ebook img

Elements of Classical and Quantum Physics PDF

391 Pages·2018·3.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elements of Classical and Quantum Physics

UNITEXT for Physics Michele Cini Elements of Classical and Quantum Physics UNITEXT for Physics Series editors Paolo Biscari, Milano, Italy Michele Cini, Roma, Italy Attilio Ferrari, Torino, Italy Stefano Forte, Milano, Italy Morten Hjorth-Jensen, Oslo, Norway Nicola Manini, Milano, Italy Guido Montagna, Pavia, Italy Oreste Nicrosini, Pavia, Italy Luca Peliti, Napoli, Italy Alberto Rotondi, Pavia, Italy UNITEXTforPhysicsseries,formerly UNITEXT CollanadiFisicae Astronomia, publishestextbooksandmonographsinPhysicsandAstronomy,mainlyinEnglish language, characterized of a didactic style and comprehensiveness. The books published in UNITEXT for Physics series are addressed to graduate and advanced graduate students, but also to scientists and researchers as important resources for their education, knowledge and teaching. More information about this series at http://www.springer.com/series/13351 Michele Cini Elements of Classical and Quantum Physics 123 Michele Cini Universitàdi RomaTor Vergata Rome Italy ISSN 2198-7882 ISSN 2198-7890 (electronic) UNITEXTfor Physics ISBN978-3-319-71329-8 ISBN978-3-319-71330-4 (eBook) https://doi.org/10.1007/978-3-319-71330-4 LibraryofCongressControlNumber:2017963983 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my wife Anna and to my son Massimo Preface This book originates out of many years of teaching different courses at the University of Roma Tor Vergata, although it includes so many applications for diversebranchesofPhysicsthatIhopethatmanyprofessionalphysicistswillfindit ofinterestaswell.Itcanserveasatextbookforsecond-andthird-yearstudentsof PhysicsandrelateddisciplinesthatrequirebeingintroducedtoTheoreticalPhysics at the level of the short degree. I develop all the mathematical methods, but the main focus is on the physical meaning of the formalisms. I tried to make the book funandinteresting bystimulatingthereader’scuriosityabout manymore physical effectsthanisusualintextbooks.Theserangefromthemeasurementofstellarradii to anyons, quantum pumping, entanglement, frame dragging, teleportation, black holes,superconductivityandmore.Physicsistheonlyscienceinwhichtheoryand experiment have comparable importance. Like in any other natural science, experiment discerns what is true and what is false; however, in countless cases, important discoveries are due to theoreticians making detailed predictions that guided experimenters to verify new effects—antimatter was discovered theoreti- cally by Dirac; many gravitational effects were predicted by Einstein; in quantum electrodynamics,theprogressofboththeoryandexperimentpushedtheagreement tomorethan10significantdigits.Thankstotheory,Physicsisnotjustanimmense inventoryofdata,buthasacoherentlogicwhichcanonlybeunderstoodintermsof ingenious and beautiful Mathematics. More exercises can be found in a book by Michele Cini, Francesco Fucito and Mauro Sbragaglia, Solved Problems in Quantum and Statistical Physics, Springer VerlagItalia2012.AmoreadvancedtreatmentofSolidStateTheoryispresentedin Michele Cini, Topics and Methods in Condensed Matter Theory, Springer 2007. Rome, Italy Michele Cini October 2017 vii Contents 1 Theoretical Physics and Mathematics . . . . . . . . . . . . . . . . . . . . . . . 1 Part I Classical Physics-Complements 2 Analytical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Galileo’s Revolution and Newton’s F ¼ma. . . . . . . . . . . . . . . 7 2.2 Lagrangian Formalism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Rotating Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Kepler Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 The Path Between t and t and the Action Integral . . . . . . . . . 19 1 2 2.3.1 Principle of Least Action . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Legendre Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 The Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.1 Reduced Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.2 Canonical Transformations . . . . . . . . . . . . . . . . . . . . . 27 2.5.3 Hamilton–Jacobi Equation . . . . . . . . . . . . . . . . . . . . . 31 2.5.4 Point Charge in an Electromagnetic Field . . . . . . . . . . 32 2.5.5 Poisson Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Delaunay Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Noether Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8 Chaos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Dirac’s Delta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Definition of the d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Volume of the Hypersphere in N Dimensions . . . . . . . 48 3.1.2 Plancherel Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Some Consequences of Maxwell’s Equations. . . . . . . . . . . . . . . . . . 51 4.1 Fields and Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Green’s Function of the Wave Equation and Retarded Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Lienard–Wiechert Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ix x Contents 4.4 Geometrical Optics and Fermat’s Principle. . . . . . . . . . . . . . . . 57 4.5 Coherent Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5.1 The Measurement of Stellar Diameters . . . . . . . . . . . . 58 5 Thermal Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 The Principles of Thermodynamics . . . . . . . . . . . . . . . . . . . . . 61 5.2 Black Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Statistical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 Gibbs Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 Microcanonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5.1 Entropy of the Perfect Gas . . . . . . . . . . . . . . . . . . . . . 79 5.6 Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6.1 Canonical Temperature. . . . . . . . . . . . . . . . . . . . . . . . 82 5.6.2 Information Entropy, Irreversible Gates and Toffoli Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 Canonical Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.7.1 Maxwell Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.7.2 Perfect Gas in the Canonical Ensemble and Boltzmann Statistics. . . . . . . . . . . . . . . . . . . . . . . 86 5.7.3 Thermodynamic Magnitudes in the Canonical Ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.7.4 Theorem of Equipartition . . . . . . . . . . . . . . . . . . . . . . 91 5.8 Grand-Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.8.1 Monte Carlo Methods. . . . . . . . . . . . . . . . . . . . . . . . . 94 6 Special Relativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1 Galileo’s Ship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 From Thought Experiments to the Lorentz Transformation . . . . 99 6.2.1 Relativistic Addition of Velocities. . . . . . . . . . . . . . . . 107 6.3 The Geometry of Special Relativity: Minkowsky Chronotope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.1 Cartesian Tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.2 Action of the Free Field . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.3 Doppler–Fizeau Effect and Aberration of Light . . . . . . 114 6.3.4 Relativistic Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.5 Field Lagrangian and Hamiltonian; Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . . . 120 7 Curvilinear Coordinates and Curved Spaces . . . . . . . . . . . . . . . . . 123 7.1 Parallel Transport, Affine Connection and Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2 Geodesics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Contents xi 8 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.1 Principle of Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.2 The Principle of General Covariance and the Curved Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2.1 Space Geometry in Stationary Problems . . . . . . . . . . . 140 8.2.2 Curved Space in a Rotating Frame . . . . . . . . . . . . . . . 140 8.2.3 Generalized Equation of Motion . . . . . . . . . . . . . . . . . 141 8.2.4 Generalized Maxwell Equations . . . . . . . . . . . . . . . . . 142 8.3 Einstein Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.3.1 Linearized Field Equations . . . . . . . . . . . . . . . . . . . . . 144 8.4 Schwarzschild Solution and Black Holes . . . . . . . . . . . . . . . . . 145 8.5 Relativistic Delay of Signals in a Gravity Field . . . . . . . . . . . . 148 8.6 Clocks in a Gravity Field, GPS and Gravitational Red Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.7 Bending and Gravitational Lensing of Light. . . . . . . . . . . . . . . 150 8.8 Shift of the Perihelion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.9 Geodetic Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 8.10 Frame Dragging and Gravitomagnetic Field . . . . . . . . . . . . . . . 155 8.11 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.12 The Standard Model of Cosmology . . . . . . . . . . . . . . . . . . . . . 159 Part II Quantum Mechanics 9 The Wave Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 9.1 Corpuscles and Waves in Classical Physics . . . . . . . . . . . . . . . 169 9.2 Dualism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 9.3 Which Way Did the Electron Pass Through? . . . . . . . . . . . . . . 173 9.3.1 Bohm-Aharonov Effect. . . . . . . . . . . . . . . . . . . . . . . . 173 9.3.2 Experiments by Deutsch on Photons . . . . . . . . . . . . . . 174 9.3.3 Plane Wave, Superposition Principle and Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.4 The Copenhagen Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 179 9.4.1 The Bohm Formulation of Quantum Theory . . . . . . . . 181 9.5 Quantum Eraser Experiments and Delayed Choice Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 9.5.1 Is the Interpretation a Closed Issue? . . . . . . . . . . . . . . 183 10 The Eigenvalue Equation and the Evolution Operator . . . . . . . . . . 185 10.1 Stationary State Equation and Its Resolvent . . . . . . . . . . . . . . . 188 10.2 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 10.3 Schrödinger and Heisenberg Formulations of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.