DRAFTVERSIONJANUARY25,2017 PreprinttypesetusingLATEXstyleemulateapjv.01/23/15 EMBEDDEDSPIRALPATTERNSINTHECOOLCOREOFTHEMASSIVECLUSTEROFGALAXIESABELL1835 SHUTAROUEDA InstituteofSpaceandAstronauticalScience(ISAS),JapanAerospaceExplorationAgency(JAXA) 3-1-1Yoshinodai,Chuo Sagamihara,Kanagawa252-5210,Japan 7 TETSUKITAYAMA DepartmentofPhysics,TohoUniversity 1 2-2-1Miyama 0 Funabashi,Chiba274-8510,Japan 2 n TADAYASUDOTANI a InstituteofSpaceandAstronauticalScience(ISAS),JapanAerospaceExplorationAgency(JAXA) J 3-1-1Yoshinodai,Chuo 4 Sagamihara,Kanagawa252-5210,Japanand 2 SOKENDAI(TheGraduateUniversityforAdvancedStudies) 3-1-1Yoshinodai,Chuo Sagamihara,Kanagawa252-5210,Japan ] E (Received;Revised;Accepted) DraftversionJanuary25,2017 H . ABSTRACT h We present the properties of intracluster medium (ICM) in the cool core of the massive cluster of galaxies p Abell1835obtainedwiththedatabyChandraX-rayObservatory. Wefinddistinctivespiralpatternswiththe - o radiusof70kpc(or18′′)asawholeintheresidualimageofX-raysurfacebrightnessafterthe2-dimensional r ellipse model of surface brightness is subtracted. The size is smaller by a factor of 2 – 4 than that of other t s clusters known to have a similar pattern. The spiral patterns consist of two arms. One of them appears as a positive,andtheotherdoesasnegativeexcessesintheresidualimage. TheirX-rayspectrashowthattheICM [ temperaturesinthepositive-andnegative-excessregionsare5.09-+00..1132keVand6.52-+00..1158keV,respectively. In 1 contrast,nosignificantdifferenceisfoundinthe abundanceorpressure, thelatter ofwhichsuggeststhatthe v ICMinthetworegionsofthespiralpatternsisinpressureequilibriumorclose. Thespatially-resolvedX-ray 7 spectroscopyofthecentralregion(r<40′′)dividedinto92sub-regionsindicatesthatAbell1835isatypical 4 coolcorecluster. Wealsofindthatthespiralpatternsextendfromthecoolcoreouttothehottersurrounding 7 ICM.Theresidualimagerevealssomelumpysub-structureinthecoolcore. Theline-of-sightcomponentof 6 thedisturbancevelocityresponsibleforthesub-structuresisestimatedtobelowerthan600kms- 1. Abell1835 0 maybenowexperiencinganoff-axisminormerger. . 1 Keywords: galaxies: clusters: individual: (Abell1835) — X-rays: galaxies: clusters — galaxies: clusters: 0 general 7 1 : 1. INTRODUCTION face brightnessof clusters, such as a sub-peak(e.g., Arnaud v et al. 2000; Sun et al. 2002), a cold front (e.g., Markevitch i Clustersofgalaxiesarethelargestgravitationally-bounded X objects in the Universe. Cold dark matters form a gravita- et al. 2000; Vikhlinin et al. 2001), and an elongated profile (e.g.,Brieletal. 1992;Allenetal. 2002)(seeMarkevitch& r tional potential well of a cluster. The hot and optically thin a plasma called intracluster medium (ICM) fills at the typical Vikhlinin 2007, for a review). On the other hand, relaxed temperatureof 107- 108K in the well. At the bottomof the clusters,whichhasasymmetricalX-raysurfacebrightnessin itscore,arethoughtnottohaveexperiencedaviolent(major) well,agiantellipticalgalaxy,whichisoftencalledthebright- mergerinthelastseveralGyrs(e.g.,Pooleetal.2006). estclustergalaxy(BCG),issituatedinmostofclusters. Since Recent high angular-resolution observations with Chan- the density of the ICM in the vicinity of the BCG is much dra and XMM-Newton have discovered embedded spiral higher than that in the outskirts, its cooling time is shorter patterns with a size of a few hundreds kpc in the resid- thanthelifetimeofclusters. Then,acoolcoreisformedand ual image of X-ray surface brightness of several clusters itwasspeculatedthatthecooledICMwouldinducemassive and groups of galaxies after their nominal profile is sub- starburst in the vicinity of BCG (Fabian 1994). However, a tracted, e.g., the Perseus cluster (Churazov et al. 2003), massivestarbursthasnotbeenobservedinmostofclustersto Abell2052 (Blanton et al. 2011), Abell2029 (Clarke et al. dateexceptforfew(e.g.,McDonaldetal.2012). 2004; Paterno-Mahler et al. 2013), Abell496 (Ghizzardi Clusters of galaxies are also a dynamically young system et al. 2014), Abell3581 (Canning et al. 2013), PKS0745- in the Universe under the scheme of hierarchical evolution. 191 (Sanders et al. 2014), Abell85 (Ichinohe et al. 2015), Theyhaveevolvedthroughmergersbetweensmallerclusters. IRAS09104+4109 (O’Sullivan et al. 2012), and NGC5044 Mergersoften generate irregular structuresin the X-ray sur- (O’Sullivanetal.2014).Thosespiralpatternsusuallyconsist [email protected] oftwo arc-likeparts. Oneofthemcomesoutaspositiveex- 2 UEDA ETAL. cessintheresidualimageandtheotherasnegative.Abrighter mated to be M200 =1.09×1015h- 1M⊙ from a weak-lensing areainanobservedX-raysurfacebrightnessisusuallyinter- observation (Okabe et al. 2010). The mass reconstruction preted as a regionwith a higher density of ICM than thatin image from the weak-lensing shear signal shows a standard darkerparts, andsoprobablyisthepositive-excessregionin centrally-concentratedprofile and no featuresof violentdis- the residual X-ray image of a cluster. Moreover, the spiral turbance at least within r<10′ (Clowe & Schneider 2002). armsshowalowertemperatureandentropy(K=kT×n- 2/3) TheseresultsimplythatA1835showsnosignificantevidence e in the positive-excess region than in the negative-excess re- ofmajormerger. Basedontheobservationsofthemassfrac- gion. The metal abundance in the positive-excess region is tion of the sub-structures, Smith & Taylor (2008) suggested higher than that in the surroundings (Blanton et al. 2011; thatthisclusterwasformedatz≥0.8andhasgrowninmass Paterno-Mahleretal.2013;Ghizzardietal.2014). However, by≤10%inthelast2Gyrattheclusterframe,whichcorre- thespatialvariationofpressure(P=kT×n )isstillunclear. spondstoz∼0.4. TheirresultsalsoconfirmedthatA1835is e Numericalsimulationssuggestthatanoff-axisminormerger arelaxedcluster. can generatessuchspiralpatterns(e.g.,Ascasibar& Marke- Throughout the paper, we adopt the abundance table of vitch2006;ZuHoneetal.2010,2011;Roedigeretal.2011). Anders & Grevesse (1989), the Hubble constant of H0 = Apossiblescenarioofitsformationisasfollows.Aninfalling 70kms- 1Mpc- 1,andthecosmologicaldensityparametersof subclustersloshesthegravitationalpotentialwellofthemain ΩM = 0.27 and ΩΛ = 0.73. Then, 1 arcsec corresponds to cluster. Then,thecool,dense,andmetal-richICMatthecen- 3.97kpc at the redshift z=0.2532. All the errors quoted in terofthemainclusterislifteduptotheoutskirtsandthehot thispaperarein90%confidencelevel(90%CL)unlessoth- ICM at the outskirts flows to the center, which creates the erwisespecified. featurescommonlyobserved.SincetheinflowICMhasarel- atively high entropy, the mixing transfers heat to the cooler 2. OBSERVATIONSANDDATAREDUCTIONS ICM. On the other hand, it is considered that the gas slosh- Chandra observations of A1835 with Advanced CCD ing is one of the heating sources to suppress cooling of the ImagingSpectrometer(ACIS;Garmireetal.2003)wereper- ICM (Ghizzardietal. 2010;ZuHoneet al.2010)in addition formedfivetimeswiththeassignedObsIDsof495,496,6880, tothefeedbackofactivegalacticnucleus(AGN)intheBCG 6881,and7370. TheobservationsofObsID of495and496 (McNamara&Nulsen2007). were carried out with the Chandra/ACIS-S and the others Althoughitisconsideredthatembeddedspiralpatternsare were with the Chandra/ACIS-I. Among them, the data ob- closelyrelatedtothecoolcore,onlyalimitedamountofstud- tained with the ACIS-S were affected by a mild flare as re- ieshavebeenmadesofar.Inparticular,noneofthepublished ported by McNamara et al. (2006), and thus we do not use dataaregoodenoughtoinvestigatethetimeevolutionofspi- theminthispaper.Table1summarizestheobservationlogfor ralpatterns. Thenumberofthesampleofmassiveclustersis thedatausedinthispaper. Wereprocessedtheeventdataus- alsosmall. Mergersareusuallyassociatedwithanevolution ingtheChandraInteractiveAnalysisofObservations(CIAO; of the mass of the clusters. We need more samples of dis- Fruscioneetal.2006)version4.7andthecalibrationdatabase tantandmassiveclusterstofullyunderstandtheevolutionof (CALDB)version4.6.9.Thetotalnetexposureis193.7ksec. spirals. In this paper, we present our result of, in quest for possi- bleevidenceofpastmergers,the coolcoreofa massiveand Table1 ObservationlogofA1835withChandra relaxed clusters of galaxies Abell1835 (hereafter A1835) at theredshiftofz=0.2532withthedataofdeepChandraob- ObsID Instrument Obs.Date Expo.(ks) servations. A1835is the mostluminousX-raycluster in the 6880 ACIS-I 2005-12-07 117.9 ROSATBrightClusterSample(BCS;Ebelingetal.1998),and 6881 ACIS-I 2006-08-25 36.3 thusis one of the most massive clusters. It is classified as a 7370 ACIS-I 2006-07-24 39.5 relaxed and massive cooling-flow cluster. Its X-ray surface brightnessshows a strong central concentration(Allen et al. 1996).Acoolcoreisformedinitscenter. Ontheotherhand, Bonamenteetal.(2013)andIchikawaetal.(2013)suggested 3. ANALYSESANDRESULTS thattheICMintheoutskirtsofA1835ismostlyoutofhydro- We perform the X-ray imaging and spectral analyses to staticequilibrium.TheglobalpatternofpropertiesoftheICM studythepropertiesoftheICMinthecentralregionofA1835. isstudiedbyKirkpatrick&McNamara(2015)andHofmann Wehavechosentheannularregionwiththeradiirof4′<r< et al. (2016) The BCG of A1835 has an exceptionally high 5′ from the center of the cluster to extract the background star-formation rate of 100 – 180M yr- 1 (McNamara et al. ⊙ data, which correspondsto over 1Mpc in distance from the 2006)andthusisa rareobjectlike the Phoenixcluster(Mc- center. The cluster centeris definedas the brightestpixelin Donaldetal.2012). However,mostoftheICMinthecenter theX-raycountmapafterallthedatahavebeenmergedand is still hot (Peterson et al. 2001). The AGN in the BCG is is located at (RA, Dec) = (14h01m01.794, +02d52m41.55) not luminous in X-rays at all (Russell et al. 2013), whereas in J2000. We made the exposure-correctedX-ray image of moderatelybrightatradiowavelengths(Korngutetal.2011). A1835in the energyrangeof 0.4- 7.0keV after subtracting AlthoughthesignalofSunyaev-Zel’dovicheffect(Sunyaev& thebackgroundasdisplayedinFigure1. Noevidenceofma- Zeldovich1972,1980;Kitayama2014,forareview)wasob- jor mergeris foundin these imagesof X-ray surface bright- servedanddetectedbytheMUSTANG(Korngutetal.2011), ness. The X-ray profile appears to be elliptical and shows a thesignalinthecentralregion(r<18′′)wasstronglycontam- cool core in the cluster center, which suggests A1835 to be inatedbytheAGNemission. Govonietal.(2009)suggested oneofrelaxedandcool-coreclusters. that a diffuse radio emission (i.e., a radio mini-halo) resides with a size of several hundredskpc. The total mass is esti- 3.1. Searchandanalysesofthespirals EMBEDDEDSPIRAL PATTERNSIN THECOOL CORE OF ABELL1835 3 3’ or 715 kpc Figure1. X-rayimageofA1835intheenergyrangeof0.4–7.0keVwiththebackgroundsubtractedandexposurecorrected. Leftpanel: large-scaleimage ofA1835. Theyellowbarindicatesthescaleof3′or715kpc. ThisimageshowsadistinctivecoolcoreinthecenterofA1835,whichappearstobeelliptical. NoevidenceofmajormergerisfoundinthisX-raysurfacebrightness. Rightpanel: zoomed-upX-rayimageofthecentralregionofA1835withinr<40′′or 159kpcfromtheleftpanel. Even if a cluster is classified as a relaxed and cool-core ofthespiralpatternasthedistancefromthepeakpositionto cluster, some subtle and possibly complex features may ex- thefarthesttailofthecontourthatcorrespondsto10%ofthe ist,whichareoftenembeddedunderaglobalimageprofileof peakresidualbrightnessshownin Figure2. Thus, the spiral theclusterandcanbeeasilyoverlooked.Detailedimageanal- patternsasawholeextendtoacircularareawiththeradiusof ysiswitharesidualimageofitscore,aftertheglobalprofile ∼18′′ (or∼70kpc)in the residualimageof A1835. More- issubtractedfrom,maywellhighlightthosefeatures(seeIn- over,thesizeofthespiralwithapositive-excessisconsistent troductionforsomeexamples). Inthissubsection,wesearch withthatofthespiralwithanegative-excess. forsuchembeddedfeaturesusingaresidualimage. Next,weextractX-rayspectraofthepositive-andnegative- First,weapproximatetheX-rayimageprofileofthecluster excess regions of the spiral patterns from the regions as withthe2-dimensionalellipsemodel. Todeterminetheratio markedinFigure3.WefitthemusingXSPECversion12.9.0o of major-axis to minor-axis (f) and angle (θ) of the ellipse (Arnaud1996).Inthespectralfitting,theGalacticabsorption model, we optimize f and θ in the ranges of 0< f ≤1 and (N ) is fixed to 2.04×1020cm- 2 (Kalberla et al. 2005) and H 0≤θ<180,respectively,tominimizethesumofRMS/mean, the ICM emission is assumed to be reproduced by a single where“mean”istheaveragephotoncountsineachisophote temperature model of a thin-thermal plasma (APEC; Smith ringand “RMS” is the root-mean-squaredifferencebetween et al. 2001). Figure 4 shows the fitting results of the X-ray themodelandthephotoncountsinthesamering.Asaresult, spectra of the positive (left) and the negative (right) excess we obtain f =0.857andθ=170.9,respectively. Ourdefini- regionsfor each ObsID; the spectra in black, red, and green tionissuchthatθ=0and90meanthedirectionsofsouthand areextractedfromthedataofObsID=6880,6881,and7370, west, respectively. Themeansurfacebrightnessateachspot respectively.TheICMspectraintheregionsofthespiralpat- is thus given by the mean photon counts in the correspond- ternsarewelldescribedbythesingletemperaturemodelwith ing isophotering in the ellipse model. The derivedratio (f) χ2/dofof778/706and812/716forthepositive-andnegative- is consistent with that derivedby Schmidtet al. (2001)with excessregions,respectively. the 30ks exposure data of an early observation of Chandra The ICM temperatures of the positive- and negative- ex- and those of typical relaxed clusters reported by Kawahara cess regionsare foundto be 5.09+0.12keV and 6.52+0.18keV, (20T1h0e)n., we subtract the obtained model surface brightness respectively. Therespectiveabund- 0a.1n3ces(Z)are 0.3-70+-.001..50043Z⊙ from the original X-ray image. The resultant image is and 0.39-+00..0044Z⊙. The electron density, pressure, and en- smoothedwith a 2′′ Gaussian andshownin theleft panelof tropy are computed assuming that the ICM is distributed uniformly over the line-of-sight of length L. Assuming Figure2. Wefindadistinctivepositive-excessregion,which a factor of density correction of n /n = 1.17+0.02× extends from north to south counterclockwise, as well as a e H Z (with Anders & Grevesse (1989), the primordial He- negative-excessregionattheoppositesideoftheclustercen- lium abundance Y = 0.25), the electron density is esti- ter in a nearly symmetric shape, i.e., the two regions form p spiralpatterns. Weplottwowhiteellipsesintheleftpanelof mated to be ne = 0.0169±0.0003cm- 3(L/1Mpc)- 1/2 and Figure2, whichshowthepositionandsize ofX-raycavities n =0.0120±0.0003cm- 3(L/1Mpc)- 1/2 for the former and e reportedbyMcNamaraetal.(2006),readofffromFig. 9and latter, respectively, where L denotes the depth of line-of- Table 2 of McNamara et al. (2006). The right panel of Fig- sight.Then,theelectronpressureandentropyofthepositive- ure 2 shows the distribution of the X-ray surface brightness excessregionare 0.086±0.003keVcm- 3(L/1Mpc)- 1/2 and ofthe spiralpatternsasa contourmapoverlaidonthe origi- 77.3+2.1keVcm2(L/1Mpc)1/3, and those of the negative- nal X-ray image of Figure 1 rightpanel. We define the size exce-s2s.2region are 0.078+0.003keVcm- 3(L/1Mpc)- 1/2 and - 0.002 4 UEDA ETAL. 0 0. 2 0 0. 0 3: 5 on2: ti a0 clin40. e D 0 0. 2 2: 5 03.0 01.5 14:01:00.0 Right ascension Figure2. Spiralpatterns inthecentral regionofA1835. Leftpanel: X-rayresidualimageofthecentralregionofA1835, smoothedwitha2′′ Gaussian. Pronouncedspiralpatternsarefound.Thepositive-excessregionextendsfromnorthtosouthandthenegative-excessregionisattheoppositesidetothecenter. Thewhitecircleofr<20′′isoverlaidasareference.ThecyancrossshowsthepositionoftheBCGofA1835.Thetwowhiteellipsesshowthepositionandsize ofX-raycavitiesreportedbyMcNamaraetal.(2006). Rightpanel: sameasFigure1butthecontoursofthepositive(inwhite)andnegative(inblack)excess regionsareoverlaid.Whitecontoursshowtheexcesslevelsof100%,90%,···,20%,10%ofthepeakvalueofthepositivebrightnessresiduals.Blackcontours arethesameasthewhitecontoursbutforthenegativeresiduals.Boththespiralpatternsareembeddedinthecoolcoreandarenotdistinguishableintheoriginal X-rayimage. Table2 Best-fitparametersofX-rayspectrainthespiralpatterns. Region Positive-excess Negative-excess Temperature(keV) 5.09+- 00..1123 6.52-+00..1158 Abundance(Z⊙) 0.37+- 00..0043 0.39-+00..0044 Redshift 0.251+- 00..000034 0.249-+00..000044 Density(cm- 3(L/1Mpc)- 1/2) 0.0169±0.0003 0.0120±0.0003 χ2/dof 778/706 812/716 Pressure(keVcm- 3(L/1Mpc)- 1/2) 0.086±0.003 0.078-+00..000023 Figure3. TheregionsfromwhichtheX-rayspectraofthepositive(left)and Entropy(keVcm2(L/1Mpc)1/3) 77.3+- 22..12 124.2-+33..38 negative(right)excessregionsareextracted. X-rayspectraareaccumulated frominsidetheregioninwhitelineexcludingthesmallerregioningreenline withareddiagonallineineachpanel. We first apply the contour-binning algorithm (hereafter ContBin) presented by Sanders (2006) to determine how to 124.2+3.8keVcm2(L/1Mpc)1/3,respectively. Notethatthese - 3.3 dividetheregionintomanysubregionstoextractX-rayspec- are not real electron density, pressure, or entropy, as we did tra from. This algorithm yields a set of sub-regions so that notperformanydeprojectiontoestimatea3-dimensionaldis- eachregionhasroughlythesamelevelofsignal-to-noisera- tribution. Themeasuredredshiftsareconsistentamongthese tio(S/N).Wedividethewholeregion(rightpanelofFigure1) fitting results and cluster’s one. We find no significant bulk into92sub-regionswithmorethan∼2000countsineachre- motionsin the directionof line-of-sightwith the upperlimit gion after subtracting the background. The S/N, where the forthevelocityofICMmotionintheredshiftdifference(∆z) Poisson noise N includes the background, of each region is of 0.002, which corresponds to 600kms- 1. We summarize within42.2–57.6inthe0.4–7.0keVband. Then,wemake thebest-fitresultsinTable2. X-rayspectrumineachregion.Byfittingeachspectrumwith Figure5showsthepropertiesoftheICMintheregionsof theAPECmodel,weobtainthespatialdistributionoftheICM the spiral patterns. Although the temperature, density, and temperature, abundance, and density. The pressure and en- entropy differ between the two regions, the pressures of the tropyineachregionarethencalculated. ICMbetweenthemareverysimilar. Itsuggeststhattheyare We show the ICM temperature, density, pressure, and en- inpressureequilibriumorclose. tropymapsinFigure6,7,8,and9,respectively. Thestatisti- calerrorsintheinner/outerregionsinthetemperaturemapare 3.2. Spectralanalysesofsurroundings 7%/15%, respectively. Those for the density, pressure, and WehavemeasuredtheICMpropertiesintheregionsofthe entropy are 5%/5%, 9%/16%, and 8%/15%, respectively, spiralpatternsintheprevioussubsection. Inthissubsection, fortheinner/outerregions. weperformspatially-resolveddetailedX-rayspectroscopyof Thetemperaturemap(Figure6)showsthattheICMinthe the entire cluster-center region (r<40′′ or r<160kpc) in- center is the coolest at 3.5keV in the center and becomes cludingthespiralpatterns. gradually hotter at a larger radius. In the outermost region EMBEDDEDSPIRAL PATTERNSIN THECOOL CORE OF ABELL1835 5 V−1 0.1 V−1 0.1 e e k k nts s −1 nts s −1 u u o o d c 0.01 d c 0.01 e e z z ali ali m m nor nor 1.6 1.2 1.4 atio 1 atio 1.2 r r 1 0.8 0.8 1 2 5 0.5 1 2 5 Energy (keV) Energy (keV) Figure4. X-rayspectraextractedfromthepositive-excessregion(left)andfromthenegative-excessregion(right)foreachObsIDareshownwiththebest-fit APECmodels. Theratiosofthedatatothemodelareplottedinthebottompanels. Thespectrainblack,red,andgreenareextractedfromthedataofObsID =6880,6881,and7370,respectively.AlloftheX-rayspectraarewellreproducedwiththeAPECmodel. (35′′ < r < 40′′), the lowest and highest temperatures are isoneoftheirsamplesanditsunsharp-maskedcountimageis 7.7keV and 11.9keV, respectively. We find that the lower shownin Fig. E.1 in Hofmannet al. (2016). Since they did temperature region is elongated toward the southeast direc- notfocusonthecentralregion(lessthan100kpc),thespatial tion, which roughly traces the positive-excess region of the resolutionof their unsharp-maskedcountimage is low. The spiralpatterns(rightpanelofFigure6).Mostofthenegative- feature such as the spirals we found is not apparent in their excessregionofthespiralpatternshasarelativelyhighertem- results. peraturethanthatof thepositive-excessregion. Thisis con- sistent with the picture provided by the spectral analyses of 4.1. Propertiesofspiralpatterns thespirals. Itisnoteworthythatthespiralpatternsappearin therelativelylowertemperatureregions. We have estimated the size of the spiral patterns to be Theabundancemapiseffectivelyflatanditsglobalpatterns 70kpc in radius (Figure 2). This size is a factor of 2 – 4 isconsistentwiththatreportedbyKirkpatrick&McNamara smallerthanthoseofotherknownclusters,e.g.,about200kpc (2015). forA496(Ghizzardietal.2014),300kpcforA2029(Clarke Thedensitymap(Figure7)traceswelltheshapeofX-ray etal.2004),and240kpcforA2052(Blantonetal.2011). To surfacebrightnessofA1835,i.e.,itiselongatedtothesouth- comparethesizeofthespiralpatternsinmoreobjectiveman- eastwiththepeakattheclustercenter. ner,were-analyzethe650ksecdataofA2052observedwith The pressure map (Figure8) shows thatthe ICM pressure Chandra,whichare the same asthose used inBlanton etal. smoothly decreases toward the outer region with no signif- (2011). Then, we measure the size of the spiral patterns in icant discontinuities in the central region. In the region of A2052usingthesamemethodasdescribedinSection3.1to the spiral patterns, the pressure profile showsno discontinu- be170kpc.ForA496,fromFig.13ofGhizzardietal.(2014), ity,whichisconsistentwiththatobtainedbytheX-rayspec- wemeasurethesizeofspiraltobe150kpcbyusingthesame tral analyses of spirals. These results imply that the ICM is methodas in Section 3.1. These results furtherconfirm that in pressure equilibrium or close at least in the region of the the size of the spiral patterns of A1835 is smaller. We will spiralpatterns. performmoresystematicinvestigationsofthe spiralpatterns Theentropymap(Figure9)showstheentropyoftheICM foralargersampleofclustersinourfuturepublication. islowestatthecenter. Italsoshowsthatthespatialdistribu- We also measure the core radius of A1835 to be 31± tion of the lower entropy ICM is elongatedto the southeast, 0.4kpc using our a single β model. It is within the range beingsimilarto thatof thepositive-excessregionof the spi- of the core radii of the other known clusters with spiral pat- ralpatterns. Notethatthisresultisconsistentwiththedirect terns;thecoreradiioftheabove-mentionedthreeclustersof spectralanalysesofthespiralpatternspresentedintheprevi- A496, A2029, and A2052 are 15kpc (Laganá et al. 2008), oussubsection,wherethespectrumofthenegative-excessre- 38kpc (Lewiset al.2003),and18kpc(Blantonetal. 2011), gion,whichislocatedinthewesternside,hasshownahigher respectively. We findnoobviouscorrelationbetweensize of entropythan thatof the positive-excessregionin the eastern spiralsandthatofcoreradius. Infact, thesize ofspiralpat- side. ternsofA1835ismuchclosertothecoreradiusthantheother clusters;theyextendfromwellinsidethecoolcoreouttothe hotter surrounding ICM. This may indicate that the stirring 4. DISCUSSION motionproducingthespiralstransportsafractionofthecool Wehavefoundtheembeddedspiralpatternsintheresidual gasouttolargerradiiandthehotgasintosmallerradii. imageofX-raysurfacebrightnessofthecoreofA1835. We We have also analyzed the X-ray spectra extracted from thenderivedthespectralpropertiesoftheICMinthemandin the positive- and negative-excess regions of the spiral pat- theirsurroundings. Inthissection,wediscusstheresultsand terns(Figure3)andhavemeasuredthespatialdistributionof theirimplications. theICMparameters(Table2andFigure5). Wefindthatthe In previous works, by using the data of 33 clusters, Hof- differenceandsimilarityoftheICMparametersbetweenthe mannetal.(2016)studiedthelarge-scale(typicallyoverhun- tworegionsarequalitativelyingoodagreementwiththoseof dredskpc)perturbationsofX-raysurfacebrightness. A1835 otherknownclusters(Clarkeetal.2004;Blantonetal.2011; 6 UEDA ETAL. theICMdensityintheformerishigherthanthatinthelatter. 7.0 Whereas the pressure has no difference between the two re- e6.5 gions. Thespectralresultsoftheirsurroundingareahasalso r u confirmedtheuniformpressureacrosstheregionofthespiral at6.0 patterns. Therefore, the ICM in the region of the spiral pat- r e ternsisinpressureequilibriumorclose. Forthetemperature p5.5 m map, Hofmann et al. (2016) studied the large-scale distribu- e5.0 tioninA1835.Theyreportedthatthetemperatureoftheouter T regionexceeds10keVanditsdistributioniselongatedtoward 4.5 Bright Dark thenorthwestandsoutheast. For the abundance, we have found no difference between thepositive-andnegative-excessregions. By combiningthe 0.45 resultsofspectralanalysesofthespiralsandoftheirsurround- e ings,wefindalmostuniformdistributionofmetalsacrossthe c n0.40 regionwitharadiusofatleastr<40′′inA1835.Thisisdif- a d ferentfromthatreportedinthepreviousstudiesofthespiral n patterns. Forexample,inthecaseofA496,theabundanceof u0.35 b the positive-excess region is larger by a factor of ∼1.5 than A thatofthenegative-excessregion(Ghizzardietal.2014). 0.30 We consider two possible scenarios for the origin of the Bright Dark spiral patterns: an energetic past AGN activity, including jets, andagassloshinginducedbyanoff-axisminormerger (e.g.,Markevitch&Vikhlinin2007).McNamaraetal.(2006) 0.018 pointedoutthepresenceofX-raycavitiesinthecoreandsug- gestedthattheenergeticAGNoutbursthadoccurred40Myr y0.016 t ago. They also suggested that the past jet activity had sup- i s n presseda coolingofmostoftheICM. Suchanenergeticac- De0.014 tivitycaninfluencethesurroundingsclosetothecenterasin thecaseofthePerseuscluster(Fabianetal.2011). However, 0.012 McNamaraetal. (2006)estimatedthesizeoftheX-raycav- itytobe∼20kpc,whichissignificantlysmallerthanthatof Bright Dark thespiralpatternsthatwefound(leftpanelofFigure2). Itis thereforemorelikelythattheoriginisthesameasintheother clusters, i.e., the spiralpatternsarecreatedby the gasslosh- ing. Ifso,sinceitisconsideredthatanoff-axisminormerger y120 inducesthegassloshing(e.g.,Markevitch&Vikhlinin2007). p o Thepresenceofthespiralpatternsisapieceoftheevidence tr100 ofapastminormergerinA1835. Weshouldnotethatasub- n E structureexistsandmustbedisturbingthegasinthecoolcore 80 inA1835,eventhoughtheX-raysurfacebrightnessindicates thatitisrelaxed. Bright Dark If the origin of the spiral patterns is gas sloshing induced byaminormerger,therelativelysmallsizeofthespiralpat- 0.095 ternsmayreflectatimeevolutionofspirals. Accordingtothe numericalsimulations(e.g.,ZuHoneetal. 2010),the size of 0.090 the spiralsdependson the length of the periodafter a minor e ur0.085 merger began. In the early stage of a minor merger, a vol- s ume over which the gas is disturbed is relatively small and es0.080 the effectof disturbanceis limited in the core of the cluster. r P0.075 However,theconditionsofinitialmergerparameterssuchas animpactparameteralsoaffecttheformandsizeofspirals. 0.070 For the pressure profile in the cluster center, observations Bright Dark oftheSunyaev-Zel’dovich(SZ)effectwouldenableustodi- rectlymeasurethepressureoftheICM.Althoughtheobser- Figure5. Best-fitparametersofspectralanalysesinthepositive-(leftsidein vations of the SZ effect for A1835 were performed by Ko- eachpanel)andnegative-(rightside)excessregions.Thepanelsfromthetop rngutetal.(2011),thesignalinthecentralpart(r<18′′)was tobottomshowthetemperatureinunitsofkeV,abundanceinsolar,densityin stronglycontaminatedbytheAGNemission. Thesizeofthe cm- 3(L/1Mpc)- 1/2,entropyinkeVcm2(L/1Mpc)1/3,andpressureinkeV contaminatedregionis consistentwith that of the spiral pat- cm- 3(L/1Mpc)- 1/2,respectively. terns. Now, observations with ALMA, which can achieve a highangularresolutionof5′′ andhighsensitivityforthe SZ effect (Kitayama et al. 2016), will likely enable us to make Paterno-Mahler et al. 2013; Ghizzardi et al. 2014), i.e., the an accurate measurement of the pressure of the ICM in the temperatureandentropyoftheICMinthepositive-excessre- regionofthespiralpatterns. gion are lower than those in the negative-excessregion, and EMBEDDEDSPIRAL PATTERNSIN THECOOL CORE OF ABELL1835 7 12 12 11 11 9.9 10 8.9 9 7.9 8 6.9 7 6 6 5 5 4 4 3 3 Figure6. TemperaturemapsobtainedbyX-rayspectralanalyseswiththeContBin-definedregionsinunitsofkeV.Theleftpanelshowstherawtemperature map. Thestatisticalerroroftheinner/outerregionsinthemapare7%/15%,respectively. Therightpanelshowsthesmoothedimageoftheleftpanelwith7′′ Gaussian,togetherwiththecontoursoverlaidofthespiralpatternsasintherightpanelofFigure2. 0.02560 0.02560 0.01192 0.01192 0.00551 0.00551 0.00254 0.00254 0.00116 0.00116 0.00053 0.00053 0.00023 0.00023 0.00009 0.00009 0.00003 0.00003 0.00000 0.00000 Figure7. SameasinFigure6butforthedensitymapsinunitsofcm- 3(L/1Mpc)- 1/2.Thestatisticalerroris5%forboththeinnerandouterregions.Theright panelshowsthesameimageastheleftpanelbutthatissmoothedwith7′′GaussianandthecontoursofthespiralpatternsshownintherightpanelofFigure2 areoverlaid. 4.2. Spiralpatternsandmergers which is within the rangeof the mass of groupsof galaxies. In that case, it satisfies the conditionsproposed by Smith & Following the simulations of A1835 (e.g., Ascasibar & Taylor (2008). Bonamente et al. (2013) and Ichikawa et al. Markevitch2006;ZuHoneetal.2010;Roedigeretal.2011), (2013)suggestedthattheICMintheoutskirtsisoutofhydro- weconsideranorbitalplaneofthefirstpassageoftheminor staticequilibrium.Recentminormergerthatwehaveguessed merger. Theyarguethatthelow-temperatureregion(i.e.,the A1835hasexperiencedmayhaveinducedit. positive-excessregion)appearsatthepositionoppositetothe The velocity difference of the ICM between the positive- directionofthetrajectory.Sincethepositive-excessregionof and negative-excessregions is smaller than 600kms- 1. We A1835extendsfromthenorthtosouthcounterclockwise,we conjecturethattheinfallingsubclustertraveledfromnorthto havefoundnobulkmotionsalongthe line-of-sight. Sanders southwest. etal. (2010)reportedthatthe turbulencevelocityatthe cen- Asdiscussedabove(Section4.1),thecomparativelysmall terissmallerthan274kms- 1. SincetheICM doesnotslosh size of the spiral patterns of A1835 may be an indication fast,thesetworesultssupportthehypothesisthattheorbitof that the length of the period after the beginning of the mi- theminormergerwasintheplaneofthesky. Tomakeanac- nor merger is relatively short. On the other hand, Smith & curatemeasurementofthevelocityoftheICMisbeyondthe Taylor(2008)suggestedthatgrowthinmassofA1835inthe capabilityofcurrentlyavailableX-rayobservatories,butwill last 2Gyr is smaller than 10%, based on the observations bepossiblewithfutureX-raymicro-calorimetermissions. of the mass fraction associated with the sub-structure. The Govonietal.(2009)reportedthepresenceofaradiomini- simulationsdemonstratedthat a subclusterwith a mass ratio haloinA1835.Theradioemissionisconcentratedinthecen- of 5% can slosh the gas in the gravitational potential well ter and showsno obviousasymmetry. We do notfind direct of the main cluster after the first contact and can then cre- correspondencebetweenthemorphologyofthespiralpattern ate a temperature structure of spiral patterns (e.g., ZuHone in the X-ray residual brightness and that of the radio mini- et al. 2010). For A1835, the mass ratio of 5% corresponds halo. to ∼ 5×1013M for M of A1835 (Okabe et al. 2010), ⊙ 200 5. SUMMARY 8 UEDA ETAL. Figure8. SameasinFigure6butforthepressuremapsinunitsofkeVcm- 3(L/1Mpc)- 1/2,whichiscalculatedbyP=kT×ne.Thestatisticalerrorofinner regioninthemapis9%andthatinouterregionis16%. Figure9. SameasinFigure6butfortheentropymapsinunitsofkeVcm2(L/1Mpc)1/3,whichiscalculatedbyK=kT×n-e2/3.Thestatisticalerrorofinner regioninthemapis8%andthatinouterregionis15%. Wefindtheembeddedspiralpatternsinthecoolcoreinthe imply that A1835 is a typical cool-core cluster. The spiral residualimageofX-raysurfacebrightnessaftertheaveraged patternsextendfromthecoolcoreouttothehottersurround- profileissubtractedinthemassiveclustersofgalaxiesA1835 ingICM.Thismayindicatethatthestirringmotionproducing using the data of Chandra X-ray Observatory. We measure the spirals transports a fraction of the cool gas out to larger the size of the spiral patternsto be 70kpc, which is a factor radiiandthe hotgasinto smaller radii. The spatial distribu- of 2 – 4 smaller than that of other clusters known to show tionofmetalsseemstobeuniformatleastintheregions.The thesimilar features. Thespiralpatternsconsistoftwo arms, pressuredistributionshowsagradualdecreasetowardtheout- whichappearasthepositive-andnegative-excessintheresid- skirtsandimpliesthattheICMinA1835isinpressureequi- ualimage.WeanalyzetheX-rayspectraextractedfromthose librium at least in the central region, even though the spiral tworegionsseparately.TheICMtemperaturesinthepositive- patternsexistinthecore,whichsuggeststhatthecoreisdis- andnegative-excessregionsarefoundtobe5.09+0.12keVand turbed. - 0.13 6.52+0.18keV,respectively. Nosignificantdifferenceisfound Two scenarios are consideredas the mechanism of distur- in th-e0.1I5CM abundance in the two regions, nor in the pres- banceofthe coolcore. Oneis an energeticpastAGN activ- sure,whichindicatesthattheICMisinpressureequilibrium ityincludingjetsandtheotherisgassloshinginducedbyan orclose. We measurethevelocitydifferenceoftheICMbe- off-axisminormerger. Althoughwe can notdeterminecon- tweenthepositive-andnegative-excessregionalongline-of- clusivelywhich is moreplausible becauseof the insufficient sighttobesmallerthan600kms- 1. X-raydata,theICMpropertiesintheregionofthespiralpat- terns are similar to those in other clusters that show embed- Applying the algorithm of ContBin, we define the sub- dedspiralpatternsintheirX-raysurfacebrightness. Ineither regionssothatanyofthemhasS/N>42inthe0.4–7.0keV case,thespiralpatternsindicatethatasub-structureexistsin band(i.e.,∼2000photonsineachregion)inthecentralregion ofr<40′′inA1835afterthebackgroundissubtracted.Com- thecoolcoreevenif theX-raysurfacebrightnessappearsto be relaxed. The velocity of disturbance in the line-of-sight pilingtheX-rayspectrafromthe92sub-regions,wemakethe temperature,density,pressure,andentropymaps(Figures6– islowerthan600kms- 1 forA1835,whichisconsistentwith 9). The radial profiles of temperature, density, and entropy that of the Perseus cluster, as directly measured by Hitomi (HitomiCollaborationetal.2016). EMBEDDEDSPIRAL PATTERNSIN THECOOL CORE OF ABELL1835 9 We are gratefulto the anonymousreferee for helpfulsug- HitomiCollaboration,Aharonian,F.,Akamatsu,H.,etal.2016,Nature,535, gestions and comments. We also thank Masaaki Sakano for 117 Hofmann,F.,Sanders,J.S.,Nandra,K.,Clerc,N.,&Gaspari,M.2016, carefulreadingof the manuscriptand usefulcomments, and A&A,585,A130 Yuto Ichinohe for helpful discussions. The scientific results Ichikawa,K.,Matsushita,K.,Okabe,N.,etal.2013,ApJ,766,90 of thispaperare based in partonthe data obtainedfromthe Ichinohe,Y.,Werner,N.,Simionescu,A.,etal.2015,MNRAS,448,2971 Kalberla,P.M.W.,Burton,W.B.,Hartmann,D.,etal.2005,A&A,440,775 ChandraData Archive: ObsIDs6880,6881, and7370. This Kawahara,H.2010,ApJ,719,1926 research is supportedby Japan Society for the Promotionof Kirkpatrick,C.C.,&McNamara,B.R.2015,MNRAS,452,4361 Kitayama,T.2014,ProgressofTheoreticalandExperimentalPhysics,2014, Science (JSPS) KAKENHI Grant Number 15K17610 (SU), 060000 25400236(TK),and24105007(TD). Kitayama,T.,Ueda,S.,Takakuwa,S.,etal.2016,PASJ,68,88 Korngut,P.M.,Dicker,S.R.,Reese,E.D.,etal.2011,ApJ,734,10 Laganá,T.F.,LimaNeto,G.B.,Andrade-Santos,F.,&Cypriano,E.S. 2008,A&A,485,633 Lewis,A.D.,Buote,D.A.,&Stocke,J.T.2003,ApJ,586,135 Markevitch,M.,&Vikhlinin,A.2007,Phys.Rep.,443,1 REFERENCES Markevitch,M.,Ponman,T.J.,Nulsen,P.E.J.,etal.2000,ApJ,541,542 McDonald,M.,Bayliss,M.,Benson,B.A.,etal.2012,Nature,488,349 McNamara,B.R.,&Nulsen,P.E.J.2007,ARA&A,45,117 McNamara,B.R.,Rafferty,D.A.,Bîrzan,L.,etal.2006,ApJ,648,164 Allen,S.W.,Fabian,A.C.,Edge,A.C.,etal.1996,MNRAS,283,263 Okabe,N.,Takada,M.,Umetsu,K.,Futamase,T.,&Smith,G.P.2010, Allen,S.W.,Schmidt,R.W.,&Fabian,A.C.2002,MNRAS,335,256 PASJ,62,811 Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197 O’Sullivan,E.,David,L.P.,&Vrtilek,J.M.2014,MNRAS,437,730 Arnaud,K.A.1996,inAstronomicalSocietyofthePacificConference O’Sullivan,E.,Giacintucci,S.,Babul,A.,etal.2012,MNRAS,424,2971 Series,Vol.101,AstronomicalDataAnalysisSoftwareandSystemsV, Paterno-Mahler,R.,Blanton,E.L.,Randall,S.W.,&Clarke,T.E.2013, ed.G.H.Jacoby&J.Barnes,17 ApJ,773,114 Arnaud,M.,Maurogordato,S.,Slezak,E.,&Rho,J.2000,A&A,355,461 Peterson,J.R.,Paerels,F.B.S.,Kaastra,J.S.,etal.2001,A&A,365,L104 Ascasibar,Y.,&Markevitch,M.2006,ApJ,650,102 Poole,G.B.,Fardal,M.A.,Babul,A.,etal.2006,MNRAS,373,881 Blanton,E.L.,Randall,S.W.,Clarke,T.E.,etal.2011,ApJ,737,99 Roediger,E.,Brüggen,M.,Simionescu,A.,etal.2011,MNRAS,413,2057 Bonamente,M.,Landry,D.,Maughan,B.,etal.2013,MNRAS,428,2812 Russell,H.R.,McNamara,B.R.,Edge,A.C.,etal.2013,MNRAS,432, Briel,U.G.,Henry,J.P.,&Boehringer,H.1992,A&A,259,L31 530 Canning,R.E.A.,Sun,M.,Sanders,J.S.,etal.2013,MNRAS,435,1108 Sanders,J.S.2006,MNRAS,371,829 Churazov,E.,Forman,W.,Jones,C.,&Böhringer,H.2003,ApJ,590,225 Sanders,J.S.,Fabian,A.C.,Hlavacek-Larrondo,J.,etal.2014,MNRAS, Clarke,T.E.,Blanton,E.L.,&Sarazin,C.L.2004,ApJ,616,178 444,1497 Clowe,D.,&Schneider,P.2002,A&A,395,385 Sanders,J.S.,Fabian,A.C.,Smith,R.K.,&Peterson,J.R.2010,MNRAS, Ebeling,H.,Edge,A.C.,Bohringer,H.,etal.1998,MNRAS,301,881 402,L11 Fabian,A.C.1994,ARA&A,32,277 Schmidt,R.W.,Allen,S.W.,&Fabian,A.C.2001,MNRAS,327,1057 Fabian,A.C.,Sanders,J.S.,Allen,S.W.,etal.2011,MNRAS,418,2154 Smith,G.P.,&Taylor,J.E.2008,ApJL,682,L73 Fruscione,A.,McDowell,J.C.,Allen,G.E.,etal.2006,inProc.SPIE,Vol. Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,&Raymond,J.C.2001, 6270,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE) ApJL,556,L91 ConferenceSeries,62701V Sun,M.,Murray,S.S.,Markevitch,M.,&Vikhlinin,A.2002,ApJ,565,867 Garmire,G.P.,Bautz,M.W.,Ford,P.G.,Nousek,J.A.,&Ricker,Jr.,G.R. Sunyaev,R.A.,&Zeldovich,I.B.1980,ARA&A,18,537 2003,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE) Sunyaev,R.A.,&Zeldovich,Y.B.1972,CommentsonAstrophysicsand ConferenceSeries,Vol.4851,SocietyofPhoto-OpticalInstrumentation SpacePhysics,4,173 Engineers(SPIE)ConferenceSeries,ed.J.E.Truemper&H.D. Vikhlinin,A.,Markevitch,M.,&Murray,S.S.2001,ApJ,551,160 Tananbaum,28–44 ZuHone,J.A.,Markevitch,M.,&Johnson,R.E.2010,ApJ,717,908 Ghizzardi,S.,DeGrandi,S.,&Molendi,S.2014,A&A,570,A117 ZuHone,J.A.,Markevitch,M.,&Lee,D.2011,ApJ,743,16 Ghizzardi,S.,Rossetti,M.,&Molendi,S.2010,A&A,516,A32 Govoni,F.,Murgia,M.,Markevitch,M.,etal.2009,A&A,499,371