ebook img

Eliminating Adverse Control Plane Interactions in PDF

129 Pages·2017·8.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eliminating Adverse Control Plane Interactions in

Eliminating Adverse Control Plane Interactions in Independent Network Systems Matthew K. Mukerjee May 2018 CMU-CS-18-106 ComputerScienceDepartment SchoolofComputerScience CarnegieMellonUniversity Pittsburgh,PA ThesisCommittee: SrinivasanSeshan,Chair VyasSekar PeterSteenkiste BruceMaggs(Duke;Akamai) Submittedinpartialfulfillmentoftherequirements forthedegreeofDoctorofPhilosophy. Copyright©2018MatthewK.Mukerjee. ThisworkwassupportedbytheNationalScienceFoundationundergrantsnumberedCNS-1040801,CNS-1314721,CNS-1345305,andCNS-1565343. Theviewsandconclusionscontainedinthisdocumentarethoseoftheauthorandshouldnotbeinterpretedasrepresentingtheofficialpolicies, eitherexpressedorimplied,ofanysponsoringinstitution,theU.S.government,oranyotherentity. Keywords: networks,controlplane,splitcontrol,controlcompetition,informationsharing, interfaces, reconfigurable datacenters, datacenter optics, content brokering, CDNs, live video delivery ToSophie forputtingupwith thislong,crazyride. iv Abstract Networksystemoperationistypicallydividedintocontrolanddataplanes—while thedataplaneisresponsibleforprocessingindividualmessagesorpackets,thecontrol planecomputestheconfigurationofdevicesandoptimizessystem-wideperformance. Unfortunately,thecontrolplaneofeachnetworksystemorprotocollayertypically operatesindependently(e.g.,CDNsselectingserverswithoutcoordinatingwithISPs), resultinginpoorinteractionsbetweencontrolplanesacrosssystems.Wecancategorize existingsystemsintooneoffourgeneralcontrolplanecoordinationmechanismsthat overcometheseproblems,basedonhowmuchinformationcanbesharedbetween controlplanes. Ifnoinformationcanbeshared,controlplanessimplyreacttodata planechangesasarudimentaryformofcoordination(e.g.,CDNserverselection+ISP trafficengineering).Ifallinformationcanbeshared,transparencyindecisionmaking can remove most poor interactions (e.g., Coflow datacenter flow scheduling). In manyscenarios,however,onlysomeinformationcanbeshared(e.g.,betweencontrol planes running in different companies). Coordination in these scenarios is more specialized;controlplaneswithseparatedataplaneresourcescanusepriorityranking (i.e.,providingalistofpreferencesforresourceswithoutneedingtoshowhowthese preferencesweredecided;e.g.,BGProutingbetweenISPs),andcontrolplaneswith shared data plane resources can use hierarchicalpartitioning (i.e., making coarse- graineddecisionsglobally,andfine-graineddecisionslocally;e.g.,internet-wideBGP +OSPFrouting). Whilesystemsutilizingcontrolplanecoordinationexisttoday,they havebeendesignedadhoc. Weproposeasetofrecipesthatshowwhenit’sappropriate to use different coordination mechanisms, based on key properties (information sharingandsharedresources)invariedscenarios(layering,administrativeseparation, andinternet-scalesystems). Weusetheserecipestoguidesystemdesigninavarietyofcontexts,asacasestudy incontrolplanecoordination. First,manysystemsuselayerseparationformodularity, butindoingsotradeperformanceforgenerality. Aslayeredsystemshavenoinfor- mationsharingconstraints,wearguethattransparency(i.e.,cross-layeroptimization; allowinglayerstorunspecializedcodetobetteruseotherlayers)isthecorrecttech- niqueforregainingperformance. WeexplorethiswithouremulatorEtalon[116],in thecontextofreconfigurabledatacenters. Second,somesystemsareadministratively separate(i.e.,aresplitacrossdifferentcompanies),limitinginformationsharingfor business reasons. These systems may overcome adverse interactions using priority ranking. We explore this with VDX [114, 115], in the context of content brokering. Finally,systemsneedinginternetscalabilityareincreasinglycombiningaslowcentral- izedcontrolplanewithafastdistributedcontrolplane. Completeinformationsharing (andthus,transparency)wouldappearpossible,buttimescaleseparationmakesthis fundamentallyimpractical. Instead,hierarchicalpartitioningcanovercomethechal- lengespresentinthisscenario. WeexplorethiswithVDN[117],inthecontextoflive videodelivery. Throughthiscasestudywefindthatthesecoordinationmechanism notonlysolveavarietyofproblems,butcanbeefficientlyimplemented. vi Acknowledgments FirstandforemostIwouldliketothankmygirlfriendSophieforalwaysencourag- ingmetopushforwardonwhatIwanttoworkonandprovidinginfiniteemotional support. Iwouldalsoliketothankmyfamily(Mom,Dad,Amanda,andAustin)for theirloveandemotionalsupport. Iwouldliketothankmyadvisor,SriniSeshan,forsevenyearsoffuntacklinga largevarietyofinterestingproblems,aswellasgivingmetheneededencouragement tokeepsubmittingpapersuntiltheygetin. Iwouldalsoliketothankthefacultyon mycommittee(PeterSteenkiste,VyasSekar,andBruceMaggs)forallthehelpand feedbackthatwentintothisdissertation,aswellasfuncollaborationsthroughoutthe years. I’dliketothankmyundergradandmastersadvisors,AndrewCampbell,Tanzeem Choudhury,andDanielFreedman,forpushingmetowardsresearchandeventuallya PhD. I’dliketothankmymentorsatGoogle, BenGreenstein, MikePiatek,andMatt Welsh,forafunSummerinternship. I’dliketothanktheresearchandsupportstaffinCSDandXIA,DebCavlovich, Angie Miller, Kathy McNiff, Jenn Landefeld, Angy Malloy, Dan Barrett, and Nitin Gupta, for making sure everything just works and minimizing a lot of the pain of gettingaPhD. I would like to thank all my friends, collaborators, and mentors: David Naylor, NicoFeltman,LiliEhrlich,SusuandRayKanemoto,EvanShimizu,AlexLloydand Dana Daugherty, Lauren and Logan Plath, Ravi Choudhuri, Elizabeth, Matt, and ArgusGriffin,KrisSalada,MitchCairns,andMichaelaNachtigall,YuZhao,Lindsey andVinceSlaugh,BrianRussman,RichardWangandYvonneYu,YuchenWu,Alex Poms, John Wright, Hyeontaek Lim, David Witmer, Junchen Jiang, Bruno Vavala, YingJungChen,EunjinLee,NadiBozkurt,ConglongLi,DevdeepRay,RanyshaWare, AthulaBalachandran,GeorgeNychis,WolfRichter,RajaSambasivan,DongsuHan, JustineSherry,HuiZhang,DaveAndersen,MichaelKaminsky,GeorgePorter,Alex Snoeren, other people working under XIA, and the CMU systems seminar folks. I apologizeifIforgotanyone. Finally,I’dliketothanktheanonymousreviewersforSIGCOMM,NSDI,CoNEXT, andHotNetsfortheirfeedbackondraftsoftheincludedwork. The work presented in this dissertation is based on work in submission to SIGCOMM 2018 [116], appearing in CoNEXT 2017 [115], HotNets 2016 [114], and SIGCOMM 2015 [117], and builds on work appearing in CoNEXT 2015 [98] and ANCS2017 [95]. viii Contents 1 Introduction 1 1.1 CoordinationMechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Understandingdesignsforsplitcontrolplanesystems . . . . . . . . . . . . . . . . . 8 1.2.1 Salientfeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.3 DesignSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 CommonScenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Recipesforcontrolplanecoordination . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 ControlPlanesinDifferentLayers: ACaseStudyinReconfigurableDatacenters 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 NetworkModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 ComputingSchedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.3 ScheduleExecution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Etalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 SoftwareSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.3 TimeDilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.4 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Overcomingrapidbandwidthfluctuationwithdynamicbufferresizing . . . . . . 27 2.4.1 Understandingtheproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.2 Dynamicbufferresizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.4 Incorporatingexplicitnetworkfeedback . . . . . . . . . . . . . . . . . . . . 31 2.4.5 Delaysensitivityanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 OvercomingpoordemandestimationwithADUs . . . . . . . . . . . . . . . . . . . 32 2.5.1 Understandingproblemswithdemandestimation . . . . . . . . . . . . . . 32 ix 2.5.2 UsingADUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.4 Cumulativeresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Overcomingdifficult-to-scheduleworkloadswith application-specificchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.1 HDFSwriteplacementdifficultiesandsolutions . . . . . . . . . . . . . . . 37 2.6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Relatedwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 ControlPlanesinDifferentBusinesses: ACaseStudyinContentBrokering 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 ContentDelivery: ThePastandthePresent . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1 TraditionalContentDelivery . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 BrokersandDeliveryToday . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 PotentialProblemsandOpportunities . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.1 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2 PotentialProblemsforaCDN . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.3 PotentialProblemsforaBroker . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 ExploringtheDesignSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 GeneralizingDesigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.2 DesignSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 NarrowingtheDesignSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 SimulationOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 VDXinDetail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 DecisionProtocolDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6.3 ChallengesandLimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7 EvaluatingaMarketplaceDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.1 DataDriven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7.3 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.9 Relatedwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 ControlPlanesinInternet-ScaleSystems: ACaseStudyinLiveVideo 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.2 Designgoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.3 Caseforcentralizedoptimization . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.4 Caseforhybridcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 x

Description:
one end of the spectrum, the World Cup (a professionally-produced live video mega-event) Rajkumar Buyya, Mukaddim Pathan, and Athena Vakali. Content delivery us/about/ac79/docs/sp/CDN-Federation_Phase-2-Pilot.pdf}.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.