Lecture Notes in Physics 884 V.K.B. Kota Embedded Random Matrix Ensembles in Quantum Physics Lecture Notes in Physics Volume 884 FoundingEditors W.Beiglböck J.Ehlers K.Hepp H.Weidenmüller EditorialBoard B.-G.Englert,Singapore,Singapore P.Hänggi,Augsburg,Germany W.Hillebrandt,Garching,Germany M.Hjorth-Jensen,Oslo,Norway R.A.L.Jones,Sheffield,UK M.Lewenstein,Barcelona,Spain H.vonLöhneysen,Karlsruhe,Germany M.S.Longair,Cambridge,UK J.-F.Pinton,Lyon,France J.-M.Raimond,Paris,France A.Rubio,Donostia,SanSebastian,Spain M.Salmhofer,Heidelberg,Germany S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany J.D.Wells,Geneva,Switzerland Forfurthervolumes: www.springer.com/series/5304 The Lecture Notes in Physics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelop- ments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging mate- rialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandtoserve threepurposes: • to be a compact and modern up-to-date source of reference on a well-defined topic • to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas • to be a source of advanced teaching material for specialized seminars, courses andschools Both monographs and multi-author volumes will be considered for publication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only.ProceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic for- mats,theelectronicarchivebeingavailableatspringerlink.com.Theseriescontent isindexed,abstractedandreferencedbymanyabstractingandinformationservices, bibliographicnetworks,subscriptionagencies,librarynetworks,andconsortia. Proposals should be sent to a member of the Editorial Board, or directly to the managingeditoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] V.K.B. Kota Embedded Random Matrix Ensembles in Quantum Physics V.K.B.Kota PhysicalResearchLaboratory Ahmedabad,India ISSN0075-8450 ISSN1616-6361(electronic) LectureNotesinPhysics ISBN978-3-319-04566-5 ISBN978-3-319-04567-2(eBook) DOI10.1007/978-3-319-04567-2 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014934167 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To myparents Preface Random matrix theory was introduced into physics by E.P. Wigner in 1955, and consolidatedwithdeeperandwiderranginginvestigationsinthelastthreedecades, ithasbecomeanintegralpartofquantumphysics.AsaptlystatedbyH.A.Weiden- müllerinarecentcommentary:“althoughusedwithincreasingfrequencyinmany branchesofphysics,randommatrixensemblessometimesaretoounspecifictoac- countforimportantfeaturesofthephysicalsystemathand.Onerefinementwhich retainsthebasicstochasticapproachbutallowsforsuchfeaturesconsistsintheuse ofembeddedensembles.”Thisnewclassofrandommatrixensembles,theembed- ded random matrix ensembles, were introduced in the context of the nuclear shell model in early 1970. As stated by J.B. French: “the GOE, now almost universally regarded as a model for a corresponding chaotic system, is an ensemble of multi- body,nottwo-bodyinteractions.Thisdifferenceshowsupbothinone-point(density of states) and two-point (fluctuations and smoothed transition strengths) functions generatedbythenuclearshellmodel.Forabetterapriorimodelwecanchoosean ensembleofk-bodyinteractions(k=2isaninterestingcase)bygeneratingaGOE in k-particle space and using it in the space of m-particles. For most purposes the resultingembeddedGOE(orEGOE)isverydifficulttodealwith,butbygoodluck, we can use it to study the questions we have posed and the answers are different from,andmuchmoreenlighteningthan,thosewhichwouldcomefromGOE.” Research over the last two decades in particular has produced a large body of newresultsforembeddedensemblesanditisclearthattheserandommatrixensem- bles are indispensable in the study of finite many-particle quantum systems such asatoms,nuclei,quantumdots,smallmetallicgrains,latticespinmodelsforquan- tum computers,and so on. In this book, starting with an easy-to-read introduction togeneralrandommatrixtheory,allthenecessaryconceptsforembeddedrandom matrix ensembles are developed from scratch and the reader is then carried to the frontiersofpresent-dayresearch.Thefirstchaptergivesageneralintroductionand thenexttwochaptersdealwithsomegeneralaspectsofclassicalrandommatrixen- sembles.Eightchaptersintheremainingpartofthebookgiveresultsforavariety of embedded ensembles, mainly classified according to the Lie symmetries of the vii viii Preface Hamiltonianofafinitemany-bodyquantumsystem,whilefourchaptersaredevoted toapplications.Thelastchapterprovidesasummaryandfutureprospects. The starting point for this book was a series of lectures given by the author at AndhraUniversity,Visakhapatnam(India)in2002.Effortshavebeenmadetogive enoughdetailineverychaptertoensurethatanadvancedgraduatestudentcanfol- lowthemathematicsandunderstandtheresultsof‘computerexperiments’forem- bedded ensembles. On the other hand, the book gives an exhaustive review of the fieldsothataresearchstudentcanusethematerialtostartworkingonnewquestions inthesubjectofembeddedensemblesitselfandintheirapplicationtomany-body quantumphysics. Over the last three decades I have had the pleasure of collaborating with many people,anddiscussedthetopicsofthisbookwithmanyothers.Firstofall,Iwould liketospeciallythankthelateJ.B.Frenchforalongandprofitablecollaborationon statistical nuclear spectroscopy. Embedded random matrix ensembles have grown out of this subject and the present work is complementary to the book Statistical Spectroscopy and Spectral Distributions in Nuclei by R.U. Haq and myself, pub- lished in 2010 by World Scientific. The influence of J.B. French on my way of thinkingaboutrandommatrixtheoryinphysicsissurelyvisibleinseveralpartsof thepresentbook. IwasfortunateinhavingA.Pandey,J.C.Parikh,V.Potbhare,andS.Tomsovic ascollaboratorsinmyearlyyearsofresearchonrandommatrixtheory.Regarding thetopicsdiscussedinseveralchaptersofthisbook,Ihavecollaboratedintensively withR.Sahu,N.D.Chavda,andmyformerPh.D.studentMananVyas.Withoutthat collaboration, this book would not have been possible. I have also benefited from collaboration and discussions with many colleagues, friends, and students, and in particular with Dilip Angom, B. Chakrabarti, J.M.G. Gomez, R.U. Haq, K. Kar, D. Majumdar, the late J. Retamosa, S. Sumedha, and Y.M. Zhao. I am especially indebtedtoH.A.WeidenmüllerandthelateO.Bohigasfordiscussionsandencour- agement. I am thankful to N.D. Chavda and Manan Vyas for preparing some of the figures and thank Manan Vyas once again for typing some parts of the book. ThanksarealsoduetothedirectorsofthePhysicalResearchLaboratory(Ahmed- abad,India)forfacilitiesandsupport.Therearemanyotherswhohavedirectlyor indirectly contributed to my work on embedded ensembles and I sincerely thank them.Copyrightpermissionforusingsomeofthefigures,fromtheAmericanPhys- ical Society, the American Institute of Physics, Elsevier Science, the Institute of Physics, Springer-Verlag, and World Scientific is gratefully acknowledged. I am alsothankfultoalltheauthorswhohavegivenpermissiontousefiguresfromtheir publications.SpecialthanksareduetotheeditorsatSpringer-Verlagfortheirefforts inbringingoutthisbook.Andlastlyandmostimportantly,Iamindebtedtomywife Vijayaforherunfailingsupportsince1980. PhysicalResearchLaboratory, V.K.B.Kota Ahmedabad,India November2013 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 ClassicalRandomMatrixEnsembles . . . . . . . . . . . . . . . . . 11 2.1 HamiltonianStructureandDyson’sClassificationofGOE,GUE andGSERandomMatrixEnsembles . . . . . . . . . . . . . . . 11 2.1.1 2×2GOE . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 2×2GUE . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 2×2GSE . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 OneandTwoPointFunctions:N×N Matrices . . . . . . . . . 21 2.2.1 OnePointFunction:Semi-circleDensity . . . . . . . . . 21 2.2.2 TwoPointFunctionSρ(x,y) . . . . . . . . . . . . . . . 24 2.2.3 FluctuationMeasures:NumberVarianceΣ2(r) andDyson-MehtaΔ Statistic. . . . . . . . . . . . . . . 27 3 2.3 StructureofWavefunctionsandTransitionStrengths . . . . . . . 28 2.3.1 Porter-ThomasDistribution . . . . . . . . . . . . . . . . 28 2.3.2 NPC,Sinfo andStrengthFunctions . . . . . . . . . . . . 30 2.4 DataAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 UnfoldingandSampleSizeErrors . . . . . . . . . . . . 32 2.4.2 PoissonSpectra . . . . . . . . . . . . . . . . . . . . . . 33 2.4.3 AnalysisofNuclearDataforGOEandPoisson. . . . . . 34 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 InterpolatingandOtherExtendedClassicalEnsembles. . . . . . . 39 3.1 GOE-GUETransition . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.1 2×2MatrixResults . . . . . . . . . . . . . . . . . . . . 41 3.1.2 N×N EnsembleResultsforΣ2(r)andΔ (r) . . . . . . 43 3 3.1.3 ApplicationtoTRNIinNucleon-NucleonInteraction . . 45 3.2 PoissontoGOEandGUETransitions . . . . . . . . . . . . . . . 46 3.2.1 2×2MatrixResultsforPoissontoGOETransition . . . 46 3.2.2 2×2ResultsforPoissontoGUETransition . . . . . . . 48 ix x Contents 3.2.3 RelationshipBetweenΛParameterforPoissontoGOE andtheBerry-RobnikChaosParameter . . . . . . . . . . 49 3.2.4 PoissontoGOE,GUETransitions:N×N Ensemble ResultsforΣ2(r) . . . . . . . . . . . . . . . . . . . . . 51 3.2.5 OnsetofChaosatHighSpinsviaPoissontoGOE Transition . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 2×2PartitionedGOE . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 IsospinBreakingin26Aland30PNuclearLevels . . . . . 52 3.4 Rosenzweig-PorterModel:AnalysisofAtomicLevelsand + + Nuclear2 and4 Levels . . . . . . . . . . . . . . . . . . . . . 54 3.5 CovarianceRandomMatrixEnsembleXXT:EigenvalueDensity 55 3.5.1 ASimple2×2PartitionedGOE:p-GOE:2(Δ) . . . . . . 56 3.5.2 MomentsandtheEigenvalueDensity forp-GOE:2(Δ=0) . . . . . . . . . . . . . . . . . . . . 57 3.5.3 EigenvalueDensityforGOE-CRME . . . . . . . . . . . 59 3.6 FurtherExtensionsandApplicationsofRMT . . . . . . . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 EmbeddedGOEforSpinlessFermionSystems:EGOE(2)and EGOE(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 EGOE(2)andEGOE(k)Ensembles:DefinitionandConstruction 69 4.2 EigenvalueDensity:GaussianForm . . . . . . . . . . . . . . . . 71 4.2.1 BasicResultsfromBinaryCorrelationApproximation . . 71 4.2.2 DiluteLimitFormulasfortheFourthandSixthOrder MomentsandCumulants . . . . . . . . . . . . . . . . . 77 4.3 Average-FluctuationSeparationandLower-OrderMoments oftheTwo-PointFunction . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 LevelMotioninEmbeddedEnsembles . . . . . . . . . . 80 4.3.2 S2 inBinaryCorrelationApproximation . . . . . . . . . 81 ζ 4.3.3 Average-FluctuationsSeparationintheSpectraofDilute FermionSystems:ResultsforEGOE(1)andEGOE(2) . . 82 4.3.4 Lower-OrderMomentsoftheTwo-PointFunctionand CrossCorrelationsinEGOE. . . . . . . . . . . . . . . . 84 4.4 TransitionStrengthDensity:BivariateGaussianForm . . . . . . 85 4.5 StrengthSumsandExpectationValues:RatioofGaussians . . . 95 4.6 LevelFluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Random Two-Body Interactions in Presence of Mean-Field: EGOE(1+2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.1 EGOE(1+2):DefinitionandConstruction . . . . . . . . . . . . 101 5.2 UnitaryDecompositionandTracePropagation . . . . . . . . . . 102 5.2.1 UnitaryorU(N)DecompositionoftheHamiltonian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 102