ebook img

Elements of the Representation Theory of the Jacobi Group PDF

224 Pages·1998·2.108 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elements of the Representation Theory of the Jacobi Group

Modern Birkha¨user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkha¨user in recent decades have beengroundbreakingandhavecometoberegardedasfoundationalto thesubject.ThroughtheMBCSeries,aselectnumberofthesemodern classics,entirelyuncorrected,arebeingre-releasedinpaperback(and as eBooks) to ensure that these treasures remain accessible to new generations ofstudents,scholars,andresearchers. Rolf Berndt Ralf Schmidt Elements of the Representation Theory of the Jacobi Group Reprint of the 1998 Edition Rolf Berndt Ralf Schmidt Department Mathematik Department of Mathematics Universität Hamburg University of Oklahoma Bundesstr. 55 Norman, OK 73019-3103 20146 Hamburg USA Germany ISBN978-3-0348-0282-6 e-ISBN978-3-0348-0283-3 DOI10.1007/978-3-0348-0283-3 Springer Basel Dordrecht Heidelberg London New York Library of Congress Control Number: 2011941499 MathematicsSubjectClassification (2010): 11F55, 11F50, 11F70, 14K25, 22E50, 22E55 © Springer Basel AG 1998 Reprint of the 1st edition 1998 by Birkhäuser Verlag, Switzerland Originally published as volume 163 in the Progress in Mathematics series This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use, permission of the copyright ownermustbeobtained. Printedonacid-freepaper Springer Basel AG is part of Springer Science+Business Media (www.birkhauser-science.com) AuffallenderWeisehateinesowichtigeFunctionnoch keinen andern Namen, als den der Transcendente Θ, nachderzufa¨lligenBezeichnung,mitdersiezuerstbei Jacobi erscheint,unddieMathematikerwu¨rdennur eine Pflicht der Dankbarkeit erfu¨llen, wenn sie sich vereinigten ihr Jacobis Namen beizulegen, um das AndenkendesMannes zuehren, zudessen sch¨onsten Entdeckungen es geh¨ort, die innere Natur und hohe Bedeutung dieser Transcendente zuerst erkannt zu haben. from: L. Dirichlet: Geda¨chtnisrede aufC.G.J. Jacobi Preface The Jacobigroupis a semidirectproduct of a symplectic groupwith a Heisen- berg group. Its importance prima facie stems from the fact that it sets the frame to treat theta functions and elliptic and abelian functions. Up to now, mostworkconcerningthisgrouphasbeendoneforthesimplestcase“ofdegree one”,wherethesymplecticgroupissimplySL(2)andtheHeisenberggroupisa threeparameternilpotentgroup. TheJacobigroup,whosetheoryisintensively interwoven with that of the metaplectic group, is, together with the Heisen- berg group, the most evident example for a non-reductive group. This treatise is meant to show how the general theory of automorphic forms for reductive groups extends by some slight alterations to this first more general example. The reader will see that a lot of the following may easily be extended to the higher degree case of a semidirect product of a symplectic group Sp(n) with a corresponding Heisenberg group. We were tempted to do this, but as the generalizations are sometimes fairly easy on the one hand, and as the degree- one case has special features, e.g. concerning the cusp conditions, on the other hand, we restrict ourselves to this case, denoted GJ, here. v Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 The Jacobi Group 1.1 Definition of GJ . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 GJ as an algebraic group . . . . . . . . . . . . . . . . . . . . . 3 1.3 The Lie algebra of GJ . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 GJ over the reals . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Basic Representation Theory of the Jacobi Group 2.1 Induced representations . . . . . . . . . . . . . . . . . . . . . . 15 2.2 The Schro¨dinger representation . . . . . . . . . . . . . . . . . . 18 2.3 Mackey’s method for semidirect products . . . . . . . . . . . . 21 2.4 Representations of GJ with trivial central character . . . . . . 22 2.5 The Schro¨dinger-Weil representation . . . . . . . . . . . . . . . 24 2.6 Representations of GJ with non-trivial central character . . . . 28 3 Local Representations: The Real Case 3.1 Representations of gJ . . . . . . . . . . . . . . . . . . . . . . . 32 C 3.2 Models for infinitesimal representations and unitarizability. . . 39 3.3 Representations induced from BJ . . . . . . . . . . . . . . . . . 48 3.4 Representations induced from KJ and the automorphic factor . 51 3.5 Differential operators on X=H×C . . . . . . . . . . . . . . . 59 3.6 Representations induced from NˆJ and Whittaker models. . . . 63 4 The Space L2(ΓJ\GJ(R)) and its Decomposition 4.1 Jacobi forms and more general automorphic forms . . . . . . . 76 4.2 The cusp condition for GJ(R) . . . . . . . . . . . . . . . . . . . 83 4.3 The discrete part and the duality theorem . . . . . . . . . . . . 88 4.4 The continuous part . . . . . . . . . . . . . . . . . . . . . . . . 94 vii viii Contents 5 Local Representations: The p-adic Case 5.1 Smooth and admissible representations . . . . . . . . . . . . . . 105 5.2 Whittaker models for the Schro¨dinger-Weil representation . . . 107 5.3 Representations of the metaplectic group. . . . . . . . . . . . . 112 5.4 Induced representations . . . . . . . . . . . . . . . . . . . . . . 115 5.5 Supercuspidal representations . . . . . . . . . . . . . . . . . . . 119 5.6 Intertwining operators . . . . . . . . . . . . . . . . . . . . . . . 121 5.7 Whittaker models. . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.8 Summary and Classification . . . . . . . . . . . . . . . . . . . . 132 5.9 Unitary representations . . . . . . . . . . . . . . . . . . . . . . 135 6 Spherical Representations 6.1 The Hecke algebra of the Jacobi group . . . . . . . . . . . . . . 138 6.2 Structure of the Hecke algebra in the good case . . . . . . . . . 140 6.3 Spherical representations in the good case . . . . . . . . . . . . 148 6.4 Spherical Whittaker functions . . . . . . . . . . . . . . . . . . . 153 6.5 Local factors and the spherical dual . . . . . . . . . . . . . . . 163 6.6 The Eichler-Zagieroperators . . . . . . . . . . . . . . . . . . . 167 7 Global Considerations 7.1 Adelization of GJ . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 The global Schro¨dinger-Weilrepresentation . . . . . . . . . . . 176 7.3 Automorphic representations . . . . . . . . . . . . . . . . . . . 179 7.4 Lifting of Jacobi forms . . . . . . . . . . . . . . . . . . . . . . . 183 7.5 The representation corresponding to a Jacobi form . . . . . . . 193 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Index of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Introduction AfterPyatetski-Shapiro[PS1]andSatake[Sa1]introduced,independentofone another, an early form of the Jacobi Theory in 1969 (while not naming it as such), this theory was given a definite push by the book The Theory of Jacobi Forms by Eichler and Zagier in 1985. Now, there are some overview articles describingthedevelopmentsinthetheoryoftheJacobigroupanditsautomor- phicforms,forinstancebySkoruppa[Sk2],Berndt[Be5]andKohnen[Ko]. We refertotheseformorehistoricaldetailsandmanymorenamesofauthorsactive inthistheory,whichstretchesnowfromnumbertheoryandalgebraicgeometry totheoreticalphysics. Butletusonlybrieflyindicateseveral–sometimesvery closely related – topics touched by Jacobi theory as we see it: • fieldsofmeromorphicandrationalfunctionsontheuniversalellipticcurve resp. universal abelian variety • structure and projective embeddings of certain algebraic varieties and homogeneous spaces • correspondences between different kinds of modular forms • L-functions associated to different kinds of modular forms and automor- phic representations • induced representations • invariant differential operators • structure of Hecke algebras • determination of generalized Kac-Moody algebras and as a final goal related to the here first mentioned • mixed Shimura varieties and mixed motives. Now, letting completely aside the arithmetical and algebraic geometrical ap- proach to Jacobi forms developed and instrumentalized by Kramer [Kr], we ix x Introduction will treat here a certain representation theoretic point of view for the Jacobi theory parallel to the theory of Jacquet-Langlands [JL] for GL(2) as reported by Godement [Go2], Gelbart [Ge1] and, recently, Bump [Bu]. Our text assem- bles and regroups material from several papers mainly on the real theory by the first-namedauthor,andbythe second-namedauthorsomedefinite amelio- rations and additions to the non-archimedean and adelic theory contained in the thesis of Homrighausen [Ho]. More precisely, our aim is • to give a classificationof the irreducible unitary representations π of the Jacobi group GJ over local fields, • to construct explicit models for these representations, in particular the Whittaker models, • to discuss the relation between automorphic forms for GJ, i.e. the holo- morphicJacobiforms,theirskewholomorphiccounterparts(firststudied by Skoruppa) and possible generalizations, and the automorphic repre- sentations of GJ, and • topreparethegroundforafurtherdiscussionofautomorphicL-functions. To reach these aims, we pursue the following plan. InthefirstchapterwepresenttheJacobigroupGJ insomedifferentrealizations and determine its Lie algebragJ. This gives some ideas about the structure of our non-reductive GJ, and indicates in particular the important subgroups of GJ one should look at. We take a closer look at the real points GJ(R) of GJ, where we find a sort of generalized Iwasawa decomposition GJ = NJAJKJ. Here NJ is a substitute for the unipotent radical of a maximal parabolic sub- group in the reductive theory. It is characterizedas the closed connected sub- group of GJ whose Lie algebra is the sum of positive root spaces. In chapter two a method of Mackey will lead us to the fundamental principle in the representation theory of GJ, which reads in our language: π (cid:3)π˜⊗πm SW HereπisarepresentationofGJ,π˜isagenuinerepresentationofthemetaplectic groupMp,andπm isacertainprojectivestandardrepresentationofGJ,called SW the Schro¨dinger-Weil representation. The meaning of the above equation is that there is a 1-1 correspondence (cid:2) (cid:3) (cid:4) (cid:5) Irreducible representations Irreducible, genuine re- ofGJ withfixednon-trivial ←→ . presentations of Mp central character One of our objectives in the later chapters is to make the above isomorphism explicit, thereby showing that this bijection is canonical.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.