ebook img

Elliptic–Hyperbolic Partial Differential Equations: A Mini-Course in Geometric and Quasilinear Methods PDF

134 Pages·2015·2.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elliptic–Hyperbolic Partial Differential Equations: A Mini-Course in Geometric and Quasilinear Methods

SPRINGER BRIEFS IN MATHEMATICS Thomas H. Otway Elliptic–Hyperbolic Partial Differential Equations A Mini-Course in Geometric and Quasilinear Methods 123 SpringerBriefs in Mathematics Series editors Nicola Bellomo, Torino, Italy Michele Benzi, Atlanta, USA Palle E.T. Jorgensen, Iowa City, USA Tatsien Li, Shanghai, China Roderick Melnik, Waterloo, Canada Otmar Scherzer, Vienna, Austria Benjamin Steinberg, New York, USA Lothar Reichel, Kent, USA Yuri Tschinkel, New York, USA G. George Yin, Detroit, USA Ping Zhang, Kalamazoo, USA SpringerBriefsinMathematicsshowcasesexpositionsinallareasofmathematics andappliedmathematics.Manuscriptspresentingnewresultsorasinglenewresultin aclassicalfield,newfield,oranemergingtopic,applications,orbridgesbetweennew results and already published works, are encouraged. The series is intended for mathematiciansandappliedmathematicians. More information about this series at http://www.springer.com/series/10030 Thomas H. Otway – Elliptic Hyperbolic Partial Differential Equations A Mini-Course in Geometric and Quasilinear Methods 123 ThomasH.Otway Department ofMathematical Sciences Yeshiva University NewYork,NY USA ISSN 2191-8198 ISSN 2191-8201 (electronic) SpringerBriefs inMathematics ISBN978-3-319-19760-9 ISBN978-3-319-19761-6 (eBook) DOI 10.1007/978-3-319-19761-6 LibraryofCongressControlNumber:2015941130 MathematicalSubjectClassification:35M10,35M12,35M30,35M32 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor(s)2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Nature of the Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 What Has Been Left Out?. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization of the Course. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Overview of Elliptic–Hyperbolic PDE . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Remarks on Equation Type. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 A Zoo of Elliptic–Hyperbolic Equations. . . . . . . . . . . . . . . . . . 12 2.3 A Simple Elliptic–Hyperbolic System. . . . . . . . . . . . . . . . . . . . 14 2.3.1 Boussinesq Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 A Quasilinear Elliptic–Hyperbolic Equation Having Multiple Sonic Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Surfaces of Prescribed Gauss Curvature . . . . . . . . . . . . . 19 2.5 Local Canonical Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.1 Why Do Equations of Keldysh Type Have Weaker Regularity?. . . . . . . . . . . . . . . . . . . . . . . 22 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Hodograph and Partial Hodograph Methods . . . . . . . . . . . . . . . . . 31 3.1 The Hodograph and Legendre Transformations . . . . . . . . . . . . . 31 3.2 The Steady Transonic Small-Disturbance Equation. . . . . . . . . . . 33 3.2.1 Explicit Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 The Busemann Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 The Hodograph Image of the Compressible Flow Equations Acquires the Geometry of the Projective Disc. . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.2 Transformation to the Lavrent’ev–Bitsadze Equation . . . . 40 3.3.3 Quasilinear Equations in the Hodograph Plane . . . . . . . . 41 v vi Contents 3.4 An Alternative: Explicit Solutions for a Class of Quasilinear Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Free Boundary Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6 A Partial Hodograph Method for a Nonlinear Lavrent’ev–Bitsadze Equation. . . . . . . . . . . . . . . . . . . . . . . . . 48 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 A Quasilinear Tricomi Problem. . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Ingredients of the Proof . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 Remarks on Generalizations . . . . . . . . . . . . . . . . . . . . . 59 4.1.3 Remarks on Lavrent’ev–Bitsadze Equations . . . . . . . . . . 62 4.2 Examples of Curvature in the Sonic Line . . . . . . . . . . . . . . . . . 63 4.2.1 A Physical Model Having a Parabolic Sonic Line: Plasma Heating. . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.2 A Geometric Model Having a Parabolic Sonic Line: Isometric Embedding . . . . . . . . . . . . . . . . . 65 4.3 A Mixed Dirichlet–Neumann Problem . . . . . . . . . . . . . . . . . . . 66 4.3.1 Function-Space Methods. . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.2 Weak Solutions in Weighted Function Spaces. . . . . . . . . 67 4.3.3 The Existence of Solutions. . . . . . . . . . . . . . . . . . . . . . 68 4.3.4 A Variational Formulation . . . . . . . . . . . . . . . . . . . . . . 73 4.4 The Chaplygin Gas Equation. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.1 Geometric Interpretation. . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.2 Physical Interpretation, and Elliptic–Hyperbolic Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.3 The Existence of Solutions. . . . . . . . . . . . . . . . . . . . . . 77 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Bäcklund Transformations and Hodge-Theoretic Methods . . . . . . . 81 5.1 Auto-Bäcklund Transformations. . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 An Application to Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 How to Produce Bäcklund Transformations by Hodge Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 A Hierarchy of Variational Problems . . . . . . . . . . . . . . . . . . . . 87 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Natural Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.1 Introduction to the Isometric Embedding Problem . . . . . . . . . . . 93 6.2 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.1 An Informal Discussion of the Hard Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.2 Immersion Versus Embedding. . . . . . . . . . . . . . . . . . . . 103 Contents vii 6.3 Quasilinearization of the Isometric Embedding Problem I: Changes of Variable. . . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Quasilinearization of the Isometric Embedding Problem II: A Fluid Dynamics Analogy . . . . . . . . . . . . . . . . . . 105 6.5 Energy Condensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.5.1 Thin Shells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.6 Natural Focusing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Appendix A: Informal Review of Differential Forms. . . . . . . . . . . . . . 121 Chapter 1 Introduction Abstract Thepurposeandstructureofthecoursearediscussedinthisintroductory chapter. Elliptic–hyperbolic equations are defined, and some examples given. The expectedbackgroundofthereaderisexplained,asistherelationofthistexttothe setofICMSworkshoplecturesthatledtoit.Abriefdiscussionisgivenoftopicsthat hadtobeexcludedfromthecourse.Theorganizationoftopicsisoutlined. Keywords Elliptic–hyperbolicequation The main concern of this treatment is to be brief. When encountering a new field, readerstendtobelessinterestedinlearningallthedetailsoftheproofsthaninfinding out,initially,whatthemaincontributionsoftheresearchfieldarelikelytobe.This shortsetofnotes,expandingamini-courseinanICMS workshop,isintendedasa roadmaptotheemergingfieldofelliptic–hyperbolicgeometricanalysis. 1.1 NatureoftheCourse Elliptic–hyperbolicequationsarepartialdifferentialequations,definedonadomain Ω =Ω+∪Ω−∪Ω ,whichareofelliptictypeonthesubdomainΩ+,ofhyperbolic 0 typeonthedisjointsubdomainΩ−,andofparabolictypeonasmoothsubmanifold Ω whichisasharedboundarybetweenthesubdomainsΩ+andΩ−butwhichlies 0 inneither.Asimpleexampleisanequationhavingtheform K (x,y)u +u =0, (1.1) xx yy where the type-change function K (x,y) is positive in Ω+, negative in Ω−, and identicallyzeroonthecurveΩ .NoticethatifK (x,y)=1,thenEq.(1.1)reduces 0 totheLaplaceequation,whichisofelliptictype,whereasifK (x,y) = −1,then (1.1)reducestothewaveequation,whichisofhyperbolictype.Thusanexampleof atype-changefunctionis[27] ©TheAuthor(s)2015 1 T.H.Otway,Elliptic–HyperbolicPartialDifferentialEquations, SpringerBriefsinMathematics,DOI10.1007/978-3-319-19761-6_1 2 1 Introduction Fig.1.1 Theregionsof ellipticityΩ+,parabolicity Ω0,andhyperbolicityΩ− fortheequation sgn[y]uxx+uyy =0 K (x,y)=sgn[y]; (1.2) seeFig.1.1. Elliptic–hyperbolic equations describe, for example, the dynamics of plasmas subjectedtosmall-amplitudeelectromagneticwaveshavingsufficientlylargephase velocities in comparison to thermal velocities in the plasma; the behavior of light near a caustic; extremal surfaces in the space of special relativity; the formation of rapids; transonic and multiphase fluid flow; the dynamics of certain models for elasticstructures;theshapeofindustrialsurfacessuchaswindshieldsandairfoils; pathologiesoftrafficflow;andharmonicfieldsinextendedprojectivespace.They alsoariseinmodelsfortheearlyuniverse,forcosmicacceleration,andforpossible violationofcausalityintheinteriorsofcertaincompactstars.Withinthepast25years, theyhavebecomecentraltotheisometricembeddingofRiemannianmanifoldsand theprescriptionofGausscurvatureforsurfaces,topicsinpuremathematicswhich themselveshaveimportantapplications.Referencestotheseandotherapplications ofelliptic–hyperbolicequationsaregiveninSect.2.2. Nevertheless,theexpositorymathematicalliteratureonequationsofthiskindis unaccountablysparse.Thereareseveralmonographswhicharemanydecadesold— see, e.g., [2, 45], or [49]. There is a large expository literature on the very special case of elliptic–hyperbolic equations which arise in transonic fluid dynamics, and in particular, the theory of shock waves—see, e.g., [4, 5, 16, 47, 53], and a host of other works cited in those references and in [3]. And there are a number of classictextswhicharebothmanydecadesoldandconsideronlythetransonicspecial case—see, e.g., [1] and [14]. Han and Hong produced an influential review of the isometricembeddingproblem[21];but,partlyasaresultofthatreviewandofthe contributionsofitsauthors,therehasbeenmuchsignificantworkontheisometric embedding problem since the publication of [21] in 2006. Finally, leaders in the fieldhaveoccasionallycontributedbriefexpositorynotesontheirwork,c.f.[41,44, 46];these,whileofgreatuse,arebynomeansequivalenttoaformaltreatmentina monograph.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.