ebook img

Elements of Quantum Optics PDF

495 Pages·1990·17.339 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elements of Quantum Optics

Elements ofQ uantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics With 113 Figures Springer-Verlag Berlin Heidelberg GmbH Professor Dr. Dr. Rer. Nat. Habit. Pierre Meystre Professor Murray Sargent III, Ph. D. Optical Sciences Center, University of Arizona, Thcson, AZ 85721, USA ISBN 978-3-662-07009-3 ISBN 978-3-662-07007-9 (eBook) DOI 10.1007/978-3-662-07007-9 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions ofth e German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. C Springer-Verlag Berlin Heidelberg 1990 Originally published by Springer· Verlag Berlin Heidelberg New York in 1990 Softcover reprint of the hardcover 1st edition 1990 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a spe· cific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. This text was prepared using the PS™ Technical Word Processor 2154/3150-543210-Printed on acid-free paper To Renee and Pierre-Andre Helga, Nicole, and Tina Preface This book grew out of a 2-semester graduate course in laser physics and quantum optics. It requires a solid understanding of elementary electro magnetism as well as at least one, but preferably two, semesters of quan tum mechanics. Its present form resulted from many years of teaching and research at the Max-Planck-Institut fi.ir Quantenoptik, the University of Munich, and the University of Arizona. The contents have evolved signi ficantly over the years, due to the fact that quantum optics is a rapidly changing field. Because the amount of material that can be covered in two semesters is finite, a number of topics had to be left out or shortened when new material was added. Important omissions include the manipulation of atomic trajectories by light, superradiance, and descriptions of experiments. Rather than treating any given topic in great depth, this book aims to give a broad coverage of the basic elements that we consider necessary to carry out research in quantum optics. We have attempted to present a var iety of theoretical tools, so that after completion of the course students should be able to understand specialized research literature and to produce original research of their own. In doing so, we have always sacrificed rigor to physical insight and have used the concept of "simplest nontrivial example" to illustrate techniques or results that can be generalized to more complicated situations. In the same spirit, we have not attempted to give exhaustive lists of references, but rather have limited ourselves to those papers and books that we found particularly useful. The book is divided into three parts. Chapters 1 through 3 review var ious aspects of electromagnetic theory and of quantum mechanics. The material of these chapters, and specially Chaps. 1 and 3, represents the minimum knowledge required to follow the rest of the course. Chapter 2 introduces many nonlinear optics phenomena by using a classical nonlinear oscillator model, and is usefully referred to in later chapters. Depending on the level at which the course is taught, one can skip Chaps. 1 through 3 totally or, at the other extreme, give them considerable emphasis. Chapters 4 through 11 treat semi-classical light-matter interactions. They contain more material than we have typically been able to teach in a one-semester course. Especially if much time is spent on the Chaps. 1 - 3, viii PREFACE some of Chaps. 4 - 11 must be skipped. However, Chap. 4 on the density matrix, Chap. 5 on the interaction between matter and cw fields, Chap. 6 on semi-classical laser theory, and to some extent Chap. 8 on nonlinear spectroscopy are central to the book and cannot be ignored. In contrast one could omit Chap. 7 on optical bistability, Chap. 9 on phase conjuga tion, Chap. 10 on optical instabilities, or Chap. 11 on coherent transients. Chapters 12 through 17 discuss aspects of light-matter interaction that require the quantization of the electromagnetic field. They are tightly knit together and it is difficult to imagine skipping one of them in a one-sem ester course. Chapter 12 draws an analogy between electromagnetic field modes and harmonic oscillators to quantize the field in a simple way. Chapter 13 discusses simple aspects of the interaction between a single mode of the field and a two-level atom. Chapter 14 on reservoir theory is essential for the discussion of resonance fluorescence (Chap. 15) and squeezing (Chap. 16). These chapters are strongly connected to the nonli near spectroscopy discussion of Chap. 8. In resonance fluorescence and in squeezing the quantum nature of the field appears mostly in the form of noise. We conclude in Chap. 17 by giving elements of the quantum theory of the laser, which requires a proper treatment of quantum fields to all orders. In addition to being a textbook, this book contains many important formulas in quantum optics that are not found elsewhere except in the ori ginal literature or in specialized monographs. As such, and certainly for our own research, this book is a very valuable reference. One particularly gratifying feature of the book is that it reveals the close connection between many seemingly unrelated or only distantly related topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluo rescence, and squeezing. We are also indebted to the many people who have made important contributions to this book: they include first of all our students, who had to suffer through several not-so-debugged versions of the book and have helped with their corrections and suggestions. Special thanks to S. An, B. Capron, T. Carty, P. Dobiasch, J. Grantham, A. Guzman, D. Holm, J. Lehan, R. Morgan, M. Pereira, G. Reiner, E. Schumacher, J. Watanabe, and M. Watson. We are also very grateful to many colleagues for their encouragements and suggestions. Herbert Walther deserves more thanks than anybody else: this book would not have been started or completed without his constant encouragement and support. Thanks are due espe cially to the late Fred Hopf as well as to J. H. Eberly, H. M. Gibbs, J. Jav anainen, S. W. Koch, W. E. Lamb, Jr., H. Pilloff, C. M. Savage, M. 0. Scully, D. F. Walls, K. Wodkiewicz, and E. M. Wright. We are also in debted to the Max-Planck-Institut fiir Quantenoptik and to the U.S. Office of Naval Research for direct or indirect financial support of this work. PREFACE ix The text and figures of this book were prepared and printed using the Scroll Systems PS™ Technical Word Processor. Tucson Pierre Meystre August 1989 Murray Sargent III Contents L Classical Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . 1 1-1. Maxwell's Equations in a Vacuum .................. 2 1-2. Maxwell's Equations in a Medium .................. 5 1-3. Linear Dipole Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 11 1-4. Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1-5. Free-Electron Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. Classical Nonlinear Optics . ....................... 41 2-1. Nonlinear Dipole Oscillator . . . . . . . . . . . . . . . . . . . . . . 41 2-2. Coupled-Mode Equations ....................... 45 2-3. Cubic Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2-4. Four-Wave Mixing with Degenerate Pump Frequencies .... 51 2-5. Nonlinear Susceptibilities . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Quantum Mechanical Background . . . . . . . . . . . . . . . . . . 60 3-1. Review of Quantum Mechanics ................... 61 3-2. Time-Dependent Perturbation Theory ............... 73 3-3. Atom-Field Interaction for Two-Level Atoms . . . . . . . . . . 82 3-4. Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4. Mixtures and the Density Operator. . . . . . . . . . . . . . . . . 101 4-1. Level Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4-2. The Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 106 4-3. Vector Model of Density Matrix . . . . . . . . . . . . . . . . . 117 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 xu CONTENTS 5. CW Field Interactions 129 5-1. Polarization of Two-Level Medium .............. . 129 5-2. lnhomogeneously Broadened Media .............. . 137 5-3. Counterpropagating Wave Interactions ............. . 143 5-4. Two-Photon Two-Level Model ................. . 148 5-5. Polarization of Semiconductor Gain Media .......... . 156 References ................................. . 164 Problems .................................. . 165 6. Introduction to Laser Theory . . . . . . . . . . . . . . . . . . . . . 169 6-1. The Laser Self -Consistency Equations . . . . . . . . . . . . . . 170 6-2. Steady-State Amplitude and Frequency . . . . . . . . . . . . . 173 6-3. Standing-Wave, Doppler-Broadened Lasers . . . . . . . . . . . 181 6-4. Two-Mode Operation and the Ring Laser . . . . . . . . . . . 188 6-5. Mode Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6-6. Single-Mode Semiconductor Laser Theory . . . . . . . . . . . 196 6-7. Transverse Variations and Gaussian Beams . . . . . . . . . . . 202 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7. Optical Bistability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 7-1. Simple Theory of Dispersive Optical Bistability . . . . . . . . 216 7-2. Absorptive Optical Bistability . . . . . . . . . . . . . . . . . . . 221 7-3. Ikeda Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 8. Saturation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 229 8-1. Probe-Wave Absorption Coefficient . . . . . . . . . . . . . . . 230 8-2. Coherent Dips and the Dynamic Stark Effect . . . . . . . . . 237 8-3. Inhomogeneously Broadened Media . . . . . . . . . . . . . . . 247 8-4. Three-Level Saturation Spectroscopy . . . . . . . . . . . . . . . 250 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 9. Three and Four Wave Mixing. . . . . . . . . . . . . . . . . . . . . 258 9-1. Phase Conjugation in Two-Level Media . . . . . . . . . . . . 259 9-2. Two-Level Coupled Mode Coefficients . . . . . . . . . . . . . 262 9-3. Modulation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 266 9-4. Nondegenerate Phase Conjugation by Four-Wave Mixing . . 270 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CONTENTS xiii 10. Time-Varying Phenomena in Cavities 274 10-1. Relaxation Oscillations in Lasers . . . . . . . . . . . . . . . . . 275 10-2. Stability of Single-Mode Laser Operation . . . . . . . . . . . 279 10-3. Multimode Mode Locking . . . . . . . . . . . . . . . . . . . . . 284 10-4. Single-Mode Laser and the Lorenz Model . . . . . . . . . . . 287 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 11. Coherent Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 11-1. Optical Nutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 11-2. Free Induction Decay . . . . . . . . . . . . . . . . . . . . . . . 296 11-3. Photon Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 11-4. Ramsey Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 11-5. Pulse Propagation and Area Theorem . . . . . . . . . . . . . . 302 11-6. Self-Induced Transparency . . . . . . . . . . . . . . . . . . . . 306 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 12. Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 12-1. Single-Mode Field Quantization . . . . . . . . . . . . . . . . . 312 12-2. Multimode Field Quantization . . . . . . . . . . . . . . . . . . 315 12-3. Single-Mode Field in Thermal Equilibrium . . . . . . . . . . 317 12-4. Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 12-5. Coherence of Quantum Fields . . . . . . . . . . . . . . . . . . 327 12-6. P(a) Representation . . . . . . . . . . . . . . . . . . . . . . . . . 330 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 13. Interaction Between Atoms and Quantized Fields . . . . . . 336 13-1. Dressed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 13-2. Jaynes-Cummings Model . . . . . . . . . . . . . . . . . . . . . 342 13-3. Spontaneous Emission in Free Space . . . . . . . . . . . . . . 347 13-4. Quantum Beats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 14. System-Reservoir Interactions. . . . . . . . . . . . . . . . . . . . 363 14-1. Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 14-2. Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . 376 14-3. Langevin Equations . . . . . . . . . . . . . . . . . . . . . . . . . 380 14-4. Quantum Regression Theorem and Noise Spectra . . . . . . 385 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.