UseR! Marius Hofert · Ivan Kojadinovic Martin Mächler · Jun Yan Elements of Copula Modeling with R Use R! Serieseditors RobertGentleman KurtHornik GiovanniParmigiani Moreinformationaboutthisseriesathttp://www.springer.com/series/6991 Marius Hofert • Ivan Kojadinovic (cid:129) ¨ Martin Machler (cid:129) Jun Yan Elements of Copula Modeling with R 123 MariusHofert IvanKojadinovic DepartmentofStatisticsandActuarial LaboratoryofMathematicsandits Science Applications UniversityofWaterloo UniversityofPauandPaysdel’Adour Waterloo,Ontario,Canada Pau,France MartinMa¨chler JunYan SeminarforStatistics DepartmentofStatistics ETHZurich UniversityofConnecticut Zurich,Switzerland Storrs,Connecticut,USA ISSN2197-5736 ISSN2197-5744 (electronic) UseR! ISBN978-3-319-89634-2 ISBN978-3-319-89635-9 (eBook) https://doi.org/10.1007/978-3-319-89635-9 LibraryofCongressControlNumber:2018940269 MathematicsSubjectClassification(2010):62H05,65C10,62H12,62H15,62P05,62P12,65C60 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To Saisai Nireemaztearieta haurrei,maitasunez To Liselotte,withthanksformanyhoursof waiting To Jiafeng,Bohan,andJolin,withlove Preface Theaimofthisbookistoshowhowsomeofthemainstepsinvolvedinthestatistical modelingofcontinuousmultivariatedistributionsusingcopulascanbecarriedout intheRstatisticalenvironment(RCoreTeam,2017)withtheRpackagecopula. The R package copula originally emerged from the authors’ research interests; it has been available on the Comprehensive R Archive Network (CRAN) since 2005 and has been under constant development ever since. Judging from users’ feedback,thepackageisappliedinareassuchashydrology,environmentalsciences, quantitativeriskmanagement,insurance,andfinance. Comparedto existingmonographsoncopulas,the originalityofthisbookis to illustrate how theoretical concepts can be applied in practice with the R package copula. To this end, numerousstand-alone examples are provided. This is both of pedagogical and of practical interest as the R source code and reproduced outputssuchasfiguresnotonlyallowonetobetterunderstandthesubtletiesofthe theoreticalnotionsbutalso enableonetosolvereal-worldproblemsinthevarious fieldsofinterest. Thebooktargets(possiblyfuture)statisticiansand(financial,hydrological,and other) engineers alike who would like to understand how theoretical notions and practical computations around copula modeling can be applied in R without an overwhelmingamountofmathematics.Readersarenonethelessexpectedtohavea basicknowledgeof(multivariate)probabilityandstatistics,inparticularofrandom vectors,simulationalgorithms,estimationmethods,andstatisticaltests. Althoughthebookaddressesmostofthepracticalissuesarisingwhenmodeling multivariatedatawithcopulas,itonlycoversamodestpartofthefield.Inparticular, important aspects such as dynamic copula models, vine copulas, and copula modelingfor censoredor discontinuousdata are notdealtwith. Thisis partly due toaselectionbias:ConceptsthatarenotimplementedintheRpackagecopulaat the time ofwritingare notpresentedin the book.Manyof these morespecialized notionsare,however,availablein other R packages.For an up-to-datedescription of the functionalities of other packages dealing with copulas, see, for example, the CRAN View “Distributions” available at https://cran.r-project.org/web/views/ Distributions.html. vii viii Preface AstheRstatisticalenvironment,andmostfreesoftware,theRpackagecopula comeswithnowarranty.Itisdistributedwiththehopethatitcanbeusefultoothers. Waterloo,ON,Canada MariusHofert Pau,France IvanKojadinovic Zürich,Switzerland MartinMächler Storrs,CT,USA JunYan November2017 Reference RCoreTeam.(2017).R:ALanguageandEnvironmentforStatisticalComputing.RFoundation forStatisticalComputing,Vienna,Austria.https://www.R-project.org. Contents 1 Introduction .................................................................. 1 1.1 AMotivatingExample.................................................. 1 1.2 ProbabilityandQuantileTransformations............................. 3 1.3 Copulas.................................................................. 5 1.4 StructureandPhilosophyoftheBook ................................. 6 1.5 AdditionalReading ..................................................... 7 References..................................................................... 8 2 Copulas........................................................................ 9 2.1 DefinitionandCharacterization........................................ 9 2.2 TheFréchet–HoeffdingBounds........................................ 18 2.3 Sklar’sTheorem......................................................... 22 2.4 TheInvariancePrinciple................................................ 35 2.5 SurvivalCopulasandCopulaSymmetries............................. 40 2.6 MeasuresofAssociation................................................ 45 2.6.1 FallaciesRelatedtotheCorrelationCoefficient............... 46 2.6.2 RankCorrelationMeasures .................................... 51 2.6.3 TailDependenceCoefficients.................................. 58 2.7 RosenblattTransformandConditionalSampling ..................... 68 References..................................................................... 77 3 ClassesandFamilies......................................................... 81 3.1 EllipticalDistributionsandCopulas ................................... 81 3.1.1 EllipticalDistributions.......................................... 82 3.1.2 EllipticalCopulas............................................... 85 3.2 ArchimedeanCopulas .................................................. 97 3.3 Extreme-ValueCopulas................................................. 112 3.4 SelectedCopulaTransformationsandConstructions ................. 117 3.4.1 RotatedCopulas ................................................ 117 3.4.2 Khoudraji’sDevice ............................................. 120 3.4.3 MixturesofCopulas............................................ 127 References..................................................................... 130 ix x Contents 4 Estimation .................................................................... 133 4.1 EstimationUnderaParametricAssumptionontheCopula........... 133 4.1.1 ParametricallyEstimatedMargins............................. 134 4.1.2 NonparametricallyEstimatedMargins ........................ 139 4.1.3 EstimatorsofEllipticalCopulaParameters ................... 148 4.1.4 OtherSemi-parametricEstimators............................. 152 4.1.5 EstimationofCopulaModelswithPartlyFixed Parameters....................................................... 153 4.2 NonparametricEstimationoftheCopula.............................. 157 4.2.1 TheEmpiricalCopula .......................................... 158 4.2.2 UnderExtreme-ValueDependence............................ 161 References..................................................................... 163 5 GraphicalDiagnostics,Tests,andModelSelection ...................... 167 5.1 BasicGraphicalDiagnostics............................................ 168 5.2 HypothesisTests ........................................................ 173 5.2.1 TestsofIndependence.......................................... 173 5.2.2 TestsofExchangeability ....................................... 176 5.2.3 ATestofRadialSymmetry .................................... 178 5.2.4 TestsofExtreme-ValueDependence .......................... 179 5.2.5 Goodness-of-FitTests .......................................... 181 5.2.6 AMixtureofGraphicalandFormalGoodness-of-Fit Tests............................................................. 188 5.3 ModelSelection......................................................... 191 References..................................................................... 195 6 Ties,TimeSeries,andRegression.......................................... 197 6.1 Ties ...................................................................... 198 6.2 SelectedCopulaTestsandModelsforTimeSeries ................... 216 6.2.1 TestsofStationarity............................................. 216 6.2.2 TestsofSerialIndependence................................... 226 6.2.3 Models for Multivariate Time Series Based on ConditionalCopulas............................................ 230 6.3 Regression............................................................... 238 References..................................................................... 252 A RandPackageVersions..................................................... 255 Index............................................................................... 259
Description: