots,wecappedthemaximum distancetod bysoftware,estimatingthesourcedistanceandignoringmessagesfromsourcesfartherthand. i i Themotionpatternimplementstherandomwalkexactlyasperformedinsimulation,exploitingtheinternalrandomnumber generatorforuniformlydistributedturningangles. Forwardmotionvandangularspeedω ofeachkilobothavebeencalibrated toobtainaroughlyconstantbehaviouracrossdifferentrobotsandtomatchtheparametervaluesusedinsimulation. Thecode forthecontrolleriswritteninaC-likelanguage(AVR C)andfitsinabout200lines. Inexperimentalruns,kilobotsareinitially positioned randomly following indications from the ARGoS simulator in equivalent conditions. This provides an unbiased initialisationandsupportscomparisonwithsimulationsinSection3.3. 3 Consensus Dynamics The most important quantity to evaluate the consensus dynamics following the NG process is the time of convergencet , i.e., c the time required for the entire group to achieve consensus. Previous studies demonstrated that consensus is the only possible outcome, even though in particular cases it can be reached only asymptotically [4]. Another relevant metric for the NG in multiagent systems is the maximum memory M required for the agents, in average, until convergence: given that each agent needs to store a possibly large number of words, it is important to study how the memory requirements scale with the system size,especiallyintheperspectiveoftheimplementationforrealrobotsthatentaillimitedmemoryandminimalprocessingpower tosearchlargeinventories. Followingpreviousstudies,itisusefultolookatthe(static)interactionnetworkresultingbylinkingallagentsthatarewithin interactionrange. GivenN agentsconfinedinaL×L spaceandinteractingoveraranged, theresultingnetworkhasaverage i degree(cid:104)k(cid:105)=πNd2/L2 [8,3]. Giventhatinourcaseallparametersareconstantbuttheagentdensity(asdeterminedbyN),two i valuesarecritical: 1. N =N isthegroupsizeatwhichtheaveragedegreeisaround1,meaningthateachagenthasinaverageoneother 1 (cid:104)k(cid:105)=1 agenttointeractwith. Belowthisvalue,interactionsaresporadicanddeterminedbytheagentmobility,whileabovethis valueinteractionsarefrequentassmallclustersofagentsappear. 2. N =N correspondstothecriticalgroupsizeforapercolationtransition[8].AboveN ,thenetworkischaracterised c (cid:104)k(cid:105)(cid:39)4.51 c byagiantcomponentofsizeN. GiventhebroadcastingruleemployedfortheNGinthispaper,itisclearthatthecharacteristicsoftheinteractionnetworkare fundamental. Ifthereexistsagiantcomponent,informationcanspreadquickly. Ifotherwiserobotsaremostlyisolated,theywill notbeabletointeractandconvergencewouldbeslower,asdiscussedinthefollowing. 3 τ =10s τ =50s s s N1 Nc τm N1 Nc τm 10 10 20 20 30 30 103 40 103 40 50 50 tc 5 5 4 4 M M 3 3 N N 2 2 101 102 103 101 102 103 102 102 101 102 103 101 102 103 τ =10s τ =50s m m N1 Nc τs N1 Nc τs 10 10 20 20 30 30 103 40 103 40 50 50 tc 5 5 4 4 M M 3 3 N N 2 2 101 102 103 101 102 103 102 102 101 102 103 101 102 103 N N Figure2: Resultsfrommultiagentsimulations. Eachpanelshowsthedependenceoftheconvergencetimet onthesystemsize c N fordifferentparameterisation. Statisticalerrorbarsarenotvisibleonthescaleofthegraphs. Verticaldottedlinesindicatethe thresholds for N =32 and N =143. The insets show the memory requirements M plotted against the system size N for the 1 c sameparameterisations. 3.1 Influenceofdensity,mobilityandinteractionfrequency Todetermine theconsensusdynamics andtheeffects ofthe differentparametersof thesystem, we runmultiagentsimulations withsmallandlargegroupsinasquaredarenaofsizeL=1m.Inthiscondition,wehaveN (cid:39)32andN (cid:39)143.Figure2reports 1 c theconsensustimet fordifferentparameterisationsvaryingN∈[10,500]andτ ,τ ∈[10,50]s. c m s Lookingattheresults,wenotethatt isadecreasingfunctionofN. Indeed,ahigherdensitycorrespondstoahighernumber c ofconcurrentlyexecutedgames,andresultsinafasterconvergence. ForN>N andsmallτ ,theconsensustimecollapsestothe c s samevalueforvaryingτ (seeforinstancethetop-leftpanelinFig.2). Abovethepercolationthreshold,agentmobilityplays m a minor role and the consensus dynamics can be related to the characteristics of the static network of interactions. Especially forlowvaluesofτ ,thedynamicscloselycorrespondtothoseofstaticagentsinteractingonarandomgeometricnetwork[10]. m Here,theagreementprocessproceedsthroughtheformationofclustersofagentswithlocalconsensusseparatedbyaninterface of“undecided”agents,andconsensusdynamicsrecallthecoarseningonregularlattices[2]. Thisisconfirmedbytheleftpanel in Fig. 3, which shows how the convergence timet scales with τ ∈[1,500]s for N =300. It is possible to appreciate a kind c s of power-law scalingt (cid:39)τγ, with γ (cid:39)0.5. This indicates that the convergence dynamics are mostly determined by τ , while c s s τ plays a relatively minor role, hence confirming the above mentioned resemblance with coarsening on lattices or random m geometricnetworks. Similarlytofully-connectednetworks[4],log-periodicoscillationsarevisibleinthepowerlawscaling,so thatforsomevaluesofτ ,mobilityhappenstobemorerelevant,withlargeτ determiningalowerconvergencetime(seealso s m Fig.2top-right). BelowthepercolationthresholdN ,agentsformtemporaryclustersthatdissolveduetotheagentmobility. Ifthedensityis c stillhighenoughtoensurefrequentinteractions(N>N ),thedynamicsaredeterminedmorebythemobilityofagentsthanby 1 thebroadcastingperiodτ . Thisisvisibleinthebottom-leftandbottom-rightpanelsofFig.2,whereconvergencetimestendto s coalescefordifferentvaluesofτ andN∈[N ,N ]. Instead,forverylowdensities(N<N ),agent-agentcontactsareinfrequent s 1 c 1 andlastforshortperiodsoftime,sothatmanybroadcastsgounnoticed. Inthiscondition,highmobilityisimportantasmuchas shortbroadcastingperiodstoensurefasterconvergence(seeFig.2). Toevaluatetheeffectsofthebroadcastingperiodmorethoroughly,itisusefultolookattherescaledtimet /τ indicatingthe c s averagenumberofbroadcastseachagenttransmitted(seeFig.3right). Wenotelowervaluesoftherescaledagreementtimefor largervaluesofτ ,meaningthatthenumberofbroadcastsrequiredforconvergencediminishesforlongerbroadcastingperiods, s recallingtheslower-is-fastereffectobservedinmanycomplexsystems[9]. AlookatthememoryrequirementsrevealsthatM isgenerallyconstrainedtolowvalues,whichmakestheNGimplemen- tationaffordableforphysicalsystems(seetheinsetsinFig.2). ForN <N <N ,mobilityplaysasignificantrole,withlarger 1 c 4 N =300 102 τm=30s τm N1 Nc τs 10 10 103 20 20 30 30 40 40 50 50 tc /τs tc 5 M4 102 3 2 τs 101 100 101 102 100 101 102 101 102 103 τs N Figure3: (Left)Scalingofconvergencetimeasafuncitonofτ . Theblacksolidlinet (cid:39)τ0.5 servesasaguidefortheeyeto s c s appreciatethepowerlawscalingoftheconvergencetimet . (Right)Rescalingconvergencetimebyτ ,representingtheaverage c s numberofbroadcastsbeforeconvergence. Statisticalerrorbarsarenotvisibleonthescaleofthegraphs. valuesofτ correspondingtolargerM.Thetransientformationofsmallclustersenhancestherequirementsofmemorythemore m theagentsareabletotravelbetweenclustersthatagreeondifferentwords. Similarly,ifwelookatthebottompanels,wenotice thathighervaluesofτ determinehighervaluesforM. Here,slowconvergenceleadstoagentsdiffusinginthearenaandbeing s exposedtomultipleoptions,henceincreasingthememoryrequirements. ForN>N ,instead,mobilityislessimportantandthe c memoryrequirementsareboundtotheinteractionperiod. ThescalinganalysispresentedintheleftpanelofFig.3showsthatthe memoryrequirementsincreasedrasticallywithτ ,confirmingthatslowerconvergenceimpliesalsolargermemoryrequirements. s Ontheotherhand,frequentinteractionsleadtothequickformationoffewclusters,sothattheindividualmemoryrequirements arelimitedtofewwords,especiallyforthoseagentsattheinterfacebetweenclusters. Asτ decreasesfurther,theeffectofcon- s currentexecutionsofgamesstartstobevisiblewithanincreaseinthememoryrequirementsasaresultofthehigherprobability ofagentstosimultaneouslyexchangedifferentwords. 3.2 Influenceofphysicalinterferences Theconsensusdynamicsdescribedaboverefertoanidealsystemthatneglectsthephysicalembodimentofrobots. Embodiment leads to collisions with walls and among robots that constrain mobility. We study the influence of embodiment by comparing multiagent with robotics simulations performed in similar conditions to what described above (see Fig. 4 for selected param- eterisations). We first note that the convergence time t is in general higher for robotic simulations, as a consequence of the c slower diffusion in space resulting from the turning time, which introduces a stochastic delay in the random walk pattern, and duetothephysicalboundariesthatpreventrobotstofreelymove. Forinstance,inthetop-leftpanelofFig.4weshowthecase for τ =50s: here, collisions lead to an approximately constantt for N <N <N , no matter what is the broadcasting time m c 1 c τ . Indeed, the slower diffusion and the formation of small clusters determine the convergence time more than the interaction s frequency. Collisionswithwallsandwithotherrobotsleadtotheformationofstableclustersinwhichconsensuscanbequickly achieved. Suchclustersdissolveataslowerpaceforlargervaluesofτ ,duetorobotsturningawaylessoften. Hence,theeffects m of mobility are diluted especially when it is supposed to play an important role, i.e., when N <N . Collisions influence the c convergencedynamicsalsoforN>N ,althoughtoalesserextent,ascanbeseeninthetop-rightpanelinFig.4: forlargeτ , c m convergenceisslowerduetotheformationofclustersthatdonotinteractfrequently,ascollisionspreventrobotstomixasmuch asintheidealmultiagentcase. The low ability to mix due to collisions has an effect also on the required memory M, which is in general lower for robot simulations (see bottom panels of Fig. 4). The slower diffusion of robots in space and the existence of boundaries limit the spreadingofdifferentwordsintotherobotnetwork,henceresultinginlowermemoryrequirements. 3.3 Experimentswithrealrobots To validate our results with respect to the real robotic platform, we performed comparative experiments in a smaller arena (L=45cm). Inthiscondition, wehaveN (cid:39)6andN (cid:39)29, whichledustousesmallergroupsofrobots(N ∈{5,20,35})to 1 c explorethesystembehaviourasthecharacteristicsofthestaticinteractionnetworkvary. Giventhesmallerdimensions,wealso explored smaller values for the latencies τ and τ , and we decided to set both to the same value τ ∈{2.5,5,7.5}s. We have s m a performed20runswithrealrobotsforeachofthe9experimentalconditions(3groupsizes×3latencies),foratotalof180runs. Figure5showsasequenceofframesfromonerunperformedwith20kilobots. Itispossibletonotethatinitiallymultiplesmall clustersarepresentinwhichrobotshavethesameword(hererepresentedbythecoloroftheonboardLED).Astimegoesby, clustersdisappearandeventuallyonesinglewordischosen. For each experimental run, we have recorded the convergence time t , and the obtained results have been contrasted with c 5 τ =50s τ =10s m s N N N N 1 c 1 c 103 103 tc τ τ s m 10 10 20 20 30 30 40 40 50 50 102 102 101 102 103 101 102 103 N 5.0 5.0 N N N N 1 c 1 c 4.5 4.5 4.0 4.0 M3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 101 102 103 101 102 103 N N Figure4: Comparisonbetweenmultiagentandrobotsimulations. Averagevaluesfrommultiagentsimulationsareshownwith transparentcolours,andserveasreferencetoappreciatetheresultsfromroboticsimulations. Statisticalerrorbarsarenotvisible onthescaleofthegraphs. (Top)Convergencetimet . (Bottom)RequiredmemoryM. (Left)Resultsforτ =50s,andvarying c m τ . (Right)Resultsforτ =10s,andvaryingτ . s s m simulationsincomparableconditions—samearenadimensionsLandsamelatenciesasdeterminedbyτ —withmultiagentand a roboticsimulations. Figure6showsthatthestatisticsarealignedbetweenkilobotsimulationsandrealkilobots,andbothpresent aslightlylargerconvergencetimewithrespecttomultiagentsimulations. Wealsonotethatingeneral,theconvergencetimefor τ =2.5s is lower in case of real robots than in simulation, while this is not always true for larger latencies. This is an effect a of interferences in communication due to simultaneous broadcasts, which leads to the loss of some communication messages. When messages get lost, the convergence dynamics are actually faster because the exchanging of different words by robots broadcasting at the same time gets reduced. This is in line with the observations made in Section 3 about the influence of the broadcastingperiod,indicatingthatconvergenceisfasterwhentherearelessbroadcasts.Withkilobots,areductionofthenumber ofbroadcastsduetointerferenceresultsfromsmallτ andlargeN (seeFig.6). s 4 Conclusions Thisstudyfindsitselfattheinterfacebetweentheoreticalinvestigationsandroboticsimplementation.Theresultsobservedinthe multiagentsimulationscanbeofinterestforcomplexsystemsstudiesastheyhighlighttheeffectsofconcurrencyandofdifferent latencies in the motion and interaction patterns, as determined by implementation constraints. Concurrency is customary in t=10s t=23s t=45s t=60s t=80s Figure5: Differentshotsofanexperimentwith20kilobots,withτ =τ =2.5s. RobotslightingtheirLEDhaveonlyoneword s m in their inventory, while no color signal indicates more than one word or an empty inventory. Different words correspond to differentcolours. 6 N=5 N=20 N=35 tc110023 lllllllllll llllllll llllll llll l lllllll lllllllll l llllllllllll llllllllllllllll lll lllllllllll ll lllllllll llllll ll llllll llllllllll l lll llllll lllll lllllll l 10 t =5 t =7.5 t =2.5 t =5 t =7.5 t =2.5 t =5 t =7.5 1 t a=2.5 a a a a a a a a multiagent kilobot sim. kilobot real Figure6: Comparisonbetweenmultiagentsimulations,kilobotsimulationsandrealkilobots. Foreachcondition,200runswere performedinsimulation,while20runswereperformedwithphysicalrobots. Boxesrepresenttheinterquartilerange,horizontal linesmarkthemedian,whiskersextendto1.5timesthefirstquartiles,anddotsrepresentoutliers. multi-robot systems and artificial decentralised systems in general. Hence, accounting for it into abstract models is important to provide usable predictions. We have found here that concurrent executions of games are particularly important for aspects likethemaximummemoryM,andfuturestudiesshouldbettercharacterisesucheffectsintermsoftheprobabilityofobserving concurrentexecutionsatanytime. Roboticssimulationsandexperimentswithkilobotsshowedhowembodimentinfluencestheconsensusdynamicsbylimiting thediffusionofinformationintothesystem: ontheonehand,collisionsleadtotheformationofclustersthatdissolveslowerfor largerτ , leadingtoslowerconvergencetimes. Ontheotherhand, thememoryrequirementsofrobotsisreducedasonlyfew m robotsattheinterfacebetweenclustersexperiencemorethantwowordsatthesametime. Futurestudiesshouldattemptamore precisedescriptionofthediffusivemotionofagentsunderphysicalconstraints,inordertoobtainbetterpredictionsintermsof theexpectedinteractionnetwork.Additionally,thecommunicationprotocolemployedbykilobotsandtheobservedinterferences needtobebettercharacterised. Simulationsshouldaccountforuncertainreceptionofmessages,aswellasfortheexponential back-offusedduringtransmissionwhenthechannelisbusy. Byincludingsuchfeatures,weexpecttodeliverpreciseestimations ofthesystembehaviourevenforverylargegroupsizesandshortbroadcastingperiods. References [1] A.Baronchelli. Roleoffeedbackandbroadcastinginthenaminggame. PhysicalReviewE,83(4):046103,2011. [2] A.Baronchelli,L.Dall’Asta,A.Barrat,andV.Loreto. Topology-inducedcoarseninginlanguagegames. PhysicalReview E,73(1):015102,2006. [3] A. Baronchelli and A. D´ıaz-Guilera. Consensus in networks of mobile communicating agents. Physical Review E, 85(1):016113,2012. [4] A.Baronchelli,M.Felici,V.Loreto,E.Caglioti,andL.Steels. Sharptransitiontowardssharedvocabulariesinmulti-agent systems. JournalofStatisticalMechanics: TheoryandExperiment,2006(06):P06014,2006. [5] D. Brockmann and D. Helbing. The hidden geometry of complex, network-driven contagion phenomena. Science, 342(6164):1337–1342,2013. [6] C.Castellano,S.Fortunato,andV.Loreto. Statisticalphysicsofsocialdynamics. ReviewsofModernPhysics,81(2):591– 646,2009. [7] D.CentolaandA.Baronchelli. Thespontaneousemergenceofconventions: Anexperimentalstudyofculturalevolution. ProceedingsoftheNationalAcademyofSciences,112(7):1989–1994,2015. [8] N. Fujiwara, J. Kurths, and A. D´ıaz-Guilera. Synchronization in networks of mobile oscillators. Physical Review E, 83(2):025101,2011. [9] C.GershensonandD.Helbing. Whenslowerisfaster. Complexity,21(2):9–15,2015. [10] Q.Lu,G.Korniss,andB.K.Szymanski. Naminggamesintwo-dimensionalandsmall-world-connectedrandomgeometric networks. PhysicalReviewE,77(1):016111,2008. [11] R.O’Grady,A.L.Christensen,andM.Dorigo.SWARMORPH:Multirobotmorphogenesisusingdirectionalself-assembly. IEEETransactionsonRobotics,25(3):738–743,2009. [12] C.A.C.ParkerandH.Zhang.Cooperativedecision-makingindecentralizedmultiple-robotsystems:thebest-of-nproblem. IEEETransactionsonMechatronics,14(2):240–251,2009. [13] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo. ARGoS: a modular, parallel, multi-engine simulator for multi-robotsystems. SwarmIntelligence,6(4):271–295,2012. 7 [14] C. R. Reid, S. Garnier, M. Beekman, and T. Latty. Information integration and multiattribute decision making in non- neuronalorganisms. AnimalBehaviour,100(C):44–50,2015. [15] A.Reina,G.Valentini,C.Ferna´ndez-Oto,M.Dorigo,andV.Trianni. Adesignpatternfordecentraliseddecisionmaking. PLoSONE,10(10):e0140950–18,2015. [16] M.Rubenstein,C.Ahler,N.Hoff,A.Cabrera,andR.Nagpal. Kilobot: Alowcostrobotwithscalableoperationsdesigned forcollectivebehaviors. RoboticsandAutonomousSystems,62(7):966–975,2014. [17] M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable self-assembly in a thousand-robot swarm. Science, 345(6198):795–799,2014. [18] G.Sartoretti,M.-O.Hongler,M.E.deOliveira,andF.Mondada. Decentralizedself-selectionofswarmtrajectories: from dynamicalsystemstheorytoroboticimplementation. SwarmIntelligence,8(4):329–351,2014. [19] T. D. Seeley, P. K. Visscher, T. Schlegel, P. M. Hogan, N. R. Franks, and J. A. R. Marshall. Stop signals provide cross inhibitionincollectivedecision-makingbyhoneybeeswarms. Science,335(6064):108–11,2012. [20] T. Soleymani, V. Trianni, M. Bonani, F. Mondada, and M. Dorigo. Bio-inspired construction with mobile robots and compliantpockets. RoboticsandAutonomousSystems,74:340–350,2015. [21] V.SoodandS.Redner. Votermodelonheterogeneousgraphs. PhysicalReviewLetters,94(17):178701–4,2005. [22] SSR Lab, Harvard University, Cambridge, MA. Kilobotics. all the resources needed to get started with the kilobots. https://www.kilobotics.com,2013. [Online;accessed12January2016]. [23] L.Steels. Aself-organizingspatialvocabulary. Artificiallife,2(3):319–332,1995. [24] J. Werfel, K. Petersen, and R. Nagpal. Designing Collective Behavior in a Termite-Inspired Robot Construction Team. Science,343(6172):754–758,2014. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.